
On the Computation of Stubborn Sets

of Colored Petri Nets

Sami Evangelista and Jean-François Pradat-Peyre

CEDRIC - CNAM Paris
292, rue St Martin, 75003 Paris
{evangeli, peyre}@cnam.fr

Abstract. Valmari’s Stubborn Sets method is a member of the so-called
partial order methods. These techniques are usually based on a selective
search algorithm: at each state processed during the search, a stubborn
set is calculated and only the enabled transitions of this set are used to
generate the successors of the state. The computation of stubborn sets
requires to detect dependencies between transitions in terms of conflict
and causality. In colored Petri nets these dependencies are difficult to
detect because of the color mappings present on the arcs: conflicts and
causality connections depend on the structure of the net but also on
these mappings. Thus, tools that implement this technique usually un-
fold the net before exploring the state space, an operation that is often
untractable in practice. We present in this work an alternative method
which avoids the cost of unfolding the net. To allow this, we use a syntac-
tically restricted class of colored nets. Note that this class still enables
wide modeling facilities since it is the one used in our model checker
Helena which has been designed to support the verification of software
specifications. The algorithm presented has been implemented and sev-
eral experiments which show the benefits of our approach are reported.
For several models we obtain a reduction close or even equal to the one
obtained after an unfolding of the net. We were also able to efficiently
reduce the state spaces of several models obtained by an automatic trans-
lation of concurrent software.

1 Introduction

State space analysis is a powerful formal method for proving that finite systems
match their specification. It consists of enumerating all the possible configura-
tions (or states) of the system to track the erroneous ones. A major obstacle
to the application of this technique to industrial systems is the famous state
explosion problem: the number of reachable states can be far too large to fit in
memory or even on disk.

The state explosion has been the subject of many researches in the last two
decades and techniques that alleviate this problem have been introduced. This
includes the family of partial order methods which tackle one of the main sources
of the combinatorial explosion: the concurrent execution of several components.
These are based on the following observation: due to the interleaving semantic

S. Donatelli and P.S. Thiagarajan (Eds.): ICATPN 2006, LNCS 4024, pp. 146–165, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On the Computation of Stubborn Sets of Colored Petri Nets 147

of concurrent systems, a set of different executions can have exactly the same
effect on the system and be only a permutation of the same sequence. Thus,
an efficient way to reduce the state explosion would be to explore only a single
or some representative executions and ignore all the others permutations that
are equivalent to the chosen ones. This is why the term of model checking using
representatives [14] seems more appropriate than the one of partial order model
checking.

Valmari’s stubborn sets method [17, 16, 18] is a member of this family. It is
based on a selective search algorithm: at each state processed, a stubborn set of
transitions is computed and only the enabled transitions of this set are used to
generate the successors of the state. The elimination of some transitions from
the stubborn set can cause some states not to be explored and can thus greatly
reduce the number of visited states.

The problem of deciding if a set of transitions is stubborn at a state is at
least as hard as the reachability problem [5]. Thus, selective search algorithms
exploit the structure of the modeled system to build sets for which the stub-
bornness conditions are guaranteed to hold. Construction algorithms are thus
tightly linked to the formalism of the model, e.g., Promela [10], Petri nets, but,
whatever the formalism, they always rely on the notion of dependency between
transitions. When adding a transition to the stubborn set, one has to find the
transitions that could disable or enable the considered transition. For ordinary
PT-nets, these dependencies can be directly deduced from the structure of the
net. For this reason, stubborn sets have been widely studied in the field of or-
dinary Petri nets and many algorithms were introduced to solve the problem.
Examples include the deletion algorithm [17, 22], and the incremental algorithm
[17, 22, 16].

The computation of stubborn sets for colored Petri nets is more problematic.
Indeed, the detection of dependencies between transitions can not solely rely on
the structure of the net but must also consider the color mappings that label
arcs between places and transitions. A brute force approach consists then in
unfolding the net, i.e., building the equivalent ordinary Petri net, in order to
apply traditional stubborn sets algorithm for PT-nets. However, this unfolding
step is not always possible because of large color domains. A possible way to avoid
this unfolding is to work at the “colored” level, and to detect the dependencies
between transitions symbolically. As a counterpart, we can not expect to obtain
as good results as if the net was unfolded since the analysis of dependencies can
not be as precise.

We investigate in this paper a solution for the computation of stubborn sets
of colored Petri nets that does not rely on the unfolding of the net nor works
at the transition binding level when constructing a stubborn set. Our algorithm
detects dependencies directly on the colored Petri net. A keypoint is to use a
slightly restricted class of colored Petri net that enables a symbolic detection of
the dependencies. However, this class still allows wide modeling facilities since it
is the one used in Helena [7] an explicit state model checker based on high level
Petri nets and aimed at software verification.

148 S. Evangelista and J.-F. Pradat-Peyre

Related works. Stubborn sets of colored Petri nets were initially introduced
by Valmari in [19, 20]. His algorithm performs an implicit unfolding of the net:
the net is not explicitly unfolded but the algorithm systematically enumerates
transition bindings. The possibility to ignore the colors of the net, i.e., treat each
colored transition as if it was an agglomeration of all its unfolded transitions,
was also mentioned but not recommended, since it usually leads to unnecessary
large stubborn sets.

