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Abstract. We describe a dynamic partitioning scheme usable by model
checking techniques that divide the state space into partitions, such as
most external memory and distributed model checking algorithms. The
goal of the scheme is to reduce the number of transitions that link states
belonging to different partitions, and thereby limit the amount of disk
access and network communication. We report on several experiments
made with our verification platform ASAP that implements the dynamic
partitioning scheme proposed in this paper.

1 Introduction

Model checking [3] is a technique used to prove that finite-state systems match
behavioral specifications. It is based on a systematic exploration of all reachable
states in the search for illegal behaviors violating the specification. Despite its
simplicity, its practical application is subject to the well-known state explosion
problem [17]: the state space may be far too large to be explored in reasonable
time or to fit within the available memory.

Most techniques devised to alleviate the state explosion problem can be classi-
fied as belonging to one of two families. The first family of techniques reduce the
part of the state space that needs to be explored in such a way that all properties
of interest are preserved. Partial order reduction [9] which limits redundant in-
terleavings is an example of such a technique. More pragmatic approaches do not
reduce the state space, but make a more economical use of available resources, or
augment them, in order to extend the range of problems that can be analyzed.
State compression [11], distributed verification [16], and disk-based verification
[4] belong to this second family of techniques.

In the field of external memory and distributed verification, it is common to
divide the state space into partitions (although some external and distributed
algorithms do not rely on such a partitioning, e.g., [4,10]). For example, in the
distributed algorithm of [16], each process involved in the verification is respon-
sible for storing and visiting all the states of a partition. Whenever a process
generates a state that does not belong to the partition it is responsible for, it
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sends it to its owner such that the state can be stored and its successor states
can be explored. An important component of this algorithm is the partition func-
tion (known to all processes) which is used to map states to partitions. In the
ideal case, the partition function should have two properties. Firstly, it should
generate as few cross transitions as possible. Cross transitions link two states of
different partitions and thus systematically generate messages over the network.
Secondly, it should distribute states evenly into partitions to ensure that all pro-
cesses have the same workload. A hash function based on the bit string used to
represent states may achieve an optimal distribution, but generates many cross
transitions due to the insensitivity of hashing to locality.

To address this problem, we introduce a dynamic partitioning scheme based
on the idea of partition refinement . Initially, there is a single partition in which
the partition function maps all states. Then, whenever a partition has to be split
up — for instance because its size exceeds memory capacity — it is divided into
sub-partitions and the partition function is refined accordingly. To represent a
partition function that can change over time we introduce the idea of composi-
tional partition functions. Refinement is done by progressively considering new
components of the state vector (descriptor) in the partition function, e.g., vari-
ables or communication channels. For instance, after a first refinement step, a
state will be mapped to one of the partitions p1, . . . , pn depending only on the
value of its ith component in the state vector. Then, if p1 has to be refined, we
consider an additional component of the state vector. As refinement is applied
on a single partition at a time, partitions p2, . . . , pn will remain unchanged.

Our intuition is to take advantage of the fact that events typically modify a
small number of components in the state vector. Thus, if a partition function
is based only on a few components of the system and does not consider others,
events that do not modify these components will not generate cross transition,
and hence disk accesses or network communications will be limited. However,
we replace the objective of a uniform distribution of states into partitions by
a less ambitious one: partitions may be of different sizes, but we can ensure an
upper bound on their size. Even though this does not have any consequence with
an external memory algorithm, it may impact a distributed algorithm in that
processes may not receive the same amount of workload.

The refinement algorithm has been implemented in the ASAP [18] tool, on
top of the external algorithm of [1]. We report the results of several experiments
showing that we were able to significantly decrease the number of disk accesses.
More importantly, our algorithm improves the algorithm of [1] such that it per-
forms well on classes of models where it previously performed poorly.

Structure of the paper. In the next section, we briefly recall the principle of
the two partitioning based algorithms of [16] and [1] that will be the basis of our
work. Section 3 presents related work. Our dynamic scheme based on partition
refinement is introduced in Section 4 followed in Section 5 by different heuristics
to support the refinement. The experiments conducted with our verification tool
are presented in Section 6. Finally, Section 7 concludes this paper. We assume
the reader is familiar with the principle of state space exploration.
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Definitions and notations. We assume a universe of system states S, an
initial state s0 ∈ S, a set of events E , an enabling function en : S → 2E , and
a successor function succ : S × E → S. We want to explore the state space
implied by these parameters, i.e., the triple (R, T, s0) such that R ⊆ S is the set
of reachable states and T ⊆ R × R is the set of transitions defined by:

R = {s0} ∪ { s ∈ S | ∃s1, . . . , sn ∈ S with s = sn ∧
∀i ∈ {0, . . . , n − 1} : ∃ei ∈ en(si) with succ(si, ei) = si+1}

T = {(s, s′) ∈ R × R | ∃e ∈ en(s) with succ(s, e) = s′}

2 Partitioning the State Space

Algorithm 1 (left) shows the algorithm of [1] that mimics a distributed search
using external storage, and the distributed algorithm of [16] (right) which is the
basis of most work in the field of parallel and distributed model checking. Both
algorithms rely on a partitioning function part : S → {1, . . . , N} which partitions
the set of visited states and the queue of unprocessed states into V1, . . . ,VN and
Q1, . . . ,QN , respectively.

