
Multi-threaded Explicit State Space
Exploration with State Reconstruction

Sami Evangelista1, Lars Michael Kristensen2, and Laure Petrucci1

1 LIPN, CNRS UMR 7030, Université Paris 13, Sorbonne Paris Cité,
99, av. J.-B. Clément, 93430 Villetaneuse, France

2 Department of Computing, Mathematics, and Physics, Bergen University College,
Nygaardsgaten 112, Postbox 7030, 5020 Bergen, Norway

Abstract. This article introduces a parallel state space exploration algorithm for
shared memory multi-core architectures using state compression and state recon-
struction to reduce memory consumption. The algorithm proceeds in rounds each
consisting of three phases: concurrent expansion of open states, concurrent re-
duction of potentially new states, and concurrent duplicate detection. An impor-
tant feature of the algorithm is that it requires little inter-thread synchronisation
making it highly scalable. This is confirmed by an experimental evaluation that
demonstrates good speed up at a low overhead in workload and with little waiting
time caused by synchronisation.

1 Introduction

We consider in this article the problem of explicitly constructing the state space of a
system implicitly given through an initial state and a successor function that maps each
state to a set of successor states. This is the core operation performed by explicit state
model checkers in order to, e.g., verify safety properties and deadlock freedom, and
conduct temporal logic model checking. The large number of states combined with
the size of each state is a limiting factor for the practical use of standard explicit state
space exploration. For complex systems, like software or communication protocols, it
is not uncommon that the state vector (the data structure that unambiguously represents
a state) consumes up to the order of 100 bytes. One way to overcome this problem is to
store only a hash value for each state. This technique is known as hash compaction [15]
which is an incomplete method in that parts of the state space may not be explored if two
states have the same hash value. To guarantee full state space coverage in presence of
hash compaction, techniques based on state reconstruction [6,14] have been proposed.
These techniques reconstruct states from their compressed representation on-demand
when comparison of states is required in order to determine whether a newly generated
state has been already encountered, i.e. is a duplicate of an already explored state.
Clearly, the reconstruction of states implies an increase in exploration time.

One approach [7] to reducing the exploration time in presence of state reconstruction
is to delay the duplicate detection and thereby reduce the number of states that needs to
be reconstructed. The contribution of this paper is an orthogonal approach in the form
of an algorithm that reduces the exploration time by exploiting multiple threads (and
multi-core architectures) to perform the reconstruction of states in parallel. In addition,

D. Van Hung and M. Ogawa (Eds.): ATVA 2013, LNCS 8172, pp. 208–223, 2013.
c© Springer International Publishing Switzerland 2013

Multi-threaded Explicit State Space Exploration with State Reconstruction 209

our algorithm processes open states in parallel. The algorithm maintains a state recon-
struction tree based on which all encountered states can be reconstructed and it proceeds
breadth-first in rounds each consisting of three phases. In the first phase, the threads tra-
verse the reconstruction tree in order to generate a frontier set consisting (in its basic
form) of the next breadth-first layer of states. In the second phase, duplicate states in the
frontier set are eliminated resulting in a candidate set of potentially new states. Finally,
in the third phase, threads perform state reconstruction to determine which candidate
states are new and such states are then added to the reconstruction tree.

The article is organised as follows. Sect. 2 introduces the basic notations and con-
cepts of transition systems used in order to make our presentation independent of a
particular modelling formalism. Sect. 3 gives a high-level overview of the operation of
our algorithm by means of a small example, and Sect. 4 provides the formal algorith-
mic details. An implementation of our algorithm is presented in Sect. 5 together with
the findings from an experimental evaluation. Finally, Sect. 6 concludes and discusses
further related and future work. The reader is assumed to be familiar with the basic
ideas of explicit state space exploration and associated model checking techniques.

2 Background

Let S be a universe of syntactic states and E a set of events. The system is given
through an initial state s0 ∈ S , a mapping enab : S → 2E associating with each state
a set of enabled events, and a mapping succ : S ×E → S used to generate a successor
state from a state and one of its enabled events. State space exploration is concerned
with computing the set of states reachable from s0, i.e. states s such that there exist
e0, . . . ,en−1 ∈ E , s1, . . . ,sn ∈ S with s = sn and, for all i ∈ {0, . . . ,n− 1}: ei ∈ enab(si)
and succ(si,ei) = si+1. For simplicity, we use a function succ to obtain a successor
state from a given state and an event. This implies that events are assumed to be de-
terministic in order to reconstruct a unique state from a sequence of events in the state
reconstruction. Many modelling formalisms (including Petri nets) have deterministic
transitions (events). As shown in [14], state reconstruction can be extended to handle
non-deterministic events.

Algorithm 1(left) gives the basic algorithm for explicit state space exploration. It
maintains a set R of reached states and a set O of currently open states. The algorithm
iterates until there are no open states. In each iteration, an open state s is selected and
state expansion is performed by exploring all events enabled in s. Successor states that
have not been reached earlier are inserted into R and O.

