
Parallel Nested Depth-First
Searches for LTL Model Checking

Sami Evangelista, Laure Petrucci, and Samir Youcef

LIPN, CNRS UMR 7030, Université Paris XIII
99, avenue Jean-Baptiste Clément

F-93430 Villetaneuse, France
firstname.lastname@lipn.univ-paris13.fr

Abstract. Even though the well-known nested-depth first search algorithm for
LTL model checking provides good performance, it cannot benefit from the re-
cent advent of multi-core computers. This paper proposes a new version of this
algorithm, adapted to multi-core architectures with a shared memory. It can ex-
hibit good speed-ups as supported by a series of experiments.

1 Introduction

The model checking problem aims at verifying whether a given hardware or software
system meets its specification. For the analysis of properties expressed in the Linear-
time Temporal Logic (LTL) this problem is often reduced to checking the emptiness of
a Büchi automaton defined as the product of the system and an automaton negating the
formula to check [26]. Thus, model checking boils down to find a cycle in a directed
graph, and more precisely, to verify the existence of an accepting cycle. The latter is
defined as a cycle (in the sense of graph theory) containing at least one accepting state.

This problem has been intensively explored because of its importance, using diverse
techniques. In the context of explicit-state model checking, algorithms usually rely on
depth-first-search (DFS) strategies allowing to check for Büchi emptiness in linear time.
They are split in two main families: Nested DFS (ndfs), originally proposed by Cour-
coubetis et al [11], consist of two procedures where the first one allows to find and
sort the accepting states while the second one, interleaved with the first one, searches
for cycles containing these states ; SCC (strongly-connected components) based algo-
rithms [12, 17] exploit the fact that a counter-example exists if and only if a strongly
connected component containing an accepting state is reachable from the initial state.

Despite the existence of algorithms with linear complexity for this emptiness check,
combinatorial aspects remain due to the state space size of real systems, their exact anal-
ysis often being intractable. However, recent hardware developments, such as 64-bits
technologies, contribute to harnessing formal verification memory limitations. Hence,
the problem we can now often face is a “time explosion” rather than a lack of memory.
For instance, using aggressive memory reduction techniques [21] one can hope to anal-
yse state space graphs with e.g. 1010–1011 states. Even with the fastest tools available,
such as SPIN [19], a full exploration of such a graph would require weeks.

T. Bultan and P.-A. Hsiung (Eds.): ATVA 2011, LNCS 6996, pp. 381–396, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

382 S. Evangelista, L. Petrucci, and S. Youcef

The use of parallel search algorithms can naturally leverage this time explosion.
Most algorithms of this category were initially designed for distributed-memory archi-
tectures [1,5,7,8,9], fostered by easy access to networks of workstations. The availabil-
ity of multi-core chips on desktop computers now offers opportunities to speed up tasks
execution and also for the development of new approaches to model checking [3, 22].

Our contribution is a parallel algorithm designed for shared memory and multi-core
architectures: Multi-Core ndfs (mc-ndfs). It solves the Büchi emptiness problem by
launching multiple instances of ndfs. The use of both randomisation and synchronisa-
tions allows, to some extent, to force processes to visit different parts of the graph and to
avoid, as much as possible, multiple revisits of a same state. Thus, even if our algorithm
is theoretically not scalable it provides significant speed-ups for many case studies as
attested by a wide range of experiments.

The paper is organised as follows. Section 2 presents related works: the well-known
ndfs algorithm is recalled and existing parallel algorithms for LTL model checking
summarised after outlining the accepting cycle detection problem. Section 3 details the
proposed algorithm and gives its formal proof. Section 4 presents experimental results.
Our work is concluded by Section 5 that also gives some perspectives for future work.

2 Background

In order to facilitate the understanding of our algorithm and its comparison with algo-
rithms from the literature, we begin with a brief state of the art: LTL model checking,
some algorithms based on ndfs, and parallel algorithms for LTL model checking.

2.1 The LTL Model Checking Problem

This paper addresses LTL model checking of finite-state systems where both the sys-
tems and their properties are modelled as automata. Then, verification is often reduced
to checking the emptiness of a Büchi automaton defined as the product of the system
and the negated formula [26]. This problem can be stated in its basic form as follows:

Definition 1 (Synchronised graph). A synchronised graph is a tuple G =(S ,T ,A ,s0),
where S is a finite set of states; T ⊆ S × S is a set of transitions; A ⊆ S is the set of
accepting states, and s0 ∈ S is an initial state.

The set of successors of s ∈ S is denoted by succ(s) = {s′|(s,s′) ∈ S}. A path is a
sequence of states s1 . . . sk with (si,si+1) ∈ T for all i ∈ {1, . . . ,k−1} denoted by s1 �
sk. A cycle is a path with s1 = sk. An accepting cycle is a cycle that contains at least one
state a ∈ A . An accepting run is a path from s0 to sl through sk where sk . . .sl form an
accepting cycle. The accepting cycle detection problem aims at determining if a given
graph G contains an accepting cycle. The major algorithms addressing this problem
are based either on nested DFS (ndfs) or on SCCs (originating from Tarjan’s algorithm
for decomposing the graph into strongly connected components). Since the algorithm
proposed in this paper is essentially based on ndfs, we shall focus on this one only.
Details on SCC-based algorithms can be found elsewhere [12, 17].

Parallel Nested Depth-First Searches for LTL Model Checking 383

2.2 Algorithms Based on Nested Depth-First Search

The well-known nested-depth first search algorithm for LTL model checking, was ini-
tially introduced in [11]. All algorithms belonging to this category still follow the same
scheme. The ndfs algorithm (see Algorithm 1.1) is defined by two procedures called
dfsBlue and dfsRed. The first one, which is the main loop, allows for marking each
newly visited state as blue. The second one tries to find a loop back to a given accepting
state s, and marks all encountered states as red. If a cycle is detected then a counterex-
ample is reported, otherwise the first DFS continues and the red markings remain. Note
that each DFS visits each state at most once and requires one bit per state. Procedure
dfsBlue performs a depth-first search and sets the blue bits of all visited states. Proce-
dure dfsRed is invoked when the search from an accepting state s finishes. Finally, if
dfsRed finds that some accepting state s can be reached from itself, an accepting cycle
is returned, otherwise the graph does not contain any cycle.