Brgan and Poitrenaud proposed in [1] an optimized version of Valmari’s algo-
rithm for well formed Petri nets which exploits the good structuring of the color
domains and mappings of this class. The idea of their algorithm is to translate
some structural relations into equivalent constraints systems before the search.
These systems express dependencies between transition bindings and are thus
repeatedly solved during the search to compute stubborn sets. Though their
method can efficiently speed up the detection of dependencies, their construc-
tion of stubborn sets still works at the transition binding level. Consequently,
their approach is not much different from unfolding the net.

To our best knowledge, the only algorithm proposed so far, that does not
work at the binding level is [13]. In this paper, the authors suggest that a
possible way to obtain “good” stubborn sets for a colored Petri net without
unfolding it is to add some extra informations on top of the structure of the
net. The model designer must thus supply to the model checking tool some
additional inputs, such as the type of the places (e.g., communication buffer,
shared resource), that give crucial hints on the structure and the dynamic of
the unfolded net. These informations are then used during the search in the
stubborn sets construction. Their method seems to provide good reductions for
a very low cost as acknowledged by the experimental results. The author ar-
gue that it is reasonable to assume that the type of information needed can
be provided by the user. An analogy is made to the fact of typing variables
in a program. However, there is no other possibility for the tool for validat-
ing these informations than unfolding the net or generating the complete state
space, which is, by hypothesis, infeasible. Thus, in case of “typing error”, the
tool could produce wrong results. Another interesting contribution of [13] is a
theoretical result about the complexity of the problem: the size of the unfolded
PT-net is the worst-case time complexity of any algorithm that computes non-
trivial stubborn sets. A trivial stubborn set include all the transition bindings
of the net.

This paper is organized as follows. The next section recalls some basic defi-
nitions and notations on colored Petri nets and stubborn sets. Our algorithm is
presented in Section 3. Section 4 presents a set of experimental results. Lastly
we conclude in Section 5.

2 Formal Background

We recall in this section the basic definitions and notions on colored Petri nets
[11] and stubborn sets that are needed for the comprehension of this paper. We
assume that the reader is familiar with PT-nets and their dynamic behavior.

On the Computation of Stubborn Sets of Colored Petri Nets 149

N will denote the set of positive integers, N
+ the set N \ {0} and B =

{false, true} the set of booleans.
The definition of colored Petri nets is based on multi-sets. A multi-set over a

set S is a mapping from S to N. The set of multi-set over a set S is denoted by
Bag(S). The addition, substraction, and comparison of multi-sets are defined in
the usual way. ∅ denotes the empty multi-set. If m is a multi-set then e ∈ m ⇔
m(e) > 0.

If S is a set, S∗ is the set of finite words over S and S∞ is the set of infinite
words over S. The “.” operator shall be used to denote the concatenation of two
sequences. ǫ shall denote the empty sequence.

We shall denote by P(S) the powerset of a set S, i.e., the set of its sub-sets.

2.1 Colored Petri Nets

Definition 1 (Colored Petri net). A colored Petri net (or CPN) is a tuple
〈P, T, C, W−, W+, φ, m0〉 where P is a finite set of places; T is a finite set of
transitions such that P∩T = ∅; C a color function is a mapping from P∪T to
Σ, a set of finite and non empty sets; W− and W+ the forward and backward
incidence matrixes associate to each pair (p, t) of P ×T a mapping from C(t)
to Bag(C(p)); φ a guard function associates to each t ∈ T a mapping from
C(t) to B; and m0 an initial marking is an element of M the set of mappings
which associate to each p ∈ P an element of Bag(C(p)).

From now on a CPN N will implicitly define the tuple 〈P, T, C, W−, W+, φ, m0〉.
Given a node n of P ∪ T , C(n) will be called the color domain of n. The set
of inputs (resp. outputs) of a place p is the set •p (resp. p•) defined by: •p =
{t|W+(p, t) 6= 0} 1 (resp. p• = {t|W−(p, t) 6= 0}). The same sets can be defined
for a transition t : •t = {p|W−(p, t) 6= 0} and t• = {p|W+(p, t) 6= 0}. These
notations are extended to set of nodes as usual.

The firing rule defines the dynamic of the net.

Definition 2 (Firing rule). Let N be a CPN and m ∈ M. The instance c
of transition t is firable (or enabled) at m (denoted by m[(t, c)〉) if and only
if φ(t)(c) ∧ m(p) ≥ W−(p, t)(c). The firing of the instance (t, c) at m leads
to a marking m′ (denoted by m[(t, c)〉m′) defined by: ∀p ∈ P, m′(p) = m(p) −
W−(p, t)(c) + W+(p, t)(c).

The state space of a CPN is the set of all the markings of the net which can be
reached from the initial marking by a sequence of firings.

Definition 3 (State space). Let N be a CPN. The state space (or reachability
set) of N is the minimal set S ⊆ M such that m0 ∈ S and if ∃m ∈ S, t ∈ T, c ∈
C(t) such that m[(t, c)〉m′ then m′ ∈ S.

In the remainder we will often refer to the unfolded net of a CPN. Such a net is
an ordinary PT-net obtained from the colored one by creating a node for each
place or transition instance of the net. The flow relation of the unfolded net can

1 0 denotes here the empty mapping from C(t) to Bag(C(p)), i.e., ∀c ∈ C(t), 0(c) = ∅.