State Reconstruction. Earlier [6,14], we have proposed to implement the reachability
set R as a hash table where full state vectors are not stored but each state is instead
represented by an integer (hash value) identifying it. The hash table now represents an
inverse spanning tree (a state reconstruction tree) rooted in the initial state, and where
nodes have references to one parent, each labelled with an event used to generate the
full state vector for the node. Figure 1 illustrates state reconstruction. The top of Fig. 1
shows the state space where the upper part of each node is the state vector, the bottom
part is its hash value, and the thick edges are edges represented by references in the

210 S. Evangelista, L.M. Kristensen, and L. Petrucci

Algorithm 1. A basic state space exploration algorithm (left) and a state space explo-
ration algorithm based on delayed duplicate detection (right)
1: R := {s0}
2: O := {s0}
3: while O �= /0 do
4: pick s in O ; O := O \{s}
5: for e ∈ enab(s),s′ = succ(s,e) do
6: if s′ /∈ R then
7: R := R ∪{s′}
8: O := O ∪{s′}

1: R := {s0} ; O := {s0} ; C := /0
2: while O �= /0 do
3: pick s in O ; O := O \{s}
4: for e ∈ enab(s),s′ = succ(s,e) do
5: C := C ∪{s′}
6: if O = /0 or doDuplicateDetection() then
7: N := C \R ; C := /0
8: R := R ∪N ; O := O ∪N

spanning tree. The lower part of Fig. 1 is a linearised graphical representation of the
hash table implementing R where dashed arcs represent references to parents in the
reconstruction tree and are labelled by generating events. Note that state vectors appear
in the table for the sake of clarity, but they are not stored in memory.

s0
2

s1
4

s2
7

s4
7

s5
7

s3
0

a

b c

d

e f

g

g

s3 s0 s1 s2 s4

g

a b

c

Fig. 1. State reconstruction

When required, the state vector for a node can be re-
constructed by backtracking up to the root (initial)
node for which we have the full state vector, and
then forward execute the reconstructing sequence
of events on the path leading from the initial node
(state) to the node in question. This is performed
each time the algorithm generates a successor state s′
from an open state s. As an example, consider Fig. 1
and assume that the algorithm has explored states s0

to s3 and is expanding s4 corresponding to the ex-
ploration of the two dotted edges. The expansion of
s4 generates s2 and s5 both hashed to 7. To decide
whether s2 is new, we reconstruct all nodes of the re-
construction tree that are also hashed to 7 as these
could potentially have the same state vector. These correspond to the grey cells of the
hash table. For the first cell (s2), we have to follow references labelled b, a to the ini-
tial node (state) and finally execute the reconstruction sequence a.b starting from the
initial state. Since this execution produces state s2, we conclude that executing e from
s4 does not generate a new state. For state s5, we have to reconstruct s2 using again
a.b as reconstructing sequence, and s4 using the reconstructing sequence a.c. Since
succ(succ(s0,a),b) �= s5 and succ(succ(s0,a),c) �= s5, then s5 is new and is inserted in
the hash table with a reference to its parent s4 labelled with event f .

Delayed Duplicate Detection. Duplicate detection refers to the the process of check-
ing if a generated state already belongs to the reachability set R (l. 6 of Alg.1 (left))
and is often the most expensive operation performed by the algorithm in particular in
combination with state reconstruction. The principle of delayed duplicate detection is
that the number of state reconstructions can be reduced if these checks were grouped
and performed once. Duplicate detection is delayed because each generated state is not

Multi-threaded Explicit State Space Exploration with State Reconstruction 211

directly looked for in R but put in a candidate set C , and only occasionally is this set
compared to R . Algorithm 1 (right) also performs state space exploration but relies on
the principle of delayed duplicate detection. New successor states are put in the can-
didate set C . When the open set is empty or if, for example, the candidate set reaches
a specific threshold (l. 6), the algorithm will identify new candidate states (set N) by
comparing sets C and R . The resulting set will then be inserted in R and O as the basic
algorithm would have done for individual states. When applied in the context of state
reconstruction, delayed duplicate detection allows to group the reconstruction of states
and, hence, execute only once the common prefixes of reconstructing sequences [7] and
also reduce the number of reconstructions performed. On our example of Fig. 1, the
candidate set would contain, after the expansion of s4, the states s2 and s5. Duplicate
detection reconstructs s2 and s4 together and grouping the execution of reconstructing
sequences a.b and a.c allow to execute event a once rather than twice and only recon-
struct s2 once.

3 Algorithm Overview and Example

The primary data structure maintained by our new parallel algorithm is a reconstruc-
tion tree as introduced in the previous section representing all encountered states. As
a further extension compared to earlier work [6,7,14], we do not use a separate data
structure to store open states. Instead, we use the reconstruction tree to also on-the-fly
reconstruct open states during exploration which further reduces memory consumption.

Our algorithm proceeds breadth-first in rounds where each round explores the next
breadth-first search (BFS) level. As depicted in Fig. 2, then each round consists of
three phases. The first phase uses the current reconstruction tree T to construct lists
of successor states for the currently open states. The second phase merges the lists of
successor states to obtain a candidate set C of potentially new states. The third step per-
forms duplicate detection to find new states, i.e. states in C that are not represented in
T . Within each phase, all threads cooperate and must synchronise before the algorithm
proceeds to the next phase (and hence round). Within each phase, additional synchro-
nisation barriers are employed and represent the only form of synchronisation used by
our algorithm. The algorithm proceeds into the next round as long as duplicate detection
results in states that are not yet represented by the reconstruction tree.