In the external algorithm (ll. 1–10), only a single partition i is loaded in
memory at a time. The visited states of partition i are stored in memory in Vi,
and its unprocessed states reside in the queue Qi. All other partitions j 	= i
are not stored in memory, i.e., Vj = ∅, but stored on disk files Fj . Queues are
also stored on disk, although, for the sake of simplicity of our presentation, we
assume here that they are kept in main memory. Initially, all structures and files
are empty. The algorithm inserts the initial state s0 in the appropriate queue
part(s0) (l. 4). Then, as long as one of the queues contains a state, the algorithm
selects the longest queue i (l. 6), loads the associated partition from disk file Fi to
memory in Vi (l. 7) and starts expanding the states in queue Qi using procedure
searchi (l. 8) which will be explained below. When the searchi procedure does
not have any new state to expand for this partition, it writes back the partition
to disk file Fi and empties Vi (ll. 9–10). Selecting the longest queue is mainly a
heuristic to perform few partition switches (writing back Vi in disk file Fi and
selecting a new partition).

In the distributed algorithm (ll. 11–19), data structures are kept in the mem-
ory of the N processes involved in the state space exploration. Each process i
owns a partition Vi and a queue of unprocessed states Qi that it has to explore.
Both structures are initially empty, and the process that owns the initial state
puts it in its queue (ll. 16–17). As long as termination is not detected (l. 18),
the process expands the states in its local queue using procedure searchi (l. 19).
Termination occurs when all queues and communication channels are empty.

The common part of both algorithms is the searchi procedure that expands
all the states queued in Qi until it becomes empty. Each state s removed from
Qi (l. 22) is checked to be in partition Vi. This check is performed since a state
in Qi may have been inserted in Qi because it was a destination state of a cross
transition. If s has not been met before it is inserted into Vi (l. 24) and then
expanded (ll. 25–29). During the expansion, we compute all the successors s′ of
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Algorithm 1. Two search algorithms based on state space partitioning
1: (* external algorithm of [1] *)

2: for i in 1 to N do
3: Qi := ∅ ; Vi := ∅ ; Fi := ∅
4: Qpart(s0).enqueue(s0)
5: while ∃i : ¬Qi = ∅ do
6: i := longestQueue()
7: Fi.load(Vi)
8: searchi()
9: Vi.unload(Fi)

10: Vi := ∅

11: (* distributed algorithm of [16] *)

12: execute proc1 ‖ . . . ‖ procN

13:

14: procedure proci is
15: Qi := ∅ ; Vi := ∅
16: if part(s0) = i then
17: Qi.enqueue(s0)
18: while ¬ termination() do
19: searchi()

20: procedure searchi is (* search procedure common to both algorithms *)

21: while Qi �= ∅ do
22: s := Qi.dequeue()
23: if s /∈ Vi then
24: Vi.insert(s)
25: for e in en(s), s′ = succ(s, e) do
26: j := part(s′)
27: if i = j then (* local transition *)

28: if s′ /∈ Vi then Qi.enqueue(s′)
29: else Qj .enqueue(s′) (* cross transition *)

s and determine the partition j they belong to (l. 26), using function part. If
i = j the transition from s to s′ is a local transition. We can simply check if s′

is in memory in table Vi and put it the in queue Qi if needed. Otherwise, this
is a cross transition, and the partition of state s′ is not available in memory (it
is stored on disk or belongs to another process). We thus unconditionally put it
in Qj . For the external algorithm of [1] this is implemented by enqueueing the
state in the memory queue Qj (and possibly writing s′ in the disk file associated
with Qj), whereas for the distributed algorithm of [16] it implies to pack the
state in a message and send it to the owner of the appropriate partition, i.e.,
process j. Upon reception, the state is enqueued by the receiving process in Qj .

The performance of these algorithms depends to a large extent on the partition
function part. In the distributed algorithm, cross transitions highly impact the
number of messages exchanged and thereby indirectly the execution time. For
the external algorithm, partition swaps, and hence disk accesses, are generated
by cross transitions. Although this objective is more specific to the distributed
algorithm, function part should also distribute states evenly among partitions
so that processes receive a comparable workload.

3 Related Work

Stern and Dill [16], Bao and Jones [1] and Garavel et al. [8] left open the prob-
lem of the partition function. They used in their experiments a standard hash
function taking as input the entire state vector. The importance of the partition
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function was stressed in [12]. Assuming that the system to be verified is a set
of communicating processes, the partition function proposed in [12] only hashes
the part of the state vector describing a selected process p. Thus, only when that
part changes, i.e., the search algorithm explores events in p, is a cross transition
generated. Compared to a global hash function, this scheme efficiently reduces
the number of messages exchanged (up to a factor of 5) and, hence, the execution
time (up to a factor of 3). The downside is a degraded distribution of states over
the nodes of the network.