150 S. Evangelista and J.-F. Pradat-Peyre

then be derived by a direct application of the color mappings which label the
arcs of the CPN.

2.2 Stubborn Sets

The stubborn sets method can be used to build a reduced state space of the
system. The construction of this reduced state space can be done by introducing
a little modification into a standard search algorithm: at each state processed, a
stubborn set of transitions is computed and only the enabled transitions of this
set are used to generate the immediate successors of the processed state. The
set is said to be stubborn because the transitions outside it can not affect its
behavior: it remains stubborn after the firing of any sequence of non stubborn
transitions. Consequently, some transitions may never be executed, reducing the
number of explored states. In the best case the reduction is exponential. Such a
modified algorithm is usually called a selective search algorithm.

The computation of the stubborn set must respect certain rules in order to
preserve the desired property in the reduced state space. This has led to the
introduction of several versions of the stubborn sets method. However, the notion
of dynamic stubbornness is a common basis of many of these versions.

Definition 4 (Dynamic Stubbornness). Let N be a Petri net, m be a mark-
ing of N and S ⊆ T . The set S is dynamically stubborn at m if conditions D1
and D2 hold where:

D1 ∀t ∈ S, σ ∈ (T \ S)
∗
, m[σ.t〉 ⇒ m[t.σ〉

D2 (∃t ∈ T | m[t〉) ⇒ ∃t ∈ S | ∀σ ∈ (T \ S)
∗
, m[σ〉 ⇒ m[σ.t〉

Condition D1 states that the firing of a sequence of transitions that are outside
the stubborn set can not enable the firing of a disabled transition of S while D2
ensures that if the marking is not dead, then there is an enabled transition in
the stubborn set (called a key transition in the stubborn set terminology) which
remains firable after the firing of any sequence of non stubborn transitions.

It is well known that a selective search algorithm which computes stubborn
sets having the dynamic stubbornness property builds a reduced state space
which contains all the dead markings of the initial state space and at least one
infinite sequence if such a sequence exists. Because of the ignoring phenomenon
[19], that’s basically all that this definition preserves: a firable transition may
be infinitely forgotten in the stubborn set computation. In order to verify more
elaborated properties, such as liveness properties, it is crucial to prevent this
ignoring phenomenon and to add additional constraints in the computation of
the stubborn set, possibly leading to less reductions. For instance it is usually
needed that along each cycle of the reduced reachability graph, a transition
enabled at a marking of the cycle belongs to at least one of the stubborn sets
computed for the markings of the cycle. However, this subject is beyond the
scope of this work and we will focus our attention on the dynamic stubbornness
from definition 4. Thus in the remainder of the paper, we will call a stubborn
set a set of transitions which respect the dynamic stubbornness property.

On the Computation of Stubborn Sets of Colored Petri Nets 151

3 Symbolic Computation of Stubborn Sets

We present in this section an algorithm to compute stubborn sets of colored Petri
nets. The proposed method does not rely on an explicit or implicit unfolding of
the net but rather on the two following ideas:

– We treat instances classes instead of explicitly enumerating instances. We
thus obtain an algorithm which complexity is independent from the size of
the unfolded net.

– We define a class of colored Petri nets allowing an efficient detection of the
dependencies between the transitions of the net.

Our method is therefore inspired by two works [1, 13] on the same subject which
have been mentioned in the previous section.

In the remainder of the section we will proceed as follows. Firstly we give a
static stubbornness definition for PT-nets on which our algorithm is based. Then
we make an informal presentation of our algorithm with the help of an example
which illustrates several difficulties that arise when directly handling colored
nets instead of unfolding. A syntactically restricted class of CPN is introduced
in the third part of the section along with additional definitions needed to handle
bindings classes. The last part of the section is more technical and deals with a
concrete implementation of the algorithm for our CPN class.

3.1 Static Stubbornness for PT-Nets

The dynamic stubbornness definition is based on the semantic of the net, i.e.,
its reachability graph, and it is thus difficult to obtain an “implementation” of
this property. Moreover, it has been proved that the problem of deciding if a set
is stubborn is at least as hard as checking reachability for the full reachability
graph [5] which is exactly what we want to avoid. Consequently, rather than
checking the dynamic stubbornness property for an arbitrary set of transitions,
algorithms usually exploit the structure of the modeled system to produce sets
of transitions for which the dynamic stubbornness is guaranteed to hold. Such
algorithms have been proposed for various description languages, e.g., Promela
[10], Variable/Transition systems [19], and Petri nets [17, 16, 22].

We now introduce a stubbornness definition for Petri nets. It is far from being
optimal and could be refined, e.g., see [22], but we will use it for its simplicity.