Since its introduction, several improvements have been proposed. Some aim at re-
porting accepting runs faster [13, 14, 15, 18] while others [16] focus on the length of
counter-examples. Nested DFS is now implemented by a large range of explicit state
model checkers among which SPIN [19] was historically the first.

2.3 Parallel Algorithms for LTL Model Checking

The best known enumerative sequential algorithms in the area of LTL model checking
are Nested DFS and SCC-based algorithms. Adapting them to take advantage of par-
allel architectures is difficult since they rely on inherently sequential depth-first search
postorder. Hence, it is necessary to propose new techniques and algorithms. Before get-
ting into the details of the proposed algorithm, seven existing parallel algorithms are
outlined: Maximal Accepting Predecessor (map), One Way Catch Them Young (owcty),
One Way Catch Them Young On-The-Fly (owcty-otf), Negative Cycle (negc), Back-Level
Edges (bledge), Back-Level Edges On-The-Fly (bledge-otf), and SPIN’s double DFS (2-
ndfs). All except the last one have been initially designed for distributed memory archi-
tectures, but it is well known that they can easily be transformed into shared memory
algorithms. To compare the different complexities of these algorithms the following no-
tations are used: n = |S |, m = |T |, a = |A |, p = number of working processes and h
(height) is the smallest integer s.t. s0 can reach all states using at most h transitions.

Algorithm map [8] uses an order relation on states to compute the maximal accepting
predecessor function map mapping each state s to the identity of the greatest accepting
state that is backward reachable from s.

Algorithm 1.1. The ndfs algorithm adapted from [11]
1 procedure ndfs(s) is
2 initialise all flags to false
3 dfsBlue(s0)
4 if ¬ cycle reported then
5 report no-cycle

6 procedure dfsBlue(s) is
7 s.blue := true
8 for s′ ∈ succ(s) do
9 if ¬s′.blue then

10 dfsBlue(s′)
11 if s ∈ A then
12 seed := s
13 dfsRed(s)

14 procedure dfsRed(s) is
15 s.red := true
16 for s′ ∈ succ(s) do
17 if s′ = seed then
18 report cycle
19 else if ¬s′.red then
20 dfsRed(s′)

384 S. Evangelista, L. Petrucci, and S. Youcef

The key idea behind algorithm owcty is to repeatedly remove from the graph states
that cannot lead to an accepting cycle [9], according to two rules: a state s can be
removed if it has no successor in the graph and/or it cannot lead to an accepting state.
An extension of owcty algorithm is presented in [2]. The owcty-otf algorithm employs
back-level edges as computed by the breadth-first search.

An extension of the owcty algorithm is presented in [4]. The owcty-otf algorithm
combines the basic owcty algorithm with a limited propagation of selected accepting
states as performed within the map algorithm.

Algorithm negc [7] reduces the LTL model checking problem to a negative cycle
detection problem. To do so, the initial graph is transformed: every edge exiting an ac-
cepting state is labeled with -1 while every edge exiting a non-accepting state is labeled
with 0 (a counter-example exists iff the transformed graph contains a negative cycle).

Every accepting cycle contains at least one accepting state and one back-level edge
(s,s′) such that d(s) ≥ d(s′), where d(x) is the length of the shortest path from s0 to x.
Algorithm bledge [1] stems from this observation. It detects all back-level edges using a
distributed BFS and then checks in parallel whether at least one back-level edge belongs
to a cycle by using DFS. In [2], an extension of the bledge algorithm has been proposed
(bledge-otf) that allows on-the-fly accepting cycle detection.

An extension of ndfs for a dual-core machine, called double-DFS (2-ndfs) hereafter,
is presented in [22] and implemented in SPIN [19]. It is based on the observation that
the blue and the red DFS can be performed independently. The linear complexity of
ndfs is kept although the algorithm can only be applied to dual-core systems.

After preparing this final version, we noticed that another approach on parallelising
Nested Depth First Search appears in this same volume [23]. Both approaches appear
to be complementary, since the colours shared are not the same, thus affecting different
parts of the program execution. Moreover, in the other approach, a synchronisation
mechanism is required whereas we use randomised executions with a repair procedure.

Table 1 summarises explicit states algorithms designed for LTL model checking.
It provides, for each algorithm, the reference introducing it, its time complexity, the
number of core(s) it can be run on, the acceleration (experimentally observed) that can
be provided and finally its “on-the-flyness” as defined in [4]:

level 0. The algorithm has to explore the whole graph before checking emptiness.
level 1. The algorithm can find an accepting run before building the whole synchro-

nised graph but is not guaranteed to do so.
level 2. The algorithm works on-the-fly. There is always an exploration order of tran-

sitions guaranteeing an early termination in the presence of an accepting run.

Note that, with our new algorithm mc-ndfs, the aggregate work performed by all pro-
cesses increases as more processes get involved in the verification. Hence mc-ndfs does
not scale in theory and, in the worst case, does not offer any improvement with respect
to a sequential ndfs. Our algorithm is therefore a heuristic algorithm: we can hope to re-
duce the exploration time through the mechanism it implements, but for some problems
it may be equivalent to spawning multiple instances of ndfs. Nevertheless, even in this
pathological situation, the use of randomisation can help to report counter-examples
faster. This is one of the founding principles of the Swarm tool [20].