The dynamic partitioning in [13] groups states into classes and partitions
consist of a set of classes. When memory becomes scarce, the partition function
is modified by reassigning some classes of the overflowing partition to other
partitions. The function mapping states to classes can be a local hash function
as in [12]. The results of this dynamic partitioning strategy in term of message
exchanges and verification time are comparable to the ones of [12]. The main
advantage is that no knowledge of the system is necessary: run-time information
is used to keep the partitioning balanced and, indeed, we generally observed in
our experiments (to be discussed in Sect. 6) a good distribution of states.

An efficient partitioning algorithm based on abstraction and refinement of
the state space is introduced in [2]. However, the state space has to be first
constructed in order to define the partition function meaning that this approach
mainly targets off-line model checking.

In structured duplicate detection [19] as used in external graph search, an
abstraction of the state space is used to determine when to load/unload parti-
tions from/to disk. However, this approach seems hard to apply in the context
of model checking due to the difficulty of defining an abstract graph from a com-
plex specification. Close to that idea is the work of Rangarajan et al. [15]. The
algorithm they propose first explores a sample of the state space. This sample
is abstracted into a higher level graph using a single variable v of the system.
An abstracted state aggregates all states having the same value of v. A partition
function can then be constructed from this abstracted graph. The algorithm can
reiterate this process on all variables to improve the quality of the function. The
underlying principle is the same as in [12] and [13]: only when the selected vari-
able is modified can a cross transition be generated. The experiment made in [15]
shows that this method can significantly outperform the local hash partitioning
implemented in PSPIN [12].

We propose a way to dynamically (i.e., during state space exploration) modify
the partition function by progressively taking into account more components of
the underlying system. Our work can be seen as an extension of [15] since some
of the ideas we develop were briefly mentioned in [15] – like the one of consid-
ering several variables of the system to define the partition function. Another
contribution of our dynamic approach is that it can still guarantee an upper
bound on the size of any partition loaded in memory which previous approach
like [12,13,15] could not. From now on, we focus on the external algorithm of
[1] although the proposed method and the heuristics in Sect. 5 can, to a large
extent, be applied also to distributed model checking.
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Algorithm 2. The partition refinement procedure
1: procedure refine i is
2: update partition function part: partition i is divided into i1, . . . , in
3: for s ∈ Vi do { s.write(Fpart(s)) }
4: while ¬ Qi.isEmpty() do { s := Qi.dequeue() ; Qpart(s).enqueue(s) }
5: Vi := ∅ ; Fi := ∅ ; go to line 6 of Algorithm 1

4 Dynamic Partitioning Based on Refinement

Our dynamic partitioning scheme is based on the principle of partition refine-
ment . The algorithm starts with a single partition to which all states are initially
mapped. If the state space is small enough to be kept in main memory the al-
gorithm acts as a standard RAM algorithm. Otherwise, whenever the partition
Vi currently loaded in memory exceeds the memory capacity, procedure refinei

of Algorithm. 2 is triggered. It firsts updates the partition function part (l. 2)
in such a way that each state that was previously mapped to partition i is now
mapped to a new partition j ∈ {i1, . . . , in}. Then, it writes the states in Vi to
disk files Fi1 , . . . ,Fin (l. 3) and reorganizes the queue Qi in the same way (l. 4).
Once this reorganization is finished, the table Vi and the disk file Fi are emptied
(l. 5), and the search can restart by picking a new partition. Note that partition
i is the only one to be reorganized; all other partitions remain unchanged.

Our focus is now on the implementation of line 2 of procedure refinei. We
describe in the rest of this section how our algorithm uses a compositional parti-
tion function that can change during the state space exploration. We propose a
way to dynamically refine the partition function by gradually considering more
components of the state vector of the system being analyzed.

A compositional partition function can be represented as a partitioning dia-
gram. Figure 1 is the graphical representation of a diagram D. Rounded boxes
represent terminal nodes and branching nodes are drawn using circles. The nodes
are labeled either with a partition, e.g., p0, p1, or with a branching function of
which the domain is the universe of states S and the codomain can be deduced

p1i

h

a

c

b

2

1

0

g
t

f

p0

p4

p5 p3

p2

Fig. 1. A compositional par-
titioning diagram D

from the labels of its outgoing arcs: g : S → {t, f},
h : S → {a, b, c} and i : S → {0, 1, 2}. This di-
agram induces a partition function partD mapping
states to partitions. Starting from the root g of this
diagram, we successively apply to the state the dif-
ferent functions labeling the branching nodes of the
diagram until reaching a terminal node, i.e., a parti-
tion. The branches to follow are given by the labels
of the outgoing edges from branching nodes. Below
is a few examples of application of partD :

partD (s) = p0 ⇔ g(s) = t
partD (s) = p5 ⇔ g(s) = f ∧ h(s) = c
partD (s) = p3 ⇔ g(s) = f ∧ h(s) = a ∧ i(s) = 2
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Three functions (g, h and i) are used to decide if a state belongs to partition p3.
Hence we say that partition p3 is dependent on functions g, h and i.