Definition 5 (Stubbornness). Let N be a Petri net, m be a marking and
S ⊆ T . S is stubborn at m if the three following conditions are satisfied:

1. (∃t ∈ T | m[t〉) ⇒ ∃t ∈ S | m[t〉
2. if t ∈ S and m[t〉 then (•t)• ⊆ S
3. if t ∈ S and ¬m[t〉 then ∃p ∈ •t such that m(p) < W−(p, t) and •p ⊆ S

Item 1 prevents from picking an empty set if there are enabled transitions. Item
2 ensures that a firable transition t remains firable after the firing of a sequence
which only includes transitions outside the stubborn set. Indeed, all the tran-
sitions which could prevent the firing of t, i.e., the set (•t)•, are also in the

152 S. Evangelista and J.-F. Pradat-Peyre

stubborn set. Let us note that all the enabled transitions selected in the stub-
born sets are thus key transitions since they remain firable. At last item 3 ensures
that a disabled transition t remains disabled after the firing of a sequence of non
stubborn transitions since place p prevents the firing of t and transitions that
could put tokens in it are also stubborn. The place p of this item is usually called
a scapegoat in the stubborn sets terminology.

These three items are thus sufficient to prove the following proposition.

Proposition 1. Let N be a Petri net, m be a marking and S ⊆ T . If S is
stubborn at m then it is dynamically stubborn at m.

The previous definition can be used to define a stubborn sets computation al-
gorithm for PT-nets. This algorithm initiates the construction with an enabled
transition and successively applies item 2 and 3 until reaching a fix point. If the
marking does not enable any transition then it directly returns an empty set.

The goal of our work if to present a “colored” version of this algorithm. We
will see that difficulty arise with the introduction of color mappings in the net
and how to deal with this additional complexity.

3.2 Informal Presentation of the Algorithm

At first we informally present our algorithm with the help of the net of figure 1.
This net models the part of a distributed system in which different client and
server process interact. Clients compete for acquiring access to a pool of shared
objects. To each object of the pool is an associated lock guaranteeing an exclusive
access to the object. An idle client C can evolve in two different ways. First he can
try to grab the lock of object O (transition takeLock). Alternatively, if a server
S has acknowledged his request (transition sendAck) he can choose to receive
and treat this acknowledgment (transition receiveAck). We denote {c1, . . . , cn}
the set of clients, {s1, . . . , sm} the set of servers and {o1, . . . , ol} the set of shared
objects.

We propose to detail a few steps of the construction of the stubborn set S at
the marking m depicted.Binding tb1 = (takeLock, 〈C = c1, O = o1〉) is enabled
at m and we choose it to initialize the stubborn set S.

Binding tb1 = (takeLock, 〈C = c1, O = o1〉 Since tb1 is enabled we must apply
the second item of definition 5 and identify the instances in conflict with it to

m(locks) = 〈o1〉 + 〈o2〉

m(serverSend) = ∅

m(serverIdle) = ∅

m(ack) = ∅

+〈c2, o1〉

m(clientIdle) = 〈c1, o1〉〈C, O〉

〈O〉 〈C,O〉 〈C, O〉 〈C〉

acklocks clientIdle 〈C〉

serverSend

serverIdle

〈S〉

sendAck

〈S,C〉

gotoIdle

takeLock receiveAck

Fig. 1. An illustrative CPN example

On the Computation of Stubborn Sets of Colored Petri Nets 153

include them in S. It appears that binding tb2 = (receiveAck, 〈C = c1, O = o1〉)
is clearly in conflict with tb1. Indeed, they both withdraw the token 〈c1, o1〉
from place clientIdle. We therefore include tb2 in S. What seems less clear from
a PT-net point of view is that tb1 is also in conflict with other bindings of
transition takeLock. An analysis of the unfolded net would indeed reveal that
bindings of set ∪c∈{c2,...,cn}{(takeLock, 〈C = c, O = o1〉)} also withdraw token
〈o1〉 from place locks and must thus be included in S. Algorithms of [20] and
[1] would directly insert these n − 1 bindings. The size of the stubborn set
would then quickly increase as color domains grow. This may even fail with
infinite color domains. Our approach is different since we choose to not explicitely
enumerate these n − 1 bindings but rather to treat this set as a single unit.
For this purpose we introduce the ⋆ symbol which will be used to denote “any
item” of a color. Thus we will say that tb1 is in conflict with binding tb3 =
(takeLock, 〈C = ⋆, O = o1〉), i.e., all the clients who wishes to acquire the same
lock. Since tb3 is a compact representation of a set of bindings we will rather use
the term bindings class or more simply class.

Binding tb2 = (receiveAck, 〈C = c1, O = o1〉) To be enabled tb2 needs a token
〈c1〉 in place ack. The instance (ack, 〈c1〉) is therefore chosen as a scapegoat. The
set ∪s∈{s1,...,sm}{(sendAck, 〈S = s, C = c1〉)} includes all the bindings which can
produce this token. We thus add class tb4 = (sendAck, 〈S = ⋆, C = c1〉) to S. In
other words, the only event that can cause the reception by c1 of an acknowl-
edgment is the sending of this acknowledgment whatever the sending server.

Binding tb3 = (takeLock, 〈C = ⋆, O = o1〉) The introduction of the concept of
bindings class raises here a difficulty. Indeed, since we want to treat all the
bindings of this class as a unit without differentiating them we have to assign
the same status (disabled / enabled) to all these bindings in order to apply the
second or third item of definition 5. In practice, the number of enabled bind-
ings of a CPN always remains relatively low even when the color domains are
large. We thus choose to proceed as follows. We treat each class as if all the
bindings within it were disabled and we extract from it the enabled bindings
which are inserted into the stubborn and treated separately. Thus an enabled
binding added by this way to the stubborn set will be both considered as dis-
abled and enabled. Though this will produce larger stubborn sets, this does
not affect the validity of our algorithm. For instance, the two enabled bindings
tb1 = (takeLock, 〈C = c1, O = o1〉) and tb5 = (takeLock, 〈C = c2, O = o1〉) both
belong to the class tb3 and must therefore be included in S.