Parallel Nested Depth-First Searches for LTL Model Checking 385

Table 1. Explicit state algorithms for Büchi emptiness check

Algorithm Source Time Complexity Scalability Acceleration On-the-flyness
ndfs [11] O(n+m) 1 core - 2

couv-tarjan [12] O(n+m) 1 core - 2
GV-tarjan [17] O(n+m) 1 core - 2

2-ndfs [22] O(n+m) 1–2 core(s) average 2
map [8] O(a2 ·m) 1–N core(s) excellent 1

owcty [9] O(h ·m) 1–N core(s) excellent 0
owcty-otf [4] O((h · (m+n))) 1–N core(s) excelent 1

negc [7] O(n ·m) 1–N core(s) excellent 0
bledge [1] O(m · (n+m)) 1–N core(s) excellent 0

bledge-otf [2] O(m · (n+m)) 1–N core(s) excellent 2
mc-ndfs this paper O(p · (n+m)) 1–N core(s) average-good 2

3 mc-ndfs, a Multi-core Algorithm for LTL Model Checking

This section introduces mc-ndfs, a new algorithm for LTL model checking, designed for
multi-core, shared memory architectures. It first emphasises the difficulty of parallelis-
ing ndfs. The principle of mc-ndfs is then explained, the algorithm detailed and formally
proven. Finally, its complexity is discussed and a possible extension introduced.

Throughout this section, we denote by G = (S ,T ,A ,s0) a synchronised graph and
by P = {1, . . . ,P} a pool of running processes.

3.1 Difficulty of Parallelising ndfs

Fig. 1(a) describes a synchronised graph used as a running example throughout this
section. Accepting states are drawn, as usual, using double circles. This graph contains
a single accepting run 0→1→2→1 highlighted using thick arcs.

Let us consider a naive multi-core version of the ndfs algorithm: processes execute
procedure ndfs and share all data (i.e. blue and red flags). Running this algorithm with
two processes p1 and p2 on the graph of Fig. 1(a) will not necessarily report the accept-
ing cycle, as shown by the execution in Fig. 1(b).

0

1 3

2

(a)

Process p1 Process p2 Blue states Red States Seed
dfsBlue(0) dfsBlue(0) 0 - -
dfsBlue(1) 0, 1 - -
dfsBlue(2) 0, 1, 2 - 1
dfsRed(1) 0, 1, 2 1 1

dfsBlue(3) 0, 1, 2, 3 1 3
dfsRed(3) 0, 1, 2, 3 1, 3 3
dfsRed(2) 0, 1, 2, 3 1, 2, 3 3

(b)

Fig. 1. A synchronised graph (1(a)) and a possible faulty execution with a naive parallel version
of ndfs (1(b))

386 S. Evangelista, L. Petrucci, and S. Youcef

The blue DFS launched by p1 starts exploring the left part of the graph and colours
the states it meets in blue (i.e. 0, 1 and 2). When backtracking from 2 and then 1, process
p1 initiates a red DFS on state 1. Suppose that meanwhile the blue DFS launched by
process p2 visits the right part of the graph. It colours state 3 in blue and then reaches
state 2 previously marked blue by p1. Since all successors of state 3 are blue, p2 can
start a red DFS on this same state. If p2 progresses faster than p1, it will colour states
3 and 2 in red before terminating. Process p1, when evaluating the successor of state 1,
will only find state 2 (already red) and terminate without noticing the accepting cycle.

This small example highlights the key idea behind the correctness of ndfs: the red
DFS being nested in the blue DFS guarantees that the invocation sequence of dfsRed
respects a DFS post-ordering of states. Hence, if two accepting states a1 and a2 are
such that a1 � a2 ∧¬(a2 � a1) (noted a1 > a2 in the sequel) then for all executions
the red DFS on a1 cannot start unless the red DFS on a2 did terminate. Otherwise the
red DFS started on a1 would colour in red the states of the accepting cycle including
a2 (if any), which would then not be detected by the red DFS initiated on a2. In all
other cases, the invocation order is irrelevant: either the two red DFS cannot interfere
(¬(a1 � a2)∧¬(a2 � a1)), or a1 and a2 belong to the same accepting cycle (a1 �
a2 ∧ a2 � a1) and this cycle will be detected anyway. This naive parallel version of
ndfs exhibits the first situation since the DFS post-order is not respected anymore (with
a2 = 1 and a1 = 3 in our example).

Solving this kind of conflict constitutes the core difficulty when designing a multi-
core version of ndfs.

3.2 Principle of the Algorithm

The previous problem has first been detailed in [5] that proposes an algorithm designed
for distributed memory algorithms. Its underlying principle is to maintain a dependency
graph that avoids these conflicts and ensures that the red DFS is initiated in the appro-
priate order: a1 > a2 ⇒ dfsRed(a2) terminates before dfsRed(a1) starts. The principle
of mc-ndfs is instead to detect, on-the-fly, configurations in which the invocation order
of the red DFS is broken. It is optimistic in the sense that processes evolve without pre-
venting conflicts, and operations to fix problems are performed a posteriori. Thus, all
synchronisations required in [5] are avoided, but states may be revisited if a conflict is
detected. More precisely, a process notifies its peers by marking state a2 as dangerous.
It must then be treated differently as explained below. In our previous example, process
p2 would detect that the red DFS it initiated on state 3 interferes with the one on state
1 still handled by p1. This conflict is detected by p2 and reported to p1 by marking
state 1 as dangerous. In this situation, p1 restarts a nested DFS using Algorithm 1.1 but
exploits local data only. Hence, the red flag set to true by p2 (i.e. 2.red) during the red
DFS it performed on state 3 is ignored by p1, which reports the cycle 1→2→1.

Marking an accepting state a as dangerous is thus a means for a process to warn its
peers that a red DFS it performed has potentially corrupted the outcome of a red DFS on
a. The easiest way to proceed is then, after the red DFS on a has terminated, to reinitiate
a nested depth-first search on a since an accepting state could have been missed. Hence,
mc-ndfs can be viewed as a two levels algorithm: a multi-core level with inter-processes

Parallel Nested Depth-First Searches for LTL Model Checking 387

synchronisations to distribute work among processes; and an emergency level without
any synchronisation and triggered in case of failure of the first level.

