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ON THE DECOMPOSITION OF BOOLEAN
FUNCTIONS

Gérard H. E. Duchamp?, Hatem Hadj Kacem? and Eric
Laugerotte?

Abstract. The minimization of a weighted automaton given
by its linear representation (A, p,~y) taking its letters in an
alphabet A and its multiplicities in a (commutative or not)
field k, due to Schiitzenberger, provides the construction of
a suffix set P such that the orbit (11(p)7y)pep is a basis of the
k-space p(k(A))~y. This allows to study algorithmically the
S, -module Z/2Z[&,].f where &, is the symmetric group
which acts on the unknowns zi,...,x, by change of vari-
ables, and f(z1,...,%,) is a boolean function. In this work,
we present an algorithm which computes the possible de-
compositions of f with respect to this action. In case the
function f is indecomposable the algorithm gives a proof of
indecomposability.

1. Introduction

This contribution is intended to tackle the multifaceted prob-
lem of decomposing the Boolean Functions (BF in the sequel).
By boolean function we here mean any function {0,1}" ~ {0,1}
which, in the language of Computer Science, is just any function
taking a n-bits word as argument and returning a boolean value.
These functions are efficiently represented by a BDD (a Binary
Decision Diagram). This representation can be traced back as far
as in the late fifties [14] and was exploited extensively (for the first
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developpements see [1,2]). The great merit of this coding is that it
is extremely concise and also compatible with boolean automata
theory [12] to such a point that a measure of hadness has been de-
rived from the consideration of a minimal automaton associated
to the BDD of a boolean function [5].

As a BDD is variable-order dependant, we would like here to
study the orbit of a boolean function under the action of the (alge-
bra of the) symmetric group on the variables. The set of boolean
functions of n-variables is naturally a Zo (= Z/2Z) vector space.
Thus, the action of the symmetric group given by permutation
of variables can be at once extended by linearity to the algebra
Z9[6,] = 2, and, by Krull-Schmitt’s theorem, we get that the
orbit of f can be split (uniquely, up to isomorphism) as a direct
sum of 2, indecomposable submodules. The interest of such a
splitting is that the components are monogenous (i.e. generated
by a single element). The decomposition reads 2A,,.f = &2, f; and
this yields a decomposition of f using Endgy, (2,.f) idempotents

f=m.fr+mafor Tk fr (1)

Surprizingly, a suitable adaptation of Schiitzenberger’s algo-
rithm [16] for the minimization of automata with multiplicities
(here with coefficients in Zs) makes all this computable. We use
here half of the minimization process, keeping a note of the re-
lators appearing and then getting a minimal presentation of the
module 2(,.f. This process is reminiscent of the theory of non-
commutative Grobner bases [11], but here we need more. We need
also to compute idempotents in the transfer algebra Endy, (Us,.f),
which can be done using the reduced basis of the module 21,,.f

previously computed. All the process has been implemented in
MuPAD.

The structure of the contribution is the following. In Section
2, we present the main aspects of weighted automaton minimiza-
tion. In Section 3, we deal with the splitting of modules. After,
in Section 4, we present the algorithmic of the decomposition of
boolean functions. At the end, in Section 5, an example is given
with the numbers of decomposable functions for the first values of
n.
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FIGURE 1. A Q-automaton.

2. Minimization of weighted automata

Let us give here a short review of the minimization algorithm
from the theory of automata with multiplicities (see also [4, 16]
for fields and domains and [10] for a detailed algorithm and an
extension to skew fields). An automaton with multiplicities A is a
structure equivalent to a triplet (A, u,~y) called linear representa-
tion which is defined by:

an alphabet (of commands, say) A
a (finite) set of states @

a (semi)ring k of scalars

an input vector A € k1*¢

an output vector vy € k@1

a mapping p: A — k@%@

These data are usually represented as a valued graph (see Fig-
ure 1). The mapping 4 is at once extended to a morphism from
(A*,conc) to (k9*9,.) where conc stands for the binary operator
of concatenation of words and - for the usual matrix multiplica-
tion. The number of states of the weighted automaton A is its
dimension noted dimension(.A). Therefore A is a finite state ma-
chine taking words and providing coefficients (called also costs or
weights) which are provided by Ap(w)y for a word w € A*. The
function A* — k, given by w — Au(w)y, can more conveniently
be written as a noncommutative series

behaviour(A) = Z Ap(w)yw (2)
weA*
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FIGURE 3. A Zs-automaton

which is called the behaviour of A. Such series are just functions
A* — k called rational [4,8,15,17].