Letus comeback to tb3. Eachdisabledbinding b = (takeLock, 〈C = ci, O = o1〉)
of this class needs a token 〈o1〉 in locks and a token 〈ci, o1〉 in clientIdle. Since
m(locks)(〈o1〉) = 1, the absence of token 〈ci, o1〉 is the reason why b is disabled.
Once again we avoid an explicit enumeration of these scapegoats by using the ⋆
symbol: the scapegoat of class tb3 is (clientIdle, 〈⋆, o1〉). Such an approximation is
valid since any disabled binding of tb3 has a scapegoat place in this class. Item 3
requires that we insert in S the bindings which put in clientIdle tokens belonging
to class 〈⋆, o1〉. The single input of clientIdle is gotoIdle. By looking at the color

154 S. Evangelista and J.-F. Pradat-Peyre

mapping which labels the arc from gotoIdle to clientIdle we notice that a binding
(gotoIdle, 〈C = c, O = o〉) can produce a token of class 〈⋆, o1〉 if and only if o = o1.
Consequently, we must add (gotoIdle, 〈C = ⋆, O = o1〉) to S.

We mentioned in the introduction of this section that the time complexity
of this algorithm is not related to the size of the unfolded net. As a matter of
fact, the worst time complexity is indeed related to this size since each enabled
binding can be processed and the number of enabled bindings is bounded by
the number of transitions in the unfolded net. However, in practice, we observe
that, even when the types of places and transitions are very large, the number
of enabled bindings remains reasonable. So the worst time complexity of our
algorithm is rarely reached.

This example highlighted the necessity to have CPNs with a well structured
syntax. Indeed, each time we processed a binding we exploited the structuring
of the arc functions to detect dependencies between transitions. This approach
would typically fail with CPNs having arbitrarily complex arc functions or color
domains. We introduce in the next sub-section a class of CPNs inspired by Well
Formed colored nets [3] which, on one hand, allows us a symbolic detection of
dependencies and, on the other hand, still enables large modeling facilities.

3.3 A Class of Colored Petri Nets

Color domains of our colored nets are Cartesian products of finite and non empty
sets called basic types.

Definition 6 (Color domain). The set of basic types ∆ is a finite set of finite
and non empty sets. A color domain C is a product C1×· · ·×Cs(C) where Ci ∈ ∆
and s(C) ∈ N is the size of C. The set of color domains is noted C.

A color domain item will be noted as a tuple, e.g., 〈2, true〉. In addition, for each
transition t, we will assume a bijective mapping associating each element of its
color domain to a variable which will appear in the tuple, e.g., 〈X = 2, B = true〉.

Color mappings of the net are built with the help of elementary expressions.
Two types of elementary expressions are allowed: the projection (or variable) and
the functional expression. The first one is used to choose a specific element in an
item of a color domain. Functional expressions are provided to enable complex
operations on basic types. All the valid expressions from a color domain to a
basic type can be put in this family. Projections are thus particular cases of
functional expressions.

Definition 7 (Elementary expression). Let C ∈ C and δ ∈ ∆. EC,δ, the set
of elementary expressions from C to δ is the set EC,δ = VC,δ ∪ FC,δ where

– VC,δ = {Vi | i ∈ [1..s(C)] ∧ Ci = δ}
is the set of projections from C to δ. Vi is defined by:
∀c = 〈c1, . . . , cs(C)〉 ∈ C, Vi(c) = ci.

– FC,δ = {(f, (e1, . . . , en)) | f ∈ δ1 × · · · × δn → δ ∧ ∀i ∈ [1..n], ei ∈ EC,δi
}

is the set of functional expressions from C to δ. (f, (e1, . . . , en)) is defined
by: ∀c ∈ C, (f, (e1, . . . , en))(c) = f(e1(c), . . . , en(c))

On the Computation of Stubborn Sets of Colored Petri Nets 155

In our examples, instead of using the formal notation Vi we will prefer to use
the variable of the transition at position i. For example V2 will be directly noted
B if the second element of the transition domain is associated to this variable.

Expressions tuples are basic components of color mappings. They can be
guarded by a boolean expression which condition the tokens production. The
syntax of guards will appear later in this section.

Definition 8 (Elementary expressions tuple). Let C, C′ ∈ C. The set of
elementary expressions tuples (or tuples) from C to Bag(C′), is noted TupC,C′

and is the set of triplets (γ, α, E) such that: γ ∈ GC is the guard of the tuple;
α ∈ N

+ is the factor of the tuple; E = 〈e1, . . . , es(C′)〉, with ∀i ∈ [1..s(C′)], ei ∈
EC,C′

i
, is the expressions list of the tuple. tup = (γ, α, 〈e1, . . . , en〉) is defined by:

∀c ∈ C, tup(c) = if γ(c) then α · 〈e1(c), . . . , en(c)〉 else ∅.