3.3 Details of the Algorithm

Algorithm 1.2 shows the pseudo-code of our new algorithm. States have several at-
tributes. Some are local to a process p (attributes s.bluep and s.redp for p ∈ P) while
others are global and shared by all processes (s.blue,s.dangerous,s.red).

The main procedure (ll. 1–6) first initialises all boolean attributes of states to false
and spawns P working processes that will start a blue DFS on the initial state. If they
terminate without reporting any accepting cycle, the algorithm reports that none exists.

Roughly speaking, two modifications have been brought to the sequential algorithm.
First, to ensure, as much as possible, that processes will engage in different parts of the
graph, successor states are visited in a random order thanks to the shuffle function (l. 11
and l. 20). Second, inter-process synchronisations have been integrated to both DFSs
— through the global attributes s.blue and s.red — in order to limit the visits of a same
state by different processes (see l. 16 and l. 21).1

Modifications to the blue DFS. First, states visited by the red DFS are not directly
marked as red but instead put in set Rp to be later marked by the blue DFS once the red
search has terminated (ll. 28–30). Note that a dangerous state may not be marked as red,
unless it is the state currently visited. Second, a state s, marked as dangerous by another
process, is revisited with ndfsp (ll. 31–32). Red and blue attributes associated with each
state s by ndfsp — the same as in Algorithm 1.1 except for the few minor changes
listed below — are distinct from those used by mc-ndfs and local to each process so
that data computed by another process may not corrupt the result that will come out
from a call to procedure ndfsp. Moreover, the computation result of an invocation of
ndfsp can be used during subsequent calls to this same procedure. Therefore, a state
cannot be visited more than once by a process p with procedure ndfsp. Consequently,
the initialisation step (l. 2 of Algorithm 1.1) is not performed during an invocation of
ndfsp and local flags used in this procedure can be initialised at l. 1 of Algorithm 1.2.

Modifications to the red DFS. First, a successor state s′ of s is marked as dangerous
(ll. 14–15) when it is accepting but not red. In this situation, the red DFS on s′ has not
terminated (since¬s′.red) although it may have started. The red flags of states reachable
from s′ that the current process p will set to true (at l. 30) must thus be ignored by any
process q
= p that will later launch ndfsq(s′) if dfsRedq(s′) does not report a cycle.
This situation corresponds to the kind of conflict exhibited by our previous example.

1 Attribute s.blue is set to true as soon as s is backtracked from a process whereas it could
instead be set before the exploration loop of ll. 20–22. This second alternative would have
severely limited the degree of parallelism: as soon as a process p would push a state s on its
blue DFS stack, it would prevent all other processes from visiting s and all its successors. For
instance, if the initial state had a single successor mc-ndfs would then most likely degenerate
into a sequential ndfs. However, by doing so, we leave the possibility to have different pro-
cesses visiting the same state with the blue DFS: this is thus a tradeoff between the degree of
parallelism and the amount of work performed.

388 S. Evangelista, L. Petrucci, and S. Youcef

Algorithm 1.2. The mc-ndfs algorithm for P working processes
1 initialise all flags to false
2 execute dfsBlue1(s0) || . . . || dfsBlueP(s0)
3 wait for termination of
4 dfsBlue1, . . . , dfsBlueP
5 if ¬ cycle reported then
6 report no-cycle
7

8 procedure dfsRedp(s) is
9 s.redp := true

10 Rp := Rp ∪{s}
11 for s′ ∈ shuffle(succ(s)) do
12 if s′ = seedp then
13 report cycle
14 if s′ ∈ A ∧¬s′.red then
15 s′.dangerous := true
16 if ¬s′.red∧¬s′.redp then
17 dfsRedp(s′)

18 procedure dfsBluep(s) is
19 s.bluep := true
20 for s′ ∈ shuffle(succ(s)) do
21 if ¬s′.blue∧¬s′.bluep then
22 dfsBluep(s′)
23 s.blue := true
24 if s ∈ A then
25 seedp := s
26 Rp := /0
27 dfsRedp(s)
28 for r ∈ Rp do
29 if ¬r.dangerous∨ s = r then
30 r.red := true
31 if s.dangerous then
32 ndfsp(s)

Another major change with respect to ndfs is that mc-ndfs marks states as red when a
red DFS terminates (ll. 28–30) by storing in Rp all states visited by the DFS. Indeed, as
a red DFS terminates, all states it visited are guaranteed not to belong to an accepting
cycle unless a state marked as red led to a non-red and accepting state (hence marked
dangerous, as explained above). This information can also be used by other processes.
The proof of the algorithm will clarify the motivation for marking states as red only
when the red DFS terminates and not earlier.

3.4 Proof of the Algorithm

Intuitively, the correctness of our algorithm stems from the way states are marked red
and dangerous. When a red DFS on an accepting state a1 is triggered by process p
before the red DFS has terminated on a state a2 with a1 > a2, some states s ∈ Rp around
a2 will be marked red and a2 dangerous. However, since a2 is marked as dangerous
before states of Rp become red (states are marked as dangerous during the red DFS
while states become red once the red DFS has terminated), if an accepting cycle on
state a2 is not discovered, then it is due to the fact that the red DFS on a2 reached a red
state which in turn implies that a2 has been marked as dangerous. Hence, ndfsp(a2) will
necessarily be triggered after the red DFS, and the cycle will be reported.

The proof proceeds in five steps. First, it is straightforward that all states will be
visited by a blue DFS and thus all accepting states will be visited by a red DFS.

Proposition 1. After the termination of algorithm mc-ndfs, either an accepting cycle is
reported or ∀s ∈ S ,s.blue∧ s ∈ A ⇒ s.red.

Second, it is an invariant property that an accepting state a can only be marked red after
the termination of dfsRedp(a) (for a process p ∈ P).