Below we illustrate the three phases of our algorithm in more detail starting from the
partial state space shown in Fig. 3 where the initial state s0 is assumed to have already
been expanded, leading to four new successors s1, s2, s3, and s4, as shown in Fig. 3.
States are stored in the reconstruction tree as a hash value with a reference to their

(1) Expand
open states

(2) Merge (3) Duplicate
detection

C \T

Candidate set C
Successor states NReconstruction tree T

Fig. 2. A round exploring one BFS level in three phases

212 S. Evangelista, L.M. Kristensen, and L. Petrucci

parent node and the event that was used to generated the state from the parent state. We
do not explicitly show this in the figures to improve readability. In the example, two
states with the same hash value carry the same name, but are distinguished with primes,
e.g. s4 and s′4 have different state vectors but are mapped to the same hash value. We
denote by W the number of threads taking part in the exploration of the state space,
and assume that each worker is identified by an integer in the range from 0 to W − 1.

s0

s2

s1
s3

s4

Fig. 3. Initial reconstruction tree

Phase 1: Expand Open States. Threads traverse
the reconstruction tree using random depth-first
search. Randomisation is used in order to break the
symmetry between threads and ensure that they can
work on different parts of the reconstruction tree.
Open states (i.e. leafs at the bottom of the tree) are expanded and their successors put
in a successor lists structure N consisting of W state lists (one per thread). Since each
thread w inserts states in the list of the wth slot only, no synchronisation is required.
When inserting new states in N , no duplicate detection is performed: each successor
state of an open state is inserted at the end of the appropriate list of the structure N and
a state may hence be present in different slots of the array. Considering the example in
Fig. 3, then this first step of the algorithm expands the nodes s1 to s4 by generating their
successors, as depicted by the dotted elements in Fig. 4(left). This phase ends when leaf
states have all been expanded (i.e. the current BFS level has been explored) or when the
size of structure N reaches a specific threshold. In the case of four threads, we obtain
the successor lists shown in Fig. 4(right). In general, the expansion can be performed
concurrently by any number of threads.

Phase 2: Merge. The second phase consists of merging the successor lists of N into
a single set C , hence removing the duplicate successors present in these lists. Merging
the states present in the successor lists in Fig. 4(right) results in the candidate states:
s′4,s5,s4,s6,s7,s′3,s2. This second phase can be realised using a parallel sort and merge
algorithm [9] or hashing on a matrix structure as in our implementation (see Sect. 5).

Phase 3: Duplicate Detection. The last phase removes from C the states already rep-
resented in compressed form in the reconstruction tree. Phase 3 first performs bottom-
up tagging (marking) of the nodes to be reconstructed (tagged R) and their ancestors
(tagged A). Considering the example in Fig. 5(a) and the list of candidates from phase

s0

s2

s1
s3

s4

s5s4 s′4 s6 s′4 s7 s7s2 s′3

s′4 s5 s4

s′4 s6

s7

s′3 s7 s2

Fig. 4. Phase 1: Expansion of open states (left) and array of successor lists (right)

Multi-threaded Explicit State Space Exploration with State Reconstruction 213

s0

s2

s1
s3

s4

A

R R R

s′4 s5 s4 s6 s7 s′3 s2

(a) Step 3: Tagged tree and candidates

s0

s2

s1
s3

s4

A

R R

s′4 s5 s4 s6 s7 s′3

(b) After reconstruction of s2

s0

s2

s1
s3

s4

A

R

s′4 s5 s6 s7 s′3

(c) After reconstruction of s4

s0

s2

s1
s3

s4

s′4 s5 s6 s7 s′3

(d) After reconstruction of s3

Fig. 5. Phase 3: Tagging following by state reconstruction and duplicate detection

2: since s′4 is a candidate, and has the same hash value as s4, s4 is marked R and its only
ancestor, s0 marked A. This is achieved using the references to parent nodes. There is
no node in the reconstruction tree with the same hash value as state s5. Then s4 is a
candidate, and it is already marked in the tree. As soon as a state is encountered already
having an identical tag, then tagging stops, and the next candidate is processed. The
resulting tagged reconstruction tree is depicted in Fig. 5(a).

Each of the nodes marked R must be reconstructed, and each node marked A is the
ancestor of such a node. Starting from the initial state, the threads perform a random for-
ward traversal of the tree via tagged nodes. Let us assume that from s0, the branch of s2

is explored. This latter state is reconstructed from s0 and the event to s2. The actual value
of state s2 is compared to the candidate states. Since it is found, s2 already exists and
can be removed from the candidates set. Moreover, the R tag is removed from s2. The
resulting tree and candidates set are shown in Fig. 5(b). Next, backtracking is performed
since s0 still has tagged successor states, so, e.g. the branch with s4 may be explored.
When s4 is reconstructed, the reconstructing thread finds that the state is in the candi-
dates set, so it is removed from it, but s′4 is kept since, even though it has the same hash

s0

s2

s1
s3

s4

s5 s′4 s6 s7 s′3

Fig. 6. Updated state tree

value, the actual state is different. The result in
shown in Fig. 5(c). Then the process continues, e.g.
with state s3. Finally, as shown in Fig. 5(d), state s0

has no more tagged successors, and can be untagged,
finishing the reconstruction phase. At the end of the
exploration, states remaining in C are guaranteed to
be new and can thus be inserted in the reconstruction
tree. The resulting reconstruction tree for the exam-
ple is shown in Fig. 6. A new round is now initiated
on the updated reconstruction tree. To maintain a strict breadth-first search order, the
expansion of the new states will occur only when all states of the current BFS level
have been expanded. This constraint can be relaxed, but we have chosen to maintain
this search order as it guarantees the minimality of reconstruction sequence lengths.