A tuple (γ, α, 〈e1, . . . , en〉) will also be noted [γ] α · 〈e1, . . . , en〉. For instance
[X > Y] 2 · 〈X, 0, f(Y)〉 is a valid example tuple. Given an instantiation of the
variables X and Y of the transition it produces 2 items of type 〈X, 0, f(Y)〉 if
X > Y . Otherwise, it produces the empty multi-set.

At last, color mappings that label the arcs of the net are sums of elementary
expressions tuples.

Definition 9 (Color mapping). Let C, C′ ∈ C. A color mapping f from C

to Bag(C′) is a sum f =
∑k

i=1 tupi (with ∀i ∈ [1..k], tupi ∈ TupC,C′) defined
naturally. The set of color mappings from C to Bag(C′) is noted MapC,C′ .

A color mapping will sometimes be considered as the union of the tuples which
constitute it, i.e., tup ∈ map ⇔ map = tup + map′.

Expressions tuples and transitions can be guarded by a boolean expression
which states under which conditions the tuple produces items or the transition
if firable. We do not impose special constraints on these guards. Any boolean
expression on the color domain of the transition is a valid guard.

Definition 10 (Guard). Let C ∈ C. GC = EC,B is the set of guards over C.

Dealing with instances classes. We first “extend” basic types by including to
them the ⋆ symbol. The same extension is done for color domains. The definition
assumes that this symbol does not belong to any basic type.

Definition 11 (Extended color domain). Let δ ∈ ∆. The extended type δ⋆

is the set δ∪{⋆}. The set of extended types ∆⋆ is the set {δ⋆|δ ∈ ∆}. Let C ∈ C.
The extended color domain C⋆ is the Cartesian product C1

⋆× · · · ×Cs(C)
⋆. The

set of extended color domains is noted C⋆.

We must also modify the semantics of the elementary expressions to take into ac-
count this extension. The value of a projection is unchanged. If a sub-expression
of a functional expression e is evaluated to ⋆ so is e. Otherwise its value does
not change.

156 S. Evangelista and J.-F. Pradat-Peyre

Definition 12 (Extended elementary expression). Let C ∈ C, δ ∈ ∆, and
e ∈ EC,δ. The extended expression e⋆ from C⋆ to δ⋆ is defined by:
∀c ∈ C⋆ such that c = 〈c1, . . . , cn〉:

e⋆(c) =

if e = Vi then ci

if e = (f, 〈e1, . . . , em〉) then

{

if ∀i ∈ [1..m], ei
⋆(c) 6= ⋆ then e(c)

else ⋆

We will often use in this section the unfolding mapping defined below which
is used to enumerate all the items within a class, e.g., UnfB×B(〈⋆, true〉) =
{〈false, true〉, 〈true, true〉}.

Definition 13 (Class unfolding). Let δ ∈ ∆ and C ∈ C. The mappings Unfδ

from δ⋆ to P(δ) and UnfC from C⋆ to P(C) are defined by:

− Unfδ(e) = if e = ⋆ then δ else {e}
− UnfC(〈c1, . . . , cn〉) = UnfC1

(c1)× · · · × UnfCn
(cn)

Lastly we introduce the inclusion relation�C defined for every basic type or color
domain C. We have c �C c′ if each item ci of c is either the ⋆ symbol either c′i,
the item at the same position in c′. For instance, it holds that 〈true, ⋆〉 �B×B

〈true, false〉, but 〈true, ⋆〉 �B×B 〈false, ⋆〉 does not. Trivially, if c � c′ then
UnfC(c′) ⊆ UnfC(c). We will then say that c′ is a subclass of c.

Definition 14 (Inclusion relation). Let C ∈ C. The relation �C over C⋆×C⋆

is defined by: 〈c1, . . . , cn〉 �C 〈c′1, . . . , c
′
n〉 ⇔ ∀i ∈ [1..n], ci = ⋆ ∨ ci = c′i.

We will omit in the sequel the subscript and superscript of UnfC , �C or e⋆ when
there will be no ambiguity.

3.4 The Algorithm

We now introduce the general algorithm (figure 2) to compute a stubborn set
of transitions of a CPN. Its input is a marking m of the CPN and it returns a
stubborn set at m. Three main data structures are used. S is the stubborn set
computed. U is the set of bindings classes which have not been treated yet. N
is the set of binding classes which must be included in the stubborn set.

An enabled binding is randomly chosen to initialize the stubborn set and the
set of unprocessed classes (line 1). If there is no enabled binding at m, the empty
set is directly returned. At each iteration, a binding class (t, ct) is removed from
U and treated by the algorithm (lines 3-4). If this class is composed of a single
binding, i.e. the ⋆ symbol does not appear in it, enabled at m we apply item 2 of
the stubbornness definition and we compute the set of bindings classes in conflict
with (t, ct) (line 6). Otherwise we consider it as a class of disabled bindings. We
first check (line 8) if ct is not a subclass of a previously treated class c′t, i.e., all
the bindings of ct are in c′t. In this case the stubborn set is unchanged. Else the
algorithm applies item 3 and computes the classes of bindings which produce
tokens needed by the disabled bindings of (t, ct). Additionally, we must include
in N all the enabled bindings which belong to the bindings class (t, ct) (line 11).