Parallel Nested Depth-First Searches for LTL Model Checking 389

Proposition 2. Let a ∈ A . There exists p ∈ P such that dfsRedp(a) is initiated by mc-
ndfs with a.red = false.

Proof. Initially, s.red = false,∀s ∈ S . From the conditions at l. 29 and l. 14, it holds that
dfsBluep(s) changes r.red from false to true (at l. 30) if and only if r /∈ A ∨r = s. Hence,
if a ∈ A , a.red can be set to true by p ∈ P after the termination of dfsRedp(a). Since,
from Prop. 1, ∀a ∈ A ,a.red = true when mc-ndfs terminates, our claim is proven. ��

Third, all accepting states reachable from a red state are either red or dangerous.

Proposition 3. For any (s,s′) ∈ S ×A: s.red∧ s � s′ ⇒ s′.red∨ s′.dangerous.

Proof. The proof proceeds by induction on set S . Initially, s.red = false,∀s ∈ S and the
proposition holds. Let s ∈ S be a state marked as red at l. 30 by dfsBluep. Now assume
that the proposition does not hold for s: ∃a ∈ A with s � a∧¬a.red∧¬a.dangerous.

Necessarily, dfsRedp(s) has been initiated and terminated (since s has been put in
Rp). Let us consider a path s = s0 → . . .→ sn → a. After the initiation of dfsRedp(s) we
necessarily reached a configuration where dfsRedp(si) is initiated; and s j = si+1 is not
visited by the red DFS: s j.red∨ s j.redp. Otherwise it would hold, from ll. 14–15, that
a.dangerous. Now two possibilities arise:

s j.red — Using our induction hypothesis, s j.red ⇒ a.dangerous (since s j � a) which
leads to a contradiction.

¬s j.red∧ s j.redp — s j.redp implies that dfsRedp(s j) has been initiated. By recursively
applying the same reasoning with path s j → . . . → sn → a we will necessarily find
sk ∈ {s j, . . . sn} with sk.red which, again, leads to a contradiction.

Hence, if the proposition holds before the assignment at l. 30 then so does it after its
execution. Using the induction hypothesis, the proposition holds. ��

The fourth point is the key to ensure the correctness of our algorithm: for any accepting
cycle going through accepting states a1 . . .an, at least one process p will, by executing
dfsRedp(ai) for some ai, report the cycle or revisit ai through the execution of ndfsp(ai)
because ai.dangerous has been set to true by another process before dfsRedp(ai) termi-
nates.

Proposition 4. Let a1 ∈ A , . . . ,an ∈ A belong to the same accepting cycle. Then there
exists p ∈ P , ai ∈ {a1, . . . ,an} such that either dfsRedp(ai) reports the accepting cycle
or ai.dangerous = true once dfsRedp(ai) has terminated.

Proof. Let us consider an accepting cycle s1 . . . sn with s1 = sn ∈ A . In this proof we
assume that dfsRedp(s1) starts for some p ∈ P and that s1.red = false. This will neces-
sarily happen thanks to Prop. 2. If dfsRedp(s1) does not report this accepting cycle we
necessarily reach the following configuration:

1. States s1, . . . ,si (with i < n) are (in this order) on the red DFS stack of process p.
2. When visiting the successor(s) of si, dfsRedp(si) ignores state s j = si+1 and does

not launch dfsRedp(s j).

390 S. Evangelista, L. Petrucci, and S. Youcef

This situation occurs since otherwise the cycle would be discovered by process p. From
the condition at l. 16, there are two possibilities:

s j.red — From Prop. 3, s1.dangerous = true since s j � s1 ∧ s j.red = true∧ s1.red =
false. Hence, since s1.dangerous = true when dfsRedp(s1) terminates, our proposi-
tion holds.

¬s j.red∧ s j.redp — s j.redp has necessarily been set to true during a previous invo-
cation of dfsRedp. Hence, s j was previously added to Rp and it holds that either
s j.red = true (which leads to a contradiction), or s j.dangerous and, again, our
proposition holds since we had s j.dangerous when dfsRedp(s j) terminated. ��

At last we can prove that the nested DFS initiated, at l. 32, on a dangerous state s will
report any accepting cycle containing a or a′ reachable from a.

Proposition 5. For any a ∈ A , p ∈ P , ndfsp(a) reports an accepting cycle if and only
if there is an accepting cycle around state a′ ∈ A with a � a′.

Proof. The correctness of Prop. 5 is a direct consequence of the correctness of algo-
rithm ndfs (see [11]). If ndfsp(a) is initiated and if a cycle containing a′ ∈ A (with
a � a′) is not reported then ndfsp(a) necessarily reaches a state s belonging to the cycle
and already visited by a previous invocation of ndfsp(a′′). This is however impossible,
since the cycle would have been visited during this previous search. ��
Theorem 1 establishes the correctness of mc-ndfs as a consequence of Prop. 2, 4 and 5.

Theorem 1. Algorithm mc-ndfs reports an accepting cycle if and only if there is an
accepting cycle in G .

Proof. Let us consider an accepting cycle containing a ∈ A . From Prop. 2, there exists
p ∈ P s.t. dfsRedp(a) will be invoked with a.red = false. From Prop. 4, it will report the
accepting cycle, or a.dangerous = true will hold after the termination of dfsRedp(a). In
the latter case, ndfsp(a) will be initiated and the accepting cycle reported (from Prop. 5).

��

3.5 Complexity of the Algorithm

It is straightforward to see that a state will be visited at most four times by each process:
by the blue and red DFS of mc-ndfs and by the blue and red DFS of ndfs. Hence,
following the notations of Section 2, the time complexity of mc-ndfs is O(p · (m+ n)).

To encode flags associated with a state 3 + 4 · p bits are required: 3 bits for global
attributes (dangerous, blue, and red); and 4 bits for local process attributes (bluep, redp

for mc-ndfs and ndfs). This is negligible if we perform an exact exploration and store
full state vectors, but a trade-off has to be made if we use e.g. bitstate hashing [21]
that encodes the graph as a large bit vector where each bit represents a single state. For
instance, with 8 cores and 16 GB, we can visit graphs with up to 3.8 · 109 states and
may divide the execution time by 8. With the same amount of RAM and 16 cores, the
execution time can drop by the same factor, but the graph size is limited to 2 ·109 states.