The whole set of functions k4" (noncommutative series) is often
denoted k((A)) and a function S € k((A)), written in the style of
(2) reads

S= Y (Slwyw (3)
weA*
so that S(w) (i.e. the coefficient of w in S) will be denoted as
the scalar product (S|w). The behaviour of A thus determines the
weight of w for the automaton A.
The aim of minimization is to construct an automaton

Amin — (>\mina Hmins 'Ymin)

with the same behaviour and of smallest dimension.
From now on, we set once for all Zo = 7Z /7.
The Zy-automaton given in Figure 2 is minimized in Figure 3.

Minimization is obtained by a left and a right reduction. In fact,
let o be the left action defined for all formal series S € k({A)) and
all word w € A* by woS =)  ,.(S|zw)wz. If S is rational, there
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exists a finitely generated submodule of k£((A)) stable for o which
contains the formal series behaviour(A) (this is even a criterium of
rationality, see [4,9]). The generators S; (i = 1,...,dimension(A))
may be explicitly given by

Si= Y ipa(w)yi)w

weA*

but in general it is not a family of smallest rank.

Finding algorithmically such a minimal family goes as follows [10].
Call suffix set a subset P of the free monoid A* such that, if a word
w belongs to P then every suffix of w belongs to P.

Left reduction of A allows to construct a suffix set P such that
(1(p)¥)pep is a basis of the space of columns p(k(A))y. The fam-
ily (p o behaviour(.A)),cp generates a stable submodule of £((A))
which contains behaviour(.4) and whose the dimension is smaller
or equal to dimension(.A). Indeed, it is the smallest possible among
the stable submodules containing behaviour(.4). More precisely,
let pe P and a € A,

[ apo§ if ap € P,
GO(pOS)—{quP OlgquS if ap ¢ P.

To each formal series p o S is associated a state in the reduced
automaton. The weight of a transition p — ¢ is the scalar g,
the transition label being a. After left reduction, right reduction

is applied and returns the minimized automaton Ani, because
dim(Aminftmin(k(A))) = dim(pmin(k(A))Ymin)-

3. Splitting modules

In what follows, we consider the algebra 2, = Z2[S,] (we omit
the subscript as it is fixed once for all) of the symmetric group
Sn over Zgy [13]. It is generated by the simple transpositions
O1y...,0n—1 (07 is the transposition of ¢ and 7 + 1) and there-
fore can be presented by generators (s;)1<i<n—1 and the relations
(the symbol s; standing for o)

SiSj = 8j8; if |Z — ]| > 1,
Si8i4+15i = Si+15iSi+1-
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(called Moore-Coxeter relations [7,13]). The algebra 2, acts on
the left on Zy(x1,...,z,) by change of variables which are mor-
phisms s; : A* — A* defined on the letters by

SiLy = Ti+1,
SiTi+1 = T4,
5iTj = T if #1414+ 1.

Let S = {s1,...,8n—1} be the set of symbols of these (simple)
transpositions. The morphism Zy(S) — 2, is onto and then
the notions of submodule and decomposition are the same for
the action of 2, and the action of Zy(S). For this reason, we
will denote similarly (and with no risk of confusion) the two ac-
tions. Let F,, be the left 2,,-module of boolean functions with
n variables (it is a finite dimensional Zs-vector space). We con-
sider the submodule 2,,.f where f € F, is a single generator.
Krull-Schmidt’s theorem [6] implies that there exists (unique up
to isomorphisms) a splitting of the module 2,,.f into a direct sum
A,.f = My & --- & M; of indecomposable 2,-submodules M;.
The aim of the algorithm below is to compute a splitting of 2A,,.f
by the knowledge of a complete family of orthogonal projectors
m € Endy, (Ay,.f) (¢ =1,...,1) i.e. which satisfy:

7TlO7TlZ7rZ?
M@ @ = Lendy, (2n.1)

Therefore, the module 2,,.f is the direct sum of submodules given
by m;i(2,.f) which are generated by a single element. If 7; is the
projector which carries out ,.f to M; (M; = m;(™,.f)) then m;
must be 2l,-linear.