On the Computation of Stubborn Sets of Colored Petri Nets 157

stubborn (m)
1 S ← if ∃(t, ct) such that m[(t, ct)〉 then {(t, ct)} else ∅; U ← S
2 while U 6= ∅ do

3 let (t, ct) ∈ U with ct = 〈ct,1, . . . , ct,n〉
4 U ← U \ {(t, ct)}
5 if ∀i ∈ [1..n], ct,i 6= ⋆ and m[(t, ct)〉 then

6 N ← disablingClasses(t, ct) (* apply item 2 of definition 5 *)
7 else

8 if ∃(t, c′t) ∈ S such that c′t � ct then N ← ∅
9 else

10 N ← enablingClasses(t, ct, m) (* apply item 3 of definition 5 *)
11 N ← N ∪ {(t, c′t) such that m[(t, c′t)〉 and ct � c′t}
12 end if

13 end if

14 U ← U ∪ (N \ S); S ← S ∪N
15 end while

16 return S

Fig. 2. A stubborn sets computation algorithm for colored Petri nets

3.5 Implementing Algorithm’s Operations

The algorithm of figure 2 is a generic one in the sense that it is not related to
our CPN class and could theoretically be implemented for any colored net. We
have seen in our introductory example that an efficient implementation of the
mappings enablingClasses and disablingClasses seems to require colored nets
well structured enough to enable symbolic computations or alternatively some
user supplied informations as it is done in [13].

We detail now an implementation of these operations for our CPN class.

Reversing color mappings. A frequently used operation in our algorithm is
the reverse operation. This one consists of finding for a given color c and a color
mapping f the set of colors c′ such that f(c′)(c) > 0. Different methods have been
proposed in the literature to address this problem in an efficient way (e.g., [6],
[1], [2], [8]) for Well Formed nets or similar classes. Even for this formalism, the
problem is quite hard, and the solutions proposed either extend the formalism
[2] or add some extra restrictions on arc functions [8].

For our colored nets, the reverse operation is, in general, impossible to apply
without an explicit enumeration of colors. This is due to the possibility to in-
sert in tuples some functional expressions which can obviously not be reversed.
However, we can still approximate the result of this operation by exploiting the
elementary expressions that are “well formed”, i.e., the projections, and which
are easily reversible.

We now introduce the mapping reverseMapt,p defined for every couple (p, t)
of P × T . Given a color mapping map from C(t) to Bag(C(p)) and a class
cp ∈ C(p)

⋆
, reverseMapt,p computes a set of classes of transition t which is

such that any binding of t which image by map contains a token of class cp

belongs to one of the classes computed. More formally, the following proposition
must hold for all c ∈ Unf(cp) and c′ ∈ C(t):

158 S. Evangelista and J.-F. Pradat-Peyre

map(c′)(c) > 0⇒ ∃ct ∈ reverseMapt,p(cp, map) | c′ ∈ Unf(ct)

Using the fact that a color mapping is a sum of tuples we reduce the problem
to the definition of the tuple reversal mapping reverseTupt,p (definition 15).

We can clearly identify two steps in this procedure. In the first one we identify
the class of bindings (t, ct) such that tup(ct)(c) > 0 for some c of class cp.
This is done by initializing the resulting class to 〈⋆, . . . , ⋆〉 which covers all the
bindings of t and by looking for projections in tup. When a projection Vj is
found at position i in the tuple we replace in r the ⋆ at position j by the
item at position i in cp. For instance reverseTupt,p(〈0, 1, 2〉, 〈X, Z, f(Y)〉) =
{〈X = 0, Y = ⋆, Z = 1〉}. The class computed is clearly an over-approximation
of the bindings which are really needed. This is mainly due to the fact that
functional expressions may appear in the tuple and that such expressions can
not be handled without being “unfolded”. Since this is typically what we want to
avoid, we have no other choice than ignoring these expressions in this first step.
A possible optimization would be to identify expressions which can be reversed,
and to exploit this reversibility, e.g., reverseTupt,p(〈1〉, 〈X + 1〉) = {〈X = 0〉}.

The second step of the reverse operation consists of checking if the computed
class is inconsistent with respect to the tuple or the transition. A first inconsis-
tency may appear if there is an expression ei in the tuple which can be evalu-
ated with binding r, i.e., ei(r) 6= ⋆, and which value is different from ci, the item
at the same position in class cp (if ci 6= ⋆). We can then directly return the empty
set since there is obviously no binding of t which can produce by tup a token of
class c. For instance, reverseTupt,p(〈2, 2〉, 〈X, X + 1〉) = ∅. A second inconsis-
tency is detected if either the guard of the tuple or the guard of the transition
can be evaluated and does not hold. For instance, reverseTup(〈0, ⋆〉, [X > 0]
〈X, Y 〉) = ∅. Let us recall that these guards or the expressions in the tuple may
not be evaluable since the variables which appear in these can have an undefined
value.