214 S. Evangelista, L.M. Kristensen, and L. Petrucci

4 Algorithmic Details

Reconstruction Tree T . The central data structure is the reconstruction tree. For spec-
ification of the algorithm, we assume that its nodes are identifiers of some set ID (e.g.
set of integers) and that from one node identifier its children and its parent in the tree
can be obtained using: parent(id) that maps a node identifier id to the identifier of its
parent (or to ⊥ if the node is the root); and children(id) that maps a node identifier id
to the set of pairs (id′,e) such that parent(id′) = id and the arc from node id to id′ is la-
belled with the event e. The only operation that modifies the tree structure is newNode.
newNode(id,e) inserts a new node and creates a reference from the new node to the
node id labelled by event e. newNode(⊥) inserts a root in the tree. In both cases, the
operation returns the identifier of the new node that is not labelled by any tag.

Node Tagging. As discussed earlier, nodes are labelled by a set of tags used to prune
the traversal of the reconstruction tree. Three operations are used to manipulate tags:
tagged (checks whether a node has a specific tag), tag (sets a tag on a node), and untag
(removes a tag from a node). Our example from the previous section introduced two
tags (R and A) used during duplicate detection (phase 3). Two additional tags (E0 and
E1) are used during the expansion phase (phase 1) to tag nodes to expand. The E0 and
E1 are used in an alternating manner between rounds such that in odd numbered rounds
E0 marks nodes to be expanded and E1 marks nodes to be expanded in the next (even
numbered) round. In an odd numbered round, a node has the E0 tag if it has children
with this same tag or if it corresponds to an open state (in which case it can not have any
children yet). Furthermore, the expansion of open states will then create new nodes in
the tree having the E1 tag and also tag nodes on the way up from these new nodes to the
root node with E1. Traversing nodes with the E0 (resp. E1) thus leads to open states of
the current (next) expansion phase. When a round is completed E0 and E1 swap roles.
One E tag is not sufficient because nodes can be independently marked for expansion
in the current and in the next phase. Note that a node may be simultaneously labelled
by several tags.

Successor Lists N and Candidate Set C . The elements of N and C are triples of the
form S × ID×E . A triple (s, id,e) represents that state s has been reached from the node
id by executing event e on the state corresponding to id. The first item is used during
duplicate detection while the second and third items are used in case the candidate state
is actually new and must be inserted in the tree using the newNode operation. After
merging elements of N in C (phase 2 of Fig. 2) there cannot be two elements (s, id,e)
in (s′, id′,e′) in C with s = s′.

In addition to the data structures described above, three shared data structures are re-
quired by the algorithm. The array done contains W booleans indicating which threads
have finished their exploration of the current BFS level. It is used to decide when the
current BFS level has been completely expanded and threads can move to the next level.
An alternating bit r initialised to 0 identifies which tag among E0 and E1 is used to in-
dicate nodes that must be explored during the current expansion phase.

Algorithms 2, 3 and 4 contain the pseudo-code of our algorithm. The w subscript
of the procedures identify the working thread executing the procedure. Apart from the

Multi-threaded Explicit State Space Exploration with State Reconstruction 215

Algorithm 2. ParReconstruction, Initialisation and main worker procedure
1: algorithm ParReconstruction is
2: done := [false, . . . , false] ; r := 0
3: id0 := newNode(⊥) ; tag(id0,E0)
4: spawn worker0() || . . . || workerW −1()
5: procedure workerw() is
6: while tagged(id0 ,Er) do
7: expandLevelw()
8: if w = 0 then r := ¬r
9: barrier()

Shared Data
T the state tree initially empty
C the candidate set initially empty
N the successor lists initially empty

done array of W booleans
r bit
id0 identifier of the initial state in T

shared data specified in Alg. 2, all other variables are thread local. We have underlined
the different barriers that must be executed simultaneously by the W threads so as to
highlight synchronisation points. The variable id0 is used to store the root node. Thread
0 is the only thread that modifies the values of r and id0.

Initialisation and Main Worker Procedure (Alg. 2). The main procedure ParRecon-
struction inserts the initial state in the reconstruction tree and records its node identifier
in the shared variable id0. This node is then tagged for expansion and the procedure
spawns W instances of the main worker procedure workerw. The loop at l. 6 iterates
over all BFS levels expanded using the expandLevelw procedure introduced below. We
use the Er tag to decide when a thread can terminate. For any node, the tagging proce-
dure guarantees that if a node is tagged with Er, then so is its parent in the tree. Thus,
an untagged root guarantees that no state is tagged for expansion. The barrier at l. 9
is related to duplicate detection as will be discussed shortly. It is the responsibility of
thread 0 to swap the r bit before all threads can start processing the next BFS level.

Phase 1: State Expansion (Alg. 3). The expansion procedure expandLevelw expands
open states of a BFS level. The working thread w first launches a DFS exploration from
the root of the tree using procedure dfsExpandw that is parameterised by the identifier
of the visited node in the tree (id) and the corresponding full state vector (s). In case
the visited node is a leaf (ll. 12–15), the worker puts all its successors in list N [w]
and enters the duplicate detection phase if this structure reaches a specified threshold.
Otherwise (ll. 16–19), the thread picks all children of the node one by one in the random
order obtained using the random function, and explores those that have the Er tag set
as these nodes may lead to open states. To maintain the correspondence between nodes
and states, procedure dfsExpandw is recursively called (l. 19) with the identifier of the
child id′ and the state obtained by executing on s the event e labelling the arc from id to
id′, i.e. the state s′ such that succ(s,e) = s′. When node id has been processed, the Er

tag can be removed from it to signal to other threads that this node has been processed.
After the threads have finished exploring the tree, a last duplicate detection is re-

quired since successor lists might not be empty (l. 6). Moreover, after exploration, a
thread also has to be ready to perform duplicate detection as long as some workers have
not yet finished their exploration. These threads may still be feeding successor lists and
hence call the duplicate detection procedure (l. 15) that must be executed by all threads.
This is where the shared array done is used. A thread will keep performing duplicate