The following definition formalizes the notion of partitioning diagrams. Note
that the definition of the edge set E implies that partitions are the terminal
nodes of the diagram and that functions are branching nodes.

Definition 1 (Compositional partitioning diagram (CPD)). A Compo-
sitional partitioning diagram is a tuple D = (V, E, r0,F ,P) such that:

– G = (V, E) is a directed acyclic graph with vertices V = F ∪P and edges E,
and r0 ∈ V is the only root node of G;

– F = {fi : S → Li} is a set of branching functions;
– P ⊆ 2S is a set of state partitions;
– E ⊆ F ×L×V (with L = ∪iLi), such that for all fi ∈ F , l ∈ Li there exists

exactly one v′ ∈ V such that (fi, l, v
′) ∈ E.

A CPD determines a partition function as formalized in the following definition.

Definition 2 (Compositional partition function). Let D = (V, E, r0,F ,P)
be a CPD. The function part : V × S → P is defined by:

part(v, s) =
{

v if v ∈ P
part(v′, s) if v ∈ F ,where (v, v(s), v′) ∈ E

The compositional partition function partD : S → P is defined by:

partD(s) = part(r0, s)

Refinement of a CPD consists of replacing a terminal node representing a par-
tition by a new branching node. Thus, a state s that was previously mapped to
the refined partition is now redirected to a new sub-partition according to the
value of g(s) where g is the function labeling the new branching node.

Our refinement algorithm assumes the global system can be viewed as a set
of distinct components C1 ∈ D1, . . . , Cn ∈ Dn and that a state of the system
is obtained from the state of these components, i.e., S = D1 × . . . × Dn. This
naturally capture systems with a statically defined state vector (e.g., DVE sys-
tems [5], Petri nets). However, as the partition function dynamically evolves as
the search progresses, this constraint could easily be relaxed. We denote by fCi

the function that from a given state s returns the value of component Ci. Dur-
ing the refinement of partition p, the partition diagram is modified as follows.
The algorithm first inspects the diagram to determine the functions F on which
partition p is dependent. These functions label the branching nodes on the path
from the root to the terminal node associated with p in the diagram. Then it
picks a function fCi /∈ F . Each of its outgoing branches leads to a new partition.
At last, pi is replaced in the diagram by the branching node fCi . We shall use the
term candidate component (or simply candidate), to denote a component that
can be used to refine a partition, i.e., any component Ci such that the refined
partition is not already dependent on fCi .
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Fig. 2. A dynamic compositional diagram D

Figure 2 shows the graphical representation of a compositional partition di-
agram D that dynamically evolves as described above. We assume the follow-
ing components are part of the underlying system: b ∈ {t, f}, c ∈ {t, f} and
i ∈ {0, 1, 2, 3}. Initially, there is a single partition p and all states are mapped
to that partition. As p exceeds the allowed size, it is refined into pt and pf after
the selection of the boolean component b to be used for the refinement. States
already visited with b = t are put in partition pt and states with b = f are
put in pf . Later, partition pt becomes too large. Since this partition is already
dependent on function fb it would not make sense to refine it using component
b: all states of pt would be redirected to the same partition. Hence, the algo-
rithm selects to refine it using component i. Partition pt is thus split in p(t,0),
p(t,1), p(t,2) and p(t,3) and states that were previously in pt, i.e.,with b = t, are
redirected to one of these according to the value of component i. Note that pf is
unchanged. Thus, states that satisfy b = f will still be mapped to this partition
whatever the value of their other components.

The definition below formalizes this idea of partition refinement.

Definition 3 (Partition refinement). Let D = (V, E, r0,F ,P) be a CPD.
The refinement R(D, f, p) of D with respect to f : S → Lf and p ∈ P is the
CPD D′ = (V ′, E′, r′0,F ′,P ′) with:

– F ′ = F ∪ {f};
– P ′ = P \ {p} ∪ PLf

, where PLf
= {pl | l ∈ Lf} and pl = {s ∈ p | f(s) = l};

– E′ = E\{(v, l, q) ∈ E | q = p}∪{(f, l, pl) | l ∈ Lf}∪{(v, l, f) | (v, l, p) ∈ E};
– r′0 = f (if r0 = p), and r′0 = r0 (otherwise).

The motivation behind this dynamic partitioning scheme is to benefit as much
as possible from system properties. Usually, realistic systems are composed of
many components, and events only modify a small fraction of them leaving others
unchanged. Our refinement algorithm tries to minimize cross transitions by only
selecting for each partition a few components to depend on. Let us consider, for
instance, the last step in the evolution of the compositional diagram of Fig. 2.
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All the states of partition p(t,2) have in common that b = t∧ i = 2. Hence, from
any state of this partition, an event that does not change the value of b or i will
not generate a cross transition.