Let then ¢ € Endy(Ay,.f). Whether ¢ € Endy, (Ay.f) is algorith-
mically decidable thanks to the fact that the ideal of annihilators
of ann(f) is finitely generated. We explain now how this can be
done.

One can construct a suffix set (see below or [10]) P C S§* such
that P.f is a basis of 2,,.f. Let E := {(0;,0) € S X P | 0,0 ¢ P}.
For (0;,0) € E, one has:

UiU-f = Z aaia,a’al-f (4)

o'eP
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and the differences R := {O’Z'O' — Y oeP agig,gro’}(m e A€ a
complete set of generators of ann(f). The construction of idem-
potents will rely on the following lemma:

Lemma 3.1. Let ¢ € &ndi(Ay,.f) and set f, = o(f). Then the
linear transformation ¢ belongs to Endgy, (Ap.f) iff:

i) for all o € P, one has p(o.f) = o.o(f)

ii) for all (0,0) € E, the difference (0,0 — Y ,/cp Ogi0,0) anni-
hilates f.

Thus, it suffices to compute a basis of 2,.f, keeping track of
the relators appearing, to obtain a test which allows to select the
idempotents of Endgy, (2,,.f) among the projectors of Endy (As,.f).

4. Computation of endomorphisms and projectors

We can transfer the half minimization process to 2,.f and also
take care of keeping trace of the relators appearing. The following
algorithm allows us to find a suffix set of S* and the corresponding
set of relators:

algorithm suffiz
input the set S
a boolean function f € F,
output a suffix set P C §*
a set of relators R
(P,Y,R) := (0,{e},0)
while Y # ()
do take y € Y
if my ¢ span(mp : p € P)
then (P,Y) := (PU{y}, (Y — {y}) UyS)
else there exits a relation my =3 p aymp
(Pa Y, R) = (Pa (Y - {y})v RU {y - ZpEP Oépp})
end _if
end_while
return(P, R)
end

The set P is a suffix set and the algorithm terminates. In fact, we
show that the set P is suffix at each step of the algorithm. This
is clear from the beginning when P = {e¢}. Now, ify € Y C §* is
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accepted it must have been so of every suffix of it before. Let |o|
denote, as usual, the length of a word o € S*. As the space ,,.f
has a finite dimension, it exists a non-negative integer [ such that:

span(o.f : 0 € §*) = span(o.f : 0 € §* and |o| < ).

One has PC {o € S*:|o| <} and Y C {0 € §*: |o| <[+ 1}.
Then the set Y becomes empty during the algorithm and then the
algorithm terminates.

Lemma 4.1. The set P.f = {o.f : 0 € P} is a basis of the space
A f-

Proof. Let C = SP\ P be the complete suffix code associated to P
[3]. One has the decomposition S* = PLIS*CP of the free monoid.
Let 0,0 € C. Then there exists a relator o;0 — ZU’EP ay 0 € R.
Now let 0; € S and 0,0 € CS*S. One has by induction:

oiof = Z agroio f
o'eP

/ o’
= E oy o0 f+ E E Qg By.500 -

o;0'€P oio¢Po'"eP

And then o;0f € span(of : 0 € P) which ends the proof. O

By Lemma 4.1, Algorithm suffiz computes a complete descrip-
tion of the space 2(,,f. We can observe that the set R of relators
depends on the choice of words y € Y. Let f = x1x92 + 21 € F3.
The set of relators are different if the words are choosen with the
graded or with the usual lexicographic order. In fact, the element
0909 +¢ € S* is a relator with the use of the second order but not
with the first. See Figure 4 where a full transition means an action
giving an new element of the basis, a dotted transition giving a
relator.

Lemma 4.2. The ideal generated by the set of relators R is then
ann(f).