216 S. Evangelista, L.M. Kristensen, and L. Petrucci

Algorithm 3. Procedures used during the state expansion phase
1: procedure expandLevelw() is
2: done[w] := false
3: dfsExpandw(id0,s0)
4: done[w] := true
5: do
6: allDone := duplicateDetectionw()
7: while ¬allDone
8: procedure expandStatew(id,s) is
9: for e ∈enab(s) do

10: append(N [w],(id,succ(s,e),e))

11: procedure dfsExpandw(id,s) is
12: if children(id) = /0 then
13: expandStatew(id,s)
14: if |∑x N [x]|> MemoryLimit then
15: duplicateDetectionw()
16: else
17: for (id′,e) ∈random(children(id)) do
18: if tagged(id′,Er) then
19: dfsExpandw(id′,succ(s,e))
20: untag(id,Er)

detection until all threads have finished their exploration and executed the assignment
at l. 4. Procedure duplicateDetectionw introduced below returns a boolean value speci-
fying if all threads have finished expanding the current level. This check is performed
between two barriers (l. 3 of Alg. 4) in a block of statements that does not modify the
content of array done to ensure that its outcome will be the same for all threads.

Phases 2 and 3: Merge and Duplicate Detection (Alg. 4). Procedure duplicate
Detectionw corresponds to phases 2 and 3 and can be decomposed into four sub-steps.
The entry in each sub-step is protected by a barrier. A thread first awaits all its peers
to have called the procedure and be waiting at the barrier at l. 2. The parallel merge of
successor lists N in the candidate set C (Phase 2 of Fig. 2) can then take place (l. 2).

Before exploring the reconstruction tree to remove duplicate states from C , all
threads first start to mark (with R and A tags) the appropriate branches using proce-
dure tagNodesforDDw (l. 4) in order to avoid reconstructing all states. For efficiency
reasons, we assume that the data structure implementing the candidate set can be par-
titioned in W classes and that a thread can recover the class it is responsible for using
the function ownedCandidates (l. 17). For a candidate state c, the nodes that must be
reconstructed are all nodes that have the same hash value as c (ll. 18–21) because these
might, after reconstruction, match with c. It is the purpose of the conflict function used
at l. 19 to return the identifiers of these nodes. The tagPathw procedure is used to put a
specific tag on a node and all its ancestors. It stops as soon as it reaches the root or a
node that already has this tag (in which case all its ancestors also have it).

The reconstruction begins when all threads have finished tagging the branches that
need to be explored. The exploration procedure dfsDDw used to reconstruct states fol-
lows the same pattern as procedure dfsExpandw of Alg. 3. Reconstructed states removed
from the candidate set C are those with the R tag (ll. 23–25) and nodes explored are
those with the A tag (ll. 26–31). In both cases, a processed node is untagged.

All threads must have finished their exploration in order to decide which candidate
states are actually new. Thread 0 is then responsible (l. 6) for inserting the new states
(those that are still present in C) in the tree using the procedure insertNodesw. Only the
last two components of the candidates are required for insertion: the identifier (parentId)
of the node of which the expansion generated the candidate and the event used to gen-
erate it. A new node is then inserted in the tree and the tag E¬r is put on all nodes
on the path from the initial node to this new node to signify that this node must be

Multi-threaded Explicit State Space Exploration with State Reconstruction 217

Algorithm 4. Procedures used during merge and duplicate detection phases

1: procedure duplicateDetectionw() is
2: barrier(); parallelMerge(N ,C)
3: allDone := ∧x∈{0,...,W−1}done[x]
4: barrier(); tagNodesForDDw()
5: barrier(); dfsDDw(s0, id0)
6: barrier(); if w = 0 then insertNodesw()
7: return allDone
8: procedure tagPathw(id, tag) is
9: while id �=⊥ ∧¬tagged(id, tag) do

10: tag(id, tag)
11: id := parent(id)
12: procedure insertNodesw() is
13: for (,parentId,e) ∈ C do
14: id := newNode(parentId,e)
15: tagPathw(id,E¬r)

16: procedure tagNodesForDDw() is
17: for (s, ,) ∈ ownedCandidates(w) do
18: h := hash(s)
19: for id ∈ conflict(h) do
20: tag(id,R)
21: tagPathw(parent(id),A)
22: procedure dfsDDw(id,s) is
23: if tagged(id,R) then
24: removeCandidate(s)
25: untag(id,R)
26: if tagged(id,A) then
27: for (id′,e) ∈random(children(id)) do
28: if tagged(id′,A)
29: or tagged(id′,R) then
30: dfsDDw(id′,succ(s,e))
31: untag(id,A)

expanded. This insertion step is performed only by thread 0 because the data structure
we have chosen for the reconstruction tree does not easily support concurrent insertions
although it allows for multiple concurrent read accesses (or node tagging/untagging).
Therefore, other threads may proceed to the next expansion step as thread 0 inserts new
nodes in the tree. As an extension, this insertion step could also be parallelised. The
only situation where other threads have to wait for thread 0 to finish this insertion is
when a BFS level has been completely processed, i.e. duplicate detection and insertion
was not triggered by a threshold in l. 13 of procedure dfsExpand. They will then be
waiting at the barrier of procedure expandLevelw (l. 7 of Alg. 3).