Clearly, the way the component is selected during a refinement step largely
impacts the number of cross transitions it will cause. For instance, the worst
choice would be to select a global variable updated by all events. In that case,
any transition from a state of the resulting partitions will be a cross transition.

5 Selection of Candidate Components

We propose in this section several heuristics to efficiently select components
to be used as a basis for the refinement. We classify these in two categories.
Static heuristics perform an analysis of the model or sample the state space to
order components. Then, during the search, the next component is always chosen
according to that predetermined order. Hence along two different paths (of same
length) of the partitioning diagram, we always find the same components in the
same order. With dynamic heuristics, the component selected is chosen during
the refinement step on the basis of data collected on-the-fly during the search.

Static Heuristics

Heuristic SA: Static Analysis. With this first heuristic, the algorithm tries to
predict from a static analysis of the model the modification frequency of com-
ponents. The analysis performed is simple. We count for each state component,
the number of events that modify it and order components accordingly in in-
creasing order. Some weights may also be associated with events as we did in
our implementation for the DVE language. For example, events nested in loops
can be assigned a high weight as we can reasonably assume that their execution
will occur frequently.

Heuristic SS: Static Sample. Heuristic SA from above is based on a static analy-
sis of the model and as such assumes a uniform distribution of event executions.
However, in practice, this assumption is not always valid. Some events are typ-
ically executed only a few times, e.g., initialization events, whereas some will
generate most of the state transitions. With heuristic SS, we attempt tackle this
problem by first exploring a sample of the state space. An array of integers in-
dexed by state components is maintained and each time an event is executed,
the counters of all modified components are incremented. State components are
then ordered according to the values of their counters, lowest values first. It is
very important to perform a randomized search in order to explore a reasonably
representative sample of the state space. A breadth-first search, for instance,
would only explore the states of the first levels of the state space, and these usu-
ally share very few characteristics with the states we can find at deeper levels
(and hence different executable events).
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Dynamic Heuristics

Heuristic DR: Dynamic Randomized This strategy picks out a component ran-
domly from a set of candidates. The purpose of this strategy is only to serve as
a baseline to assess the other dynamic strategies below.

Heuristic DE: Dynamic Event execution Heuristic DE is the dynamic equivalent
of the heuristic SA: the array of integers specifying, for each component, the
number of modifications of that component, is maintained as the state space
exploration progresses. During a refinement step, the algorithm selects, among
candidates, the one which has, until now, been the least frequently modified.

Heuristic DD: Dynamic Distribution. The previous heuristics do not consider
how well states are distributed among sub-partitions during a refinement step.
This may, however, have important consequences in subsequent steps. Suppose
that a partition p is refined in two sub-partitions, the first one, p1, receiving 95%
of the states of p, and the second one, p2, receiving 5% of these states. Then, it
is likely that during the next expansion step of partition p1, new states will be
added to p1 which will cause it to exceed the maximal allowed size and hence to
be refined. We can thus reasonably consider the first refinement to be useless.
As refinement steps are costly — it entails writing back to disk each state in the
partition currently loaded in memory — these refinements should be avoided as
much as possible.

With heuristic DD, the refinement procedure simulates all possible refine-
ments by computing for each state s of the partition to be refined the values
fCi1

(s), . . . , fCik
(s), where fCi1

, . . . , fCik
are the partition functions for the

candidate components. This indicates how good the state distributions induced
by the different candidates are. Then, the algorithm picks the component that
achieves the lowest standard deviation, that is, the most even distribution of
states among partitions. Applying fCi1

, . . . , fCik
on all states does not incur a

major time penalty. In the worst case (if all components are candidates), this is
equivalent to compute a hash value on the entire state vector, which is usually
negligible compared to the later writing of the state in the sub-partition file. In
our experiments, we observed that, when heuristics DE and DDE (that extends
DE with this “simulation” process, see below) exhibited comparable performan-
ces in term of disk accesses, the execution times were roughly the same.

Heuristic DDE: Dynamic Distribution and Event execution. This last heuristic
combines the idea of heuristics DD and DE: we prefer candidates that achieve a
good state distribution and which is not frequently modified. During a refinement
step, the following metric is computed for each candidate Ci:

h(Ci) = updates[i] · std(Ci) (1)

where updates[i] is the number of modifications of component i recorded so far
and std(Ci) is the standard deviation in the sizes of sub-partitions obtained if
component Ci is chosen for refinement. The algorithm picks the candidate having
the lowest value.
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6 Experiments