Parallel Nested Depth-First Searches for LTL Model Checking 391

3.6 Using Tarjan’s Algorithm in Nested Searches

Algorithm mc-ndfs waits for a red DFS to be completed before reporting new red states.
However, one could proceed more efficiently. Indeed, the important property to be ver-
ified is that dangerous states are discovered and reported as such before states leading
to them become red. Hence, we could easily replace the existing dfsRedp procedure
by Tarjan’s algorithm for SCC decomposition and register red states as the search pro-
gresses. When Tarjan’s algorithm pops states belonging to a same strongly connected
component scc, we are sure that all states reachable from s ∈ scc (and hence, all states
potentially dangerous) have already been visited. Therefore all states of a same compo-
nent can become red as the component is backtracked from. Although this extension is
expected to improve the time performance of our algorithm, it also requires the use of
extra memory (2 integers per state, see [25] for details on Tarjan’s algorithm), which,
once again, can be problematic if we combine mc-ndfs with bitstate hashing.

4 Experimental Results

We implemented a prototype of the mc-ndfs algorithm on top of the pthread library
and experimented with it on a 16-core machine. Instead of selecting the execution time
as a performance criterion, we consider the maximal number of visited states over all
CPU cores. Several reasons motivated this choice. First the input graphs analysed were
given implicitly as a disk file. Therefore, all time-consuming operations (e.g. succes-
sor computation, state comparison, insertion in hash table) were already performed and
synchronisations dominate the whole execution times. This observation is not only valid
for mc-ndfs but also with the map algorithm, that we also implemented in our prototype.
Therefore using time as a performance criterion did give a good insight of their perfor-
mances. Moreover this measure is more reliable than the execution time as it gives a
very accurate idea on the “theoretical” scalability of an algorithm: it is independent of
the implementation; and it focuses on the search algorithm by putting aside all other
time consuming operations like, e.g. synchronisations or data structure initialisations.
All measurements reported in this section are expressed this way. These results and the
accompanying comments must therefore be taken with care: they do not show the exact
acceleration of mc-ndfs but what can be achieved in the ideal situation. As explained in
Section 5 our next goal is to provide a real implementation of algorithm mc-ndfs in a
verification platform to evaluate its concrete performance.

Input models. All models are issued from the BEEM database [24] that includes more
than 50 models of different categories, e.g. mutual exclusion algorithms, communica-
tion protocols. We deliberately removed instances of families Puzzles (9 models) and
Planning (5 models) that contain mostly toy examples and only experimented with
graphs containing more than 106 states. This finally represented a total of 163 input
graphs out of which 44 do not have an accepting run while the other 119 do. The results
shown below deal only with the former family. Indeed, in most cases, ndfs could easily
report an accepting cycle by visiting only a few hundreds of states. Therefore, it did not
make much sense to experiment with mc-ndfs on these instances. We found only very
few graphs (6 out of 119) for which the use of mc-ndfs could significantly speed up the

392 S. Evangelista, L. Petrucci, and S. Youcef

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

anderson.6, prop. 4
bopdp.4, prop. 4
elevator.4, prop. 3
lamport.7, prop. 4
leader-filters.7, prop. 3
lifts.9, prop. 2
lup.5, prop. 2
peterson.4, prop. 4
pgm-protocol.10, prop. 3
public-subscribe.4, prop. 1
rether.8, prop. 5
synapse.8, prop. 3

Fig. 2. Acceleration of mc-ndfs on some selected instances

reporting of an accepting run w.r.t. ndfs. Due to space constraints we have selected a
few representative instances from our experiments to be presented in this section. The
description of all models used can be found on the BEEM webpage [24].

Accelerations. We first analysed the acceleration of mc-ndfs, defined, for N cores, as
the ratio of the performance (as defined above) with 1 core over the performance with N
cores (using the same algorithm on the same model instance). Figure 2 shows the accel-
eration as a function of the number of processing cores used for some selected instances.
We tried to select a representative set of instances according to different criteria: char-
acteristics of the state graph (width, height, SCC graph structure, . . .), type of system
modeled (mutual exclusion algorithm, communication protocol, . . .), complexity of the
model (from simple models to industrial protocols).

The results observed are more or less in line with expectations. The performance
of our algorithm is largely impacted by the graph structure. Indeed, for graphs com-
posed of a single or few large SCCs (e.g. lup, public-subscribe) processes often visit
the same part of the graph and the use of additional cores does not always bring sig-
nificant improvements. In contrast, when the graph is clustered into unconnected parts
(e.g. pgm-protocol) or acyclic (e.g. leader-filters) processes engage in different parts of
the graph, thanks to the use of randomisation, and the acceleration observed is much
better. An important parameter also seems to be the length of the longest elementary
cycle (i.e. a cycle that does not contain two occurrences of the same state). Since, our
algorithm proceeds in a depth-first manner, it is obvious that at least one of the blue
DFSs performed concurrently will have, at some point, all the states of this cycle in its
stack, and the acceleration will stay low. We also applied mc-ndfs on some graphs ran-
domly generated with long such cycles and the acceleration observed was negligible.
Fortunately, real-life systems usually do not exhibit this characteristic.