5 Implementation and Experimental Evaluation

We have integrated our algorithm in the Helena tool [4]. We discuss below the most im-
portant implementation aspects and present the results from an experimental evaluation
of our algorithm based on the Helena implementation.

Implementation. The implementation uses the pthread library that provides synchro-
nisation barriers. The reconstruction tree T is implemented as a fixed size hash table
using open addressing with linear probing. This allows to support multiple read ac-
cesses with a single insertion as performed when thread 0 inserts new nodes in the
reconstruction tree while other threads continue their expansion of open states. A main
requirement is the possibility to get the parent and children of a node. To reduce the
number of pointers and save memory, we represent kinships as linked lists where the
parent node stores the identifier (i.e. the slot of the hash table) of its first child in field
fstChild and each child stores the identifier of the next child in field next. Only the last
child of the list (identified using a last bit set to 1 while the previous children have it
set to 0) points with next to the parent node. Fig. 7 provides an illustration of this for an
example tree. To enumerate the children of a node, we first follow its fstChild pointer

218 S. Evangelista, L.M. Kristensen, and L. Petrucci

0

2 6 9

5 7

0 2 5 6 7 9

Fig. 7. Implementation of the re-
construnction tree. Dashed lines
represent the fstChild pointers. Dot-
ted lines represent the next point-
ers. Gray cells identify nodes with
last = 1.

and then the next pointers of its children until the last
child with last = 1 is met. Recovering the parent of
a node is done by following the next pointers until
the last child is met and then by following the next
pointer to reach the parent. This means that we can-
not get the parent of a node in constant time but this
is not a practical problem as the number of children
is usually low.

This representation requires 2 · log2(|ID|)+1 bits
per node for the fstChild and next pointers and the
last bit. Four more bits are required for tags (R, A,
E0 and E1) and log2(|E |) bits for the event gener-
ating the node from its parent. Hence, a node can
be encoded in 2 · log2(|ID|)+ 5+ log2(|E |) bits. To
have a representation that is model independent, we
encode in each node an event number (the number
in the list of enabled events of the parent) rather than the event itself. This requires to
recompute enabled events when exploring the tree but leads to significant savings for
models such as high-level Petri nets, where events are often complex data structures. We
also implemented the fresh successor heuristic [10] that, in our context, forces threads
to engage in part of the state tree that no thread is currently visiting. Implementing this
heuristic requires two bits per node (one for the expansion step and one for the duplicate
detection step) to tag branches where threads are currently engaged.

To avoid concurrent accesses in the successor lists of N , we implemented this data
structure as a matrix of size |W ×W | where each cell stores a list and using a hash
function hash on states. During the expansion step, a worker w inserts any new succes-
sor state s in the list of cell (w,hash(s) mod W). During the merging step performed
to merge states of successor lists N into table C , a worker thread w ∈ {0, . . . ,W − 1}
is responsible for moving from N to C all states s with hash(s) mod W = w. Thus,
during the merging step, it only needs to merge states contained in the list of cells (x,w)
for x ∈ {0, . . . ,W − 1} and because of the use of the hash function no such states can
be in a hash conflict with states processed by other threads. Since the expansion and
merging steps cannot overlap due to the use of barriers, there cannot be any concurrent
insertions or deletions on the lists in N . The candidate set C is also implemented as a
fixed size hash table, and a state can only be inserted (if not already present) in a slot l
of C such that l mod W = w. Hence, there cannot be concurrent accesses on a same
slot of C during the merging step. During the duplicate detection step occurring right
after, the deletion of a state is simply made by swapping a bit in the slot of the deleted
state. These choices imply that C can be implemented without locks.

Experimental Setup and Results. We have conducted our experiments on the mod-
els of Table 1. The Time reported (in seconds) are those obtained with a sequential
algorithm, i.e., with a single worker. Helena has its own modelling language for high-
level Petri nets and can also analyse automata written in the DVE language, the input
language of the DiVinE model checker [1]. We have selected a set of 10 models having

Multi-threaded Explicit State Space Exploration with State Reconstruction 219

Table 1. Models used for experimental evaluation

Helena models
Model States Arcs Time

eratosthene 195.3 M 1.252 G 9,689
leader 188.9 M 2.530 G 24,086

neo-election 406.1 M 3.796 G 40,943
peterson 172.1 M 860.7 M 5,105
slotted 189.1 M 1.742 G 12,018

DVE models
Model States Arcs Time

collision.5 431.9 M 1.644 G 7,570
firewire-link.3 425.3 M 1.621 G 8,782

iprotocol.8 447.5 M 1.501 G 7,505
pub-sub.5 1.153 G 5.447 G 49,395
synapse.9 1.675 G 3.291 G 64,842

a set of reachable states ranging from 172 millions (M) to 1.675 billions (G) of states.
The memory limit, measured as the maximal number of state vectors the algorithm can
keep in memory (in the successor lists and, hence, in the candidate set) was set, for all
runs, to one thousandth of the reachable states of the model. We performed our experi-
ments on a 12-core computer with 64 GB of RAM and evaluated our algorithm on each
model with 1 to 12 worker threads. Note that, when using a single thread, our algorithm
becomes identical to the sequential algorithm of [7] that uses state compression, state
reconstruction, and delayed duplicate detection, except for some minor differences on
the data structures used, and the implicit representation of the open set.