Definition 15. Let t ∈ T and p ∈ P . The mappings reverseMapt,p from
C(p)

⋆×MapC(t),C(p) to P(C(t)
⋆
) and reverseTupt,p from C(p)

⋆×TupC(t),C(p)

to P(C(t)
⋆
) are defined by:

reverseMapt,p(cp, map) =
⋃

tup∈map

reverseTupt,p(cp, tup)

reverseTupt,p (cp, tup)
1 let cp = 〈c1, . . . , cn〉
2 let tup = [γ] α · 〈e1, . . . , en〉
3 r ← 〈⋆, . . . , ⋆〉
4 for i ∈ [1..n] do if ei = Vj and rj = ⋆ then rj ← ci

5 (* check inconsistencies *)
6 if ∃i ∈ [1..n] such that ei(r) 6= ⋆ and ci 6= ⋆ and ei(r) 6= ci then return ∅
7 if γ(r) = false or φ(t)(r) = false then return ∅
8 return {r}

On the Computation of Stubborn Sets of Colored Petri Nets 159

Computing scapegoats. The treatment of a disabled bindings class c in-
volves to identify the bindings firing of which can enable the elements of c.
This detection is based, in our static stubbornness definition, on the ability
to compute a scapegoat. A scapegoat of a low-level transition t at a marking
m is a place which disables t, i.e. W−(p, t) > m(p). For a high-level transi-
tion binding (t, ct) it is simply a couple (p, cp) such that p ∈ P, cp ∈ C(p) and
W−(p, t)(ct)(cp) > m(p)(cp). When directly handling bindings classes instead
of explicit bindings a difficulty appears that was not highlighted by our intro-
ductory example. Indeed, we must find a scapegoat for all the bindings within
the class. Thus, in some cases, we will have to choose several scapegoats. We
illustrate this problem with the help of the following net.

t
q

〈X, Y 〉
p

〈Y, false〉

Let us consider the class ct = 〈X = 2, Y = ⋆〉 of transition t for which we have
two possible scapegoats: (q, 〈⋆, false〉) and (p, 〈2, ⋆〉). For instance, at the two
markings m and m′ our algorithm will proceed as follows:

– for m defined by m(p) = 〈2, 3〉, m(q) = 〈4, true〉
Class (q, 〈⋆, false〉) is a valid scapegoat for all the bindings of ct since no
token in q has false as its second component.

– for m′ defined by m′(p) = 〈2, 3〉, m′(q) = 〈4, false〉
Class (q, 〈⋆, false〉) can not be chosen since m′(q) ≥ W−(t, q)(c) for c =
〈X = 2, Y = 4〉 which belongs to the class ct. For the same reason, (p, 〈2, ⋆〉)
can not be chosen since m′(p) ≥ W−(p, t)(〈X = 2, Y = 3〉). Consequently,
both classes, i.e., (q, 〈⋆, false〉) and (p, 〈2, ⋆〉), must be chosen to ensure that
each binding of ct has a scapegoat in one of the two classes.

Once again, this example shows that working at the high-level has a cost insofar
as we compute a set of scapegoats which, from a PT-net point of view, is clearly
unnecessarily large.

The purpose of function scapegoat is to find, given a bindings class (t, ct), and
a marking m, a set of scapegoat classes for (t, ct) at m: each disabled binding
of (t, ct) has a scapegoat in a class of scapegoat(t, ct, m). More formally, the
following must hold for all c ∈ Unf(ct) such that¬m[(t, c)〉:

∃(p, cp) ∈ scapegoat(t, ct, m), c′ ∈ Unf(cp) | W−(p, t)(c)(c′) > m(p)(c′)

The function proceeds in two steps. It first tries to find a unique class which is
an acceptable scapegoat for all the bindings of ct. A sufficient condition is that
there is a tuple [γ]α · 〈e1, . . . , en〉 appearing in the input arc from p to t such
that all the tokens present in p at m fulfill one of these two conditions:

– The multiplicity of the token is strictly less than the factor of the tuple α.
– There is an expression at position i in the tuple which produces with ct a

value different from ⋆ and different from the item at the same position in
the token.

160 S. Evangelista and J.-F. Pradat-Peyre

In addition, the guard of the tuple must evaluate to true with ct. Otherwise,
i.e., γ(ct) = false or γ(ct) = ⋆, there could be instances in ct for which the
tuple does not produce any item. For these instances, the token consumed by
the tuple is obviously not a valid scapegoat. If there exists such a tuple tup,
then it is straightforward to see that ∀c ∈ Unf(ct), tup(c) > m(p). The token
produced by the tuple can therefore be chosen as a scapegoat.

If we fail to find such a tuple then we pick all the tokens consumed by the
bindings of ct. This set is obviously a correct scapegoat for ct. However, all the
couples (p, c′) for which it necessarily holds that m(p)(c′) ≥ W−(p, t)(c)(c′) for
any c of ct can be safely withdrawn from this set. A sufficient condition for this
to hold is that there exists a tuple tup in W−(p, t) such that (1) cp, the image
of ct by tup does not contain the ⋆ symbol, (2) the multiplicity of cp at m is
greater than the maximal multiplicity of any item produced by W−(p, t), i.e.,
Γ (W−(p, t)).

Definition 16. The mapping scapegoat from T×C⋆×M to P(P × C⋆) is defined
by: scapegoat(t, ct, m) =

if ∃p ∈ •t, (γ, α, 〈e1, . . . , en〉) ∈ W−(p, t) such that
γ(ct) = true