Parallel Nested Depth-First Searches for LTL Model Checking 393

Table 2. Process workload of mc-ndfs for 16 cores on instances of Figure 2

Instance Prop. States Min. Max. Avg. Std. Dev.
anderson.6 4 36,119,671 5,894,164 7,396,706 6,617,656 12,956

bopdp.4 4 15,923,138 1,291,852 1,625,304 1,396,039 10,203
elevator.4 3 1,006,453 187,061 232,980 209,744 14,128
lamport.7 4 74,413,141 9,938,566 12,723,438 10,958,991 5,308

leader-filters.7 2 26,302,351 2,983,182 3,902,860 3,383,017 7,068
lifts.9 2 7,831,426 1,016,685 1,161,696 1,093,915 12,757
lup.5 2 34,425,340 4,797,633 6,107,470 5,453,463 13,906

peterson.4 4 2,239,039 247,738 332,069 279,644 8,841
pgm-protocol.10 3 7,233,361 458,128 618,476 509,445 5,808

public-subscribe.4 1 1,977,587 248,933 258,743 253,194 2,410
rether.8 5 25,405,545 3,252,470 3,541,148 3,397,022 11,524

synapse.8 3 19,045,831 1,079,676 1,871,015 1,362,764 15,684

Workload. Table 2 provides for instances of Figure 2: the number of states visited by the
least and most loaded processes (columns Min. and Max.), the arithmetic average work-
load (column Avg.) and the standard deviation in the workload (column Std. Dev.) for
16 cores only. It appears the work is usually well balanced among processes although
there can be some important variations between the most and least loaded processes.
This is clear from the low standard deviation, even in these cases.

Comparison with the map algorithm. Algorithm map uses a modified parallel breadth-
first search to compute maximal accepting predecessors. It is as such a very good candi-
date for parallelisation and, indeed, we observed that mc-ndfs can not compete with it if
we compare them w.r.t. acceleration: map always provides a quasi-optimal acceleration

 0.1

0.25

 0.5

0.75

 1

1.25

 1.5

bo
pd

p.
4,

 p
ro

p.
 4

re
th

er
.7

, p
ro

p.
 2

bo
pd

p.
3,

 p
ro

p.
 3

bo
pd

p.
3,

 p
ro

p.
 1

sy
na

ps
e.

8,
 p

ro
p.

 3 sy
na

ps
e.

8,
 p

ro
p.

 2

pg
m

-p
ro

to
co

l.1
0,

 p
ro

p.
 4

el
ev

at
or

.4
, p

ro
p.

 3

pu
bl

ic
-s

ub
sc

ri
be

.3
, p

ro
p.

 1

an
de

rs
on

.6
, p

ro
p.

 4

an
de

rs
on

.6
, p

ro
p.

 2

pg
m

-p
ro

to
co

l.1
0,

 p
ro

p.
 3

m
cs

.3
, p

ro
p.

 4

la
m

po
rt

.5
, p

ro
p.

 4

lif
ts

.9
, p

ro
p.

 2

lu
p.

5,
 p

ro
p.

 2

pe
te

rs
on

.4
, p

ro
p.

 4

le
ad

er
-f

ilt
er

s.
7,

 p
ro

p.
 2

el
ev

at
or

.4
, p

ro
p.

 2

el
ev

at
or

2.
3,

 p
ro

p.
 4

sz
ym

an
sk

i.4
, p

ro
p.

 4

le
ad

er
-e

le
ct

io
n.

6,
 p

ro
p.

 2

re
th

er
.8

, p
ro

p.
 5

Fig. 3. Absolute performances of mc-ndfs and map on 23 instances for 16 cores

394 S. Evangelista, L. Petrucci, and S. Youcef

regardless of the model considered. Nevertheless, since map has a polynomial com-
plexity, mc-ndfs often outperforms it when considering their absolute performances.
For some selected model instances the ratio of the performance of mc-ndfs over the
performance of map for 16 cores only is plotted on Figure 3. Hence, above 1 (resp. be-
low 1), map behaves better (resp. worse) than mc-ndfs. Algorithm map provides better
results for a few instances, but in most cases, mc-ndfs is faster, and sometimes signif-
icantly. Especially for graphs having a large proportion of accepting states (e.g. lifts.9
with property 2), mc-ndfs often outperforms map. In contrast, map is to be preferred
for problems having few or no accepting states (e.g. bopdp.4 with property 4), in which
case map reduces to a parallel BFS.

5 Conclusion and Perspectives

We have proposed in this paper a new parallel algorithm for the accepting cycle de-
tection problem. It is a variation of the well-known nested depth-first search algorithm
dedicated to multi-core and shared memory architectures. Although, it does not the-
oretically scale, our experiments revealed that it could provide good accelerations on
a variety of interesting instances through the mechanisms it implements. Moreover,
similar to the sequential algorithm it is built on, mc-ndfs can detect accepting cycles
on-the-fly which few parallel algorithms designed so far are able to do.

We focus on several perspectives for this work. Our experiment only revealed the
optimal acceleration that can possibly be achieved using mc-ndfs but the experimen-
tation context can not lead to any conclusion concerning the effective speed-up of our
algorithm. A first short term goal is thus to integrate our algorithm into a verification
platform such as Divine [6] that also implements many other algorithms (e.g. map,
owcty) and will allow a direct comparison of these. Second, we would like to study the
combination of our algorithm with existing reduction techniques. Indeed, although mc-
ndfs is intended to reduce search times its use can still face the state explosion problem
that can only be tackled using dedicated techniques. If mc-ndfs can clearly be combined
with some of these techniques, such as bitstate hashing [21] that is a state representation
techniques independent of the search algorithm. This observation is not that trivial for
some other algorithms such as partial order reduction [10]. An implementation of this
technique is typically made of two components: a selection mechanism (independent of
the search algorithm and, hence, compatible with mc-ndfs) that filters executable transi-
tions of a given state and an ignoring problem solver ensuring that a transition will not
always be forgotten by the selection function. This solver usually relies on the model
checking algorithm. We therefore have to investigate if existing provisos used to pre-
vent the ignoring problem can be safely used in conjunction with mc-ndfs and, if not,
to devise another solution to this problem, tailored for this algorithm.