Our experimental results have been plotted in Fig 8. On the horizontal axis of the
three plots is the number of working threads used ranging from 1 to 12. The top plot,
entitled Speed-up, gives execution times as the ratio of the execution time for 1 thread
over the execution time for n threads. The middle plot, entitled Event execution, gives
the total number of events executed (at any step of the algorithm and by any thread) for
n threads relatively to the same number for 1 thread. This measure provides a means to
evaluate how good the work is balanced among threads. The bottom plot, Barrier time,
gives, as a percentage of the total execution time, the time spent by threads at barriers
waiting for other threads to join them. It is computed as the average over all threads of
the individual barrier times and is reported in percentage of the overall execution time.

Interpretation of Results. The Speed-up plot shows a stable speed-up as the number
of threads involved increases. As a general trend, Helena models (see Table 1(left)) have
better speed-ups than DVE models (see Table 1(right)) considering that Helena mod-
els are penalised by a larger redundant work factor (see the Event execution plot). We
conjecture that this is due to the cost of model operations (computing enabled events,
executing events) that are much more costly for high-level Petri nets than for DVE
models. Since these operations are purely local and do not need to access shared data
structures (the reconstruction tree or the candidate set) they can be more efficiently par-
allelised. Also note that the algorithm is resilient with respect to the random function
we used. We do not provide these results here due to lack of space, but we observed that
performance never significantly differed between two runs on the same model.

As expected, the workloads shown by the Event execution plot increase with the
number of threads but usually following a logarithmic progression. For the four models
standing out with a larger amount of redundant work (eratosthene, leader, neo-election
and slotted), we see a correlation with the high proportion of arcs of the state space with
an average number of arcs per state ranging from 6 up to 13 (see Table 1); and with their

220 S. Evangelista, L.M. Kristensen, and L. Petrucci

state spaces that have diamond like structures. Due to the way nodes are inserted in the
reconstruction tree, this automatically increases the proportion of nodes that have no
(or few) children nodes in the tree which in turn decreases the potential parallelism. For
instance, if two states at the same BFS level have the same successors states, the first
state visited among the two will have some successors in the tree whereas the second
one will not have any. This situation often occurred for the models mentioned. For these
four models we observed that once the exploration completed, the proportion of leaves
in the tree reached 65%–70%. For other models, this proportion is around 40%–50%.

The Barrier time plot shows that the waiting times remain low with an average (over
all runs involving more than 1 thread) of less than 2% of the total exploration time. In
the worst case, this time represented around 2.5% of the exploration time (for model
synapse.9). Moreover, unlike for event executions, there is no real correlation between
the number of working threads and waiting times observed and increasing the number
of threads does not seem to have any negative effects in that respect.

 2

 4

 6

 8

 10

 12 Speed-uperatosthene
leader
neo-election
peterson
slotted
collision.5
firewire-link.3
iprotocol.8
pub-sub.5
synapse.9

× 1

× 1.1

× 1.2

× 1.3

× 1.4 Event execution

0%

0.5%

1%

1.5%

2%

2.5%
Barrier time

Fig. 8. Experimental results

Multi-threaded Explicit State Space Exploration with State Reconstruction 221

6 Conclusion and Perspectives

This paper is the logical continuation of previous work based on the principle of state
reconstruction that can significantly reduce the memory usage in state space exploration
by avoiding the storage of full state vectors of states while maintaining a full coverage
of the state space. The foundations of this method have been established in [6,14] and
then extended in [7] with the principle of delayed duplicate detection that allows group-
ing state reconstructions and, hence, saves the redundant executions of shared recon-
structing sequences. We also conjectured in [7] that parallelisation could further reduce
the cost of duplicate detection. Following this intuition, we developed in this paper an
algorithm designed for multi-core processors that preserves previous characteristics in
terms of state reconstruction [6,14] and delayed duplicate detection [7].

A main feature of our algorithm is that locks can be avoided by the use of synchro-
nisation barriers separating the different steps of the algorithm. A key property of the
algorithm is also that the size of the frontier set can be bounded by a predefined thresh-
old making the memory consumption predictable. A series of experiments done with
Helena on a 12-core computer has shown good speed-up with negligible waiting times
and a low amount of redundant work (threads that simultaneously engage in the same
branch of the tree). The low barrier times show that synchronisation represents a very
small overhead which leaves little room for further improvement in that respect. Our
observations rather lead us to pursue two directions to further improve the speed-up of
our algorithm. First, despite its low memory usage, the data structure we have chosen
for the reconstruction tree does not show enough locality. Since the children of a node
can be anywhere in the state table due to the hashing mechanism, traversing the tree
requires accessing multiple memory areas which in turn means frequent cache misses.
It is then relevant to design and experiment with a different data structure that takes
better advantage of caching. Second, redundant explorations are still problematic for
some models even if the fresh successor heuristic turned out to be quite efficient in that
it allowed to reduce the overall workload by a factor of 10–20%. Besides the use of ap-
propriate heuristics, it is also important to address the unbalanced distribution of child
nodes (i.e. situations where two states have similar successor states but only one has
children in the state tree) that we observed for a few models.