The part algorithm of [1] as well as our dynamic partitioning technique have
been implemented in the ASAP model checking platform [18]. We report in this
section on experimental results obtained with this implementation. Additional
data from the experiments can be found in [7].
Application of refinement to DVE systems. All models we have used are
written in the DVE language and comes from the BEEM database [14]. We did
not experiment with models belonging to the categories “Planning and sche-
duling” and “Puzzles” that are mostly toy examples having few common char-
acteristics with real-life models. In the DVE language, the system is described
as a set of automata synchronizing through communication channels and global
variables. Communications can either be synchronous or asynchronous. An au-
tomaton is described as a set of states, local variables, and guarded events. To
use our refinement algorithm, we considered as components each of the following
items: the state of an automaton, i.e., its program counter; a variable (global or
local); and the content of a communication channel. Arrays were considered as
components although this obviously was not a good solution in some cases. We
plan to refine that in a future implementation. Since the domain of variables can
be very large and cannot be defined a priori, we used for each component Ci the
component function fi = hi(Ci) mod p where hi is a hash function from Di (the
domain of component Ci), to N and p is the maximum number of sub-partitions
we want a partition to be refined in (p was set to 20 in our implementation).
Experimental context. Apart from our refinement technique, we also imple-
mented the static and dynamic partitioning schemes of [12] and [13] both using a
local hash function that only refers to the part of the state vector corresponding
to a specific process of the system. In our implementation of [13], a partition is
split in two sub-partitions when it exceeds memory capacity: half of the classes
that comprises the partition are put in a new partition. The process used for
hashing was selected after an initial sampling of the state space. We selected the
process which achieved both a uniform state distribution and a low number of
cross transitions using heuristic h in Equation 1 from the previous section. The
initial sampling was stopped after 100,000 states had been visited. This repre-
sents from 10% of the state space to less than 0.2% for the largest instances.

We experimented with part using different partitioning schemes on 35 in-
stances of the BEEM database having from 1·106 to 60·106 states. Since instances
of the same model often have similar state spaces, we only kept for each model
the instance with the largest state space. During each run we gave the part
algorithm the possibility to keep in memory at most 2% of the state space1. Half
of this amount was given to the memory buffer of the state queue (remember
that part stores the queue on disk) and half was given to the partition loaded
in memory. Hence, each partition could contain at most 1% of the total state
space size. With static partitioning, it is impossible to put an upper bound on
1 Other sizes were experimented: 10%, 5% and 1%. Due to lack of space, these exper-

iments have been left out in this section, but can be found in [7].
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a partition size. Therefore, assuming the distribution of states upon partitions
might be unfair, we configured the static schemes with 256 partitions to guar-
antee (to the extend possible) that a partition will not contain more than 1% of
the state space. For dynamic partitioning strategies, when a partition exceeded
this capacity, it was automatically split using refinement with our algorithm or
by reassigning classes of states to partitions with the algorithm of [13]. As noted
earlier, the algorithm of [13] cannot guarantee an upper bound on a partition
size: when a partition contains a single class it cannot be further reorganized.

Experimental results. Table 1 shows the result of our experiments. Due to
lack of space, we only report the data for 14 representative instances, but still
provide the average over the 35 instances experimented2. We performed 10 runs
per instance, each with a different partitioning strategy. Each column provides
data for a single run. For static and dynamic settings, GHC stands for “Global
Hash Code”: the partition function is the global hash function modulo the num-
ber of partitions; and LHC stands for “Local Hash Code”: only the part of the
state vector corresponding to a specific process is hashed, that is, the algorithms
of [12] (in the static setting) and [13] (in the dynamic setting). Dynamic + Com-
positional is our refinement algorithm with the different heuristics proposed in
Section 5: SA (Static + Analysis), SS (Static + Sample), DR (Dynamic + Ran-
domized), DE (Dynamic + Event execution), DD (Dynamic + Distribution) and
DDE (Dynamic + Distribution and Event execution). For heuristic SS, we per-
formed exactly the same preliminary search as the one performed for strategies
with LHC: we stopped the search after the visit of 100,000 states. For each in-
stance, rows CT and IO provide the number of cross transitions and disk accesses
performed (both for the queue and for disk partitions). Absolute values are given
for column Static - GHC. Other values are relative to this one. The ε symbol is
used to denote values less than 0.001. Best values have been highlighted in bold.

We first observe that, for most instances, heuristic DR performs worse than
other heuristics. We found no instances where heuristic DR generated fewer cross
than heuristics SS and DE. This confirms our initial intuition on the impact of
the candidate’s choice made during refinement.

Heuristic SS and heuristic DE (the dynamic equivalent of SS) exhibit compa-
rable performances. This indicates that the preliminary randomized search often
provides a very good sample of the state space. We only observed a notable dif-
ference for a few instances, especially the largest ones for which the sample was
too small to be representative enough (e.g., train-gate.7 and collision.4).