References

1. Barnat, J., Brim, L., Chaloupka, J.: Parallel Breadth-First Search LTL Model-Checking. In:
ASE 2003, pp. 106–115. IEEE Computer Society, Los Alamitos (2003)

2. Barnat, J., Brim, L., Chaloupka, J.: From distributed memory cycle detection to parallel LTL
model checking. ENTCS 133, 21–39 (2005)

Parallel Nested Depth-First Searches for LTL Model Checking 395

3. Barnat, J., Brim, L., Ročkai, P.: Scalable Multi-core LTL Model-Checking. In: Bošnački, D.,
Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 187–203. Springer, Heidelberg (2007)

4. Barnat, J., Brim, L., Ročkai, P.: A Time-Optimal On-the-Fly Parallel Algorithm for Model
Checking of Weak LTL Properties. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009.
LNCS, vol. 5885, pp. 407–425. Springer, Heidelberg (2009)

5. Barnat, J., Brim, L., Strı́brná, J.: Distributed LTL Model-Checking in SPIN. In: Dwyer, M.B.
(ed.) SPIN 2001. LNCS, vol. 2057, pp. 200–216. Springer, Heidelberg (2001)

6. Barnat, J., Brim, L., Černá, I., Moravec, P., Ročkai, P., Šimeček, P.: DiVinE – A Tool for
Distributed Verification. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp.
278–281. Springer, Heidelberg (2006)

7. Brim, L., Černá, I., Krčál, P., Pelánek, R.: Distributed LTL Model Checking Based on Nega-
tive Cycle Detection. In: Hariharan, R., Mukund, M., Vinay, V. (eds.) FSTTCS 2001. LNCS,
vol. 2245, pp. 96–107. Springer, Heidelberg (2001)

8. Brim, L., Černá, I., Moravec, P., Šimša, J.: Accepting Predecessors Are Better than Back
Edges in Distributed LTL Model-Checking. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004.
LNCS, vol. 3312, pp. 352–366. Springer, Heidelberg (2004)

9. Černá, I., Pelánek, R.: Distributed Explicit Fair Cycle Detection (Set Based Approach). In:
Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 49–73. Springer, Heidelberg
(2003)

10. Clarke, E.M., Grumberg, O., Minea, M., Peled, D.: State Space Reduction Using Partial
Order Techniques. In: STTT, pp. 279–287 (1999)

11. Courcoubetis, C., Vardi, M.Y., Wolper, P., Yannakakis, M.: Memory Efficient Algorithms
for the Verification of Temporal Properties. In: Clarke, E., Kurshan, R.P. (eds.) CAV 1990.
LNCS, vol. 531, pp. 233–242. Springer, Heidelberg (1991)

12. Couvreur, J.-M.: On-the-Fly Verification of Linear Temporal Logic. In: Woodcock, J.C.P.,
Davies, J. (eds.) FM 1999. LNCS, vol. 1708, pp. 253–271. Springer, Heidelberg (1999)

13. Couvreur, J.-M., Duret-Lutz, A., Poitrenaud, D.: On-the-fly Emptiness Checks for General-
ized Büchi Automata. In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639, pp. 169–184.
Springer, Heidelberg (2005)

14. Esparza, J., Schwoon, S.: A Note on On-the-Fly Verification Algorithms. In: Halbwachs, N.,
Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 174–190. Springer, Heidelberg (2005)

15. Gaiser, A., Schwoon, S.: Comparison of Algorithms for Checking Emptiness on Büchi Au-
tomata. In: MEMICS 2009 (2009)

16. Gastin, P., Moro, P., Zeitoun, M.: Minimization of Counterexamples in SPIN. In: Graf, S.,
Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 92–108. Springer, Heidelberg (2004)

17. Geldenhuys, J., Valmari, A.: Tarjan’s Algorithm Makes On-the-Fly LTL Verification More
Efficient. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 205–219.
Springer, Heidelberg (2004)

18. Godefroid, P., Holzmann, G.J.: On the Verification of Temporal Properties. In: PSTV 1993,
pp. 109–124. North-Holland Publishing Co., Amsterdam (1993)

19. Holzmann, G.J.: The Model Checker SPIN. IEEE Transactions on Software Engineer-
ing 23(5), 279–295 (1997)

20. Holzmann, G.J., Joshi, R., Groce, A.: Swarm Verification Techniques. IEEE Transactions on
Software Engineering (2010)

21. Holzmann, G.J.: An Analysis of Bistate Hashing. In: PSTV 1995, pp. 301–314 (1995)
22. Holzmann, G.J., Bosnacki, D.: The Design of a Multi-Core Extension of the Spin Model

Checker. IEEE Trans. on Software Engineering 33(10), 659–674 (2007)

396 S. Evangelista, L. Petrucci, and S. Youcef

23. Laarman, A., Langerak, R., van de Pol, J., Weber, M., Wijs, A.: Multi-core nested depth-first
search. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011, pp. 321–335. Springer, Heidelberg
(2011)

24. Pelánek, R.: BEEM: Benchmarks for Explicit Model Checkers. In: Bošnački, D., Edelkamp,
S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg (2007),
http://anna.fi.muni.cz/models/

25. Tarjan, R.: Depth-First Search and Linear Graph Algorithms. SIAM Journal on Comput-
ing 1(2), 146–160 (1972)

26. Vardi, M.Y., Wolper, P.: An Automata-Theoretic Approach to Automatic Program Verifica-
tion. In: LICS 1986, pp. 332–344. IEEE Computer Society, Los Alamitos (1986)

http://anna.fi.muni.cz/models/

	Parallel Nested Depth-First Searches for LTL Model Checking
	Introduction
	Background
	The LTL Model Checking Problem
	Algorithms Based on Nested Depth-First Search
	Parallel Algorithms for LTL Model Checking

	mc-ndfs, a Multi-core Algorithm for LTL Model Checking
	Difficulty of Parallelising ndfs
	Principle of the Algorithm
	Details of the Algorithm
	Proof of the Algorithm
	Complexity of the Algorithm
	Using Tarjan's Algorithm in Nested Searches

	Experimental Results
	Conclusion and Perspectives
	References