In [11], the tools for the proof of Lemma 4.2 are presented.
Therefore we associate at ¢ € End(2.f) an unique element f, =
(> _gep @00 f) [6]. By Lemma 4.1, it is easy to determine algorith-
mically the endomorphism ¢ in the basis (o f),cp of 2f. In fact,
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01,0

b 2’ 1Ty + x2) " 01 02 (X123 + 1)« 91, 92",
/72 01\ -

T1X3 + T3 ToT3 + To

o1 . _“50—2

FI1GURE 4. Suffix sets and relators for f = z1x9 + 21

Algorithm suffiz allows to compute the suffix set P and the relator
set R. By linearity, for any element o’ € P, the endomorphism ¢
depends only to the unknowns o, .. In fact, one has:

00 f) =D tpeo’of = > agolof+ Y g Y BY0"

oeP o'oceP o'o¢P o'"eP

The scalars Bg,”g are given by the relators. The order of computa-
tion of vectors ¢(of) is given by the entry of o in the set P. If
o = o;0’ then p(o’ f) will be known. The morphism ¢ is computed
by the following algorithm:
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algorithm cons_y
input the set of simple transitions S
the suffix set P
the set of relators R
output the morphism ¢
Y =8
P(ef) = Y ep oeof
while Y # ()
do take ;0 € Y
ifoo¢ P
then Y :=Y — {o;0}
else p(o;0f) = oip(of)
Y := (Y USo;0) —{ojo}
end_if
end_while
return(yp)
end

In order to find projectors, we must study the relation of idem-
potence p? = ¢. Moreover we must verify that o(of) = op(f)
for all element ¢ € P and ro(f) = 0 for all relator r € R as
¢ € Endy, (Ay,.f). Therefore we obtain a system of n x |P|? + | P
equations in the unknowns a,. for all o € P. Each non-trivial
solution ¢ gives a decomposition 2,.f = A,.f, ® Ap.f1_,. In
this case, we restart the algorithm on 2,,. f, and 2(,.f;,. We get
by repetition a direct sum of indecomposable submodules. Other-
wise, if no non-trivial solutions exists, we deduce that the module
A,.f can not be written in a direct sum of submodules non-zero
submodules.

Theorem 4.3. Let f € F,,. A finite repetition of Algorithm suffiz
and cons_p decides if there exits a decomposition of Up,.f in di-
rect sum of indecomposable submodules. If the algorithm finds no
non-trivial decompoition at the first step, then the module A,.f is
indecomposable.

The preceding process can be applied mutatis mutandis with
2 any finitely generated associative algebra with unit over a field
k acting on a finite dimensional (as a k-vector space) 2-module.
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g1 @'1%3 + X9 + Xox3 + 'T?D 09
T
Sy 927
@"1 + 123 + Tox3 + xg) e 1, 09 ’(xlzg + 29 + 2923 + :l?gD

o Jo
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01,02 7

L
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FIGURE 5. Indecomposable modules
5. Example of splitting

We consider now the boolean function f = xix9 + 1 € F3.
A basis of the module 23.f is presented in Figure 4 when the
graded lexicographic order is choosen for the computation of the
suffix set P. Let ¢ € &nd,(™A3.f) and f, € Az.f such that f, =
aee.fHaq, 01.f+0s,00. f+05,6,0201.f +Qg, 5,0102. f. The matrix
corresponding to ¢ is:

Qe Qo +ao'lo'2 Qoo +Oéo'20'1 Aoy +ao'20'1 Qoq +ao'lc'2

Qg Qet+Qoioy  OojogtQoyo gy oy gy

Qoy QojogtQoyo;  QetQogoy Qo +0oy Qoq
Qoo Qoo Qo +Qoyoq Qet+Qoy Qo +Qoyoy
Qogo; Qoo +ao'lo'2 Qoo Aoy +ao'lc'2 Oé€+ao'2

Non-trivial solutions of the system given by ¢? = ¢ and oyp(f) =
@(o.f) for all o € P are f, = 0901.f + 0102.f and fii, =e.f +
o901.f +o109.f. Orelse, f, = z123 + T2 + Tox3 + x3 and f14, =
T1+ 3172+ 2123 + T2 +Tow3 + 3. In fact, one has Az.f = A3. f, +
3. f144, and the indecomposable modules 23.f, and 3. f1, are
expressed by Figure 5.
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First results of experiments are presented in the following table:

Nb of unknowns 11 2 3 4
Nb of functions 1116 | 256 | 65536
Nb of dec. functions |0 | 0 82 683
% of dec. functions [0 | 0 |32.03 | 1.04

6. Concluding remarks

The linear representation of the action of the symmetric group
by change of variables of a boolean function has been studied with
respect to indecomposability and using Zo coefficients. We have
got a presentation of the module generated by a boolean function
by means of an algorithm designed by Schiitzenberger for the min-
imization of automata with multiplicities and a suited recording of
the relators appearing during the computation. The whole process
has been implemented in MuPAD.
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