In [6], we observed that part (using a global hash function to partition the
state space) is not designed for long state spaces, i.e., state spaces with many
levels, which should also hold for the distributed algorithm of [16]. To illustrate
that, let us consider the extreme case where the graph is a long sequence of states.
Using a good hash function we can assume the probability of a transition to be
a cross transition is close to N−1

N (where N is the number of partitions). Hence,
with this state space structure, most transitions will immediately be followed
by a partition swap. With a distributed algorithm, the search will consist of
2 The complete table can be found in [7].
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Table 1. Performance of part with different partitioning schemes

Static Dynamic Dynamic + Compositional

GHC LHC GHC LHC SS SA DR DE DD DDE

bopdp.3 1,040,953 states 2,747,408 transitions

CT 2.7 M 0.091 0.965 0.078 0.223 0.300 0.311 0.183 0.256 0.306
IO 39 M 0.148 1.008 0.189 0.311 0.243 0.324 0.370 0.323 0.304

brp.6 42,728,113 states 89,187,437 transitions

CT 88 M 0.281 0.899 0.277 0.040 0.083 0.286 0.042 0.170 0.049
IO 5.9 G 0.346 1.057 0.292 0.132 0.130 0.979 0.123 0.046 0.082

collision.4 41,465,543 states 113,148,818 transitions

CT 112 M 0.088 0.969 0.087 0.078 0.030 0.255 0.011 0.131 0.056
IO 1.5 G 0.183 1.135 0.235 0.178 0.220 0.395 0.176 0.211 0.294

firewire link.5 18,553,032 states 59,782,059 transitions

CT 59 M 0.262 0.981 0.254 0.054 0.050 0.173 0.010 0.346 0.017
IO 788 M 2.282 0.971 0.869 0.224 0.190 0.488 0.220 0.715 0.206

firewire tree.5 3,807,023 states 18,225,703 transitions

CT 18 M 0.111 0.983 0.109 0.114 0.190 0.153 0.065 0.195 0.138
IO 141 M 0.177 0.969 0.461 2.148 0.323 0.665 0.757 0.248 0.287

fischer.6 8,321,728 states 33,454,191 transitions

CT 33 M 0.109 0.966 0.107 0.474 0.470 0.629 0.474 0.683 0.468
IO 130 M 0.478 1.221 0.547 0.896 0.915 0.980 0.874 0.855 0.840

iprotocol.7 59,794,192 states 200,828,479 transitions

CT 196 M 0.276 0.958 0.152 0.003 0.114 0.319 0.004 0.170 0.021
IO 2.6 G 1.390 1.090 0.634 0.190 0.220 1.383 0.209 0.784 0.211

msmie.4 7,125,441 states 11,056,210 transitions

CT 10 M 0.048 0.852 0.047 0.204 0.794 0.528 0.211 0.448 0.253
IO 97 M 0.315 0.925 0.419 0.603 1.013 0.739 0.545 0.797 0.556

pgm protocol.8 3,069,390 states 7,125,121 transitions

CT 6.3 M 0.273 0.932 0.268 0.024 0.110 0.208 0.024 0.286 0.025
IO 255 M 0.447 0.800 0.303 0.100 0.145 0.373 0.100 0.185 0.102

plc.4 3,763,999 states 6,100,165 transitions

CT 6.0 M 0.018 0.985 0.017 ε ε 0.073 ε 0.104 0.001
IO 1.3 G 0.085 1.251 0.107 0.030 0.018 0.393 0.030 0.110 0.020

rether.7 55,338,617 states 61,198,113 transitions

CT 60 M 0.040 0.980 0.039 0.042 0.049 0.183 0.051 0.106 0.093
IO 3.7 G 0.170 1.150 0.244 0.151 0.128 0.383 0.164 0.198 0.217

synapse.7 10,198,141 states 19,893,297 transitions

CT 19 M 0.301 0.970 0.297 0.014 0.012 0.238 0.010 0.451 0.015
IO 161 M 0.792 1.096 0.778 0.372 0.396 0.659 0.325 0.768 0.369

telephony.7 21,960,308 states 114,070,470 transitions

CT 111 M 0.245 0.976 0.239 0.450 0.450 0.495 0.447 0.708 0.505
IO 619 M 0.838 1.110 0.854 0.958 0.972 1.272 0.977 0.715 1.263

train-gate.7 50,199,556 states 106,056,460 transitions

CT 105 M 0.028 0.976 0.027 0.359 0.270 0.566 0.212 0.783 0.224
IO 1.7 G 0.105 1.332 0.142 0.392 0.498 1.771 0.318 0.751 0.321

Average on 35 models

CT 1.000 0.255 0.962 0.236 0.163 0.206 0.327 0.152 0.419 0.179
IO 1.000 0.504 1.050 0.496 0.458 0.423 0.661 0.411 0.531 0.393
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a long series of message exchanges with processes constantly waiting for new
states. A partition function that exploits model structure can fill that gap. For
instances brp.6, iprotocol.7, pgm protocol.8, plc.4, and rether.7 that have
long state spaces (up to almost 8000 levels for plc.4), all partitioning strategies
based on the model structure significantly outperform strategies Static - GHC and
Dynamic - GHC with respect to both cross transitions and disk accesses. Also,
except for rether.7, compositional partitioning performs significantly better
than partitioning based on a local hash code.