Related Works. Several data structures have been designed for multi-core model check-
ing or reachability analysis: [11,12,13]. All have in common to avoid the use of locks.
The approach that seems the closest to ours is the tree database proposed in [12] as it
is designed for high scalability while making use of state compression. Speed-ups re-
ported in [12] are clearly better with this tree database structure: the average speed-up
on all models of the BEEM database is almost optimal. Nevertheless our algorithm still
has some advantages over [12]. First, its memory usage is model independent which is
not true for the tree database although, on the average, compression ratios are excel-
lent for BEEM models (around 8 bytes per state [12]). Second, the algorithm of [12]
assumes fixed width state vectors, an assumption that does not hold for specification
languages such as high-level Petri nets. Last, the support of a delete operation does not
seem straightforward in the tree database and hence it is not obvious how to combine it
with reduction techniques based on on-the-fly state deletions.

222 S. Evangelista, L.M. Kristensen, and L. Petrucci

Perspectives. To further assess the scalability of our algorithm a direct practical per-
spective is to experiment with it with larger models and on massively parallel architec-
tures (e.g. 256-core machines).

The reconstruction tree can be used to check basic properties such as system invari-
ants or to perform offline LTL or CTL model checking. It is relevant to study how our
algorithm could serve as a basis for the implementation of on-the-fly LTL algorithms
that are compliant with the breadth-first search order, e.g. [3,8]. A last perspective is to
study how our algorithm combines with other reduction techniques. The state caching
reduction we proposed in [5] maintains a termination detection tree (TD-tree) to keep
track of open states. Termination is guaranteed if all states of the TD-tree are kept in
memory and these consists of all nodes tagged with E0 or E1 in our parallel algorithm.
Hence, all other nodes can be safely discarded. For partial order reduction, a breadth-
first search compatible solution has been proposed in [2]. For both reductions [2,5] it
remains to be investigated how they can be efficiently combined with our algorithm.

References

1. Barnat, J., Brim, L., Češka, M., Ročkai, P.: DiVinE: Parallel Distributed Model Checker. In:
HiBi/PDMC 2010, pp. 4–7. IEEE (2010)

2. Bošnački, D., Holzmann, G.J.: Improving Spin’s Partial-Order Reduction for Breadth-First
Search. In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639, pp. 91–105. Springer, Heidel-
berg (2005)

3. Brim, L., Černá, I., Moravec, P., Šimša, J.: Accepting Predecessors Are Better than Back
Edges in Distributed LTL Model-Checking. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004.
LNCS, vol. 3312, pp. 352–366. Springer, Heidelberg (2004)

4. Evangelista, S.: High Level Petri Nets Analysis with Helena. In: Ciardo, G., Darondeau, P.
(eds.) ICATPN 2005. LNCS, vol. 3536, pp. 455–464. Springer, Heidelberg (2005)

5. Evangelista, S., Kristensen, L.M.: Search-Order Independent State Caching. In: Jensen,
K., Donatelli, S., Koutny, M. (eds.) ToPNoC IV. LNCS, vol. 6550, pp. 21–41. Springer,
Heidelberg (2010)

6. Evangelista, S., Pradat-Peyre, J.-F.: Memory Efficient State Space Storage in Explicit Soft-
ware Model Checking. In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639, pp. 43–57.
Springer, Heidelberg (2005)

7. Evangelista, S., Westergaard, M., Kristensen, L.M.: The ComBack Method Revisited:
Caching Strategies and Extension with Delayed Duplicate Detection. In: Jensen, K., Billing-
ton, J., Koutny, M. (eds.) ToPNoC III. LNCS, vol. 5800, pp. 189–215. Springer, Heidelberg
(2009)

8. Holzmann, G.J.: Parallelizing the Spin Model Checker. In: Donaldson, A., Parker, D. (eds.)
SPIN 2012. LNCS, vol. 7385, pp. 155–171. Springer, Heidelberg (2012)

9. Jaja, J.: Parallel Algorithms. Addisson-Wesley (2002)
10. Laarman, A., van de Pol, J.: Variations on Multi-Core Nested Depth-First Search. In: PDMC

2011, pp. 13–28 (2011), http://arxiv.org/abs/1111.0064v1
11. Laarman, A., van de Pol, J., Weber, M.: Boosting Multi-Core Reachability Performance with

Shared Hash Tables. In: FMCAD 2010, pp. 247–255. IEEE (2010)
12. Laarman, A., van de Pol, J., Weber, M.: Parallel Recursive State Compression for Free.

In: Groce, A., Musuvathi, M. (eds.) SPIN Workshops 2011. LNCS, vol. 6823, pp. 38–56.
Springer, Heidelberg (2011)

http://arxiv.org/abs/1111.0064v1

Multi-threaded Explicit State Space Exploration with State Reconstruction 223

13. Saad, R.T., Dal-Zilio, S., Berthomieu, B.: Mixed Shared-Distributed Hash Tables Ap-
proaches for Parallel State Space Construction. In: ISPDC, pp. 9–16. IEEE (2011)

14. Westergaard, M., Kristensen, L.M., Brodal, G.S., Arge, L.: The ComBack Method – Extend-
ing Hash Compaction with Backtracking. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007.
LNCS, vol. 4546, pp. 445–464. Springer, Heidelberg (2007)

15. Wolper, P., Leroy, D.: Reliable Hashing without Collision Detection. In: Courcoubetis, C.
(ed.) CAV 1993. LNCS, vol. 697, pp. 59–70. Springer, Heidelberg (1993)

	 Multi-threaded Explicit State Space Exploration with State Reconstruction
	1 Introduction
	2 Background
	3 Algorithm Overview and Example
	4 Algorithmic Details
	5 Implementation and Experimental Evaluation
	6 Conclusion and Perspectives
	References