For firewire tree.5, heuristic DE generates, after refinements, unfair state
distributions which leads to most time being spent on reorganizing partitions.
Thus, although it is the one that generates the fewest cross transitions, this has
little consequences on the overall number of disk accesses. Heuristics DD and
DDE that try to distribute states equally among partitions largely outperforms
DE on that instance. This observation can be generalized to most instances
experimented: heuristic DE is the one that minimizes cross transitions, but not
necessarily disk accesses. It would be interesting to experiment with the two
heuristics in a distributed environment. In [13] it is advised to delete states after
a reorganization rather than sending them to its new owner which is claimed to
be too expensive. This comes at the cost of possibly revisiting states that have
been deleted. Intuitively, since heuristic DE performs more refinements it should
cause the deletion and revisit of more states than DDE and, hence, generate
more cross transitions and message exchanges. It is therefore not immediately
clear which one should be preferred in a distributed setting.

Although we see some correlation between the number of cross transitions and
disk accesses, this is not always the case. Firstly, for the reason that explains the
bad performances of heuristic DE for instance firewire tree.5: disk accesses
are also triggered by partition refinements. Secondly, because the consequences
of cross transitions largely depend on the stage of the search they occur at: as
the search progresses, partitions contain more and more states which increases
the cost of swapping. Finally, it suffices that one cross transition leads to a
state of partition j when queue Qj is empty to guarantee that partition j will
eventually be loaded in memory. All subsequent cross transitions do not affect
the algorithm. Hence, a large number of cross transitions linking two partitions
is not necessarily a bad thing.

Synchronizations in models telephony and fischer are realized through
global arrays modified by most events. As the refinement procedure currently
implemented considers arrays as single components, our algorithm is not really
efficient in these cases. A better management of arrays should improve this. This
remark applies to most mutual exclusion algorithms we have experimented with.

Table 1 indicates that our refinement algorithm outperforms the partition-
ing algorithms of [12] and [13] although only slightly. However, the experiment
reported here is quite unfair to our algorithm as no memory limit was (and
could be) given to strategies Static - LHC and Dynamic - LHC whereas our re-
finement algorithm works within a bounded amount of RAM. Table 2 gives for
all instances of Table 1 and for these two partitioning schemes, the proportion
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Table 2. Ratio of overflowing states (given by Eq. 2) with static (S-LHC) and dynamic
(D-LHC) partition functions of [12] and [13] based on local hash code

S-LHC D-LHC S-LHC D-LHC

bopdp.3 0.677 0.677 msmie.4 0.939 0.939
brp.6 0.735 0.735 pgm protocol.8 0 0

collision.4 0.722 0.722 plc.4 0 0
firewire link.5 0 0 rether.7 0.550 0.192
firewire tree.5 0.785 0.785 synapse.7 0.090 0.035

fischer.6 0.969 0.969 telephony.7 0.827 0.827
iprotocol.7 0 0 train-gate.7 0.950 0.950

∑
p∈partitions

max(size of partition p − memory limit per partition, 0)

state space size
(2)

of overflowing states (see Eq. 2 of Table 2) where, again, the memory limit per
partition that was given to our algorithm is 1% of the total number of states.

When the algorithm could stay within allowed memory, LHC based parti-
tioning is clearly outperformed by a refinement based partition function. This is
evidenced by Table 1 showing that for models firewire link.5, iprotocol.7,
pgm protocol.8, plc.4 and synapse.7, refinement based partitioning gener-
ates — sometimes considerably — fewer cross transitions and disk accesses. In
contrast, when LHC based partitioning performed better it usually meant that
it used more memory than what was given to our refinement algorithm. This is
especially the case for models fischer.6, msmie.4 and train-gate.7.

7 Conclusions and Future Work

We have proposed in this paper a dynamic partitioning algorithm for external and
distributed model checking, and extensively experimented with the disk-based
algorithm of [1]. Our algorithm is based on the key idea of partition refinement.
The search starts with a single partition and as memory becomes scarce, partitions
are refined using new components of the analyzed system. Different heuristics have
been proposed to appropriately select components during refinement steps. This
scheme allows us to efficiently limit cross transitions at the cost of possibly gener-
ating unequal state distributions upon partitions compared to a partition function
hashing the global state vector. However, our algorithm can still guarantee an up-
per bound on the size of any partition loaded in memory which previous approach
like [12,13,15] could not. In addition to this, we have presented a common frame-
work for external and distributed algorithms based on partitioning.

Our framework and results are also valid in the context of distributed mem-
ory verification. However, the choice of the heuristic is still an open question.
Heuristic DE was apparently the best regarding cross transitions, but may not
be the most appropriate as it can generate unfair state distributions and conse-
quently more refinements that imply the deletion (and revisit) of more states. As
part of a future work, we therefore plan to explore heuristics specifically designed
for a distributed context.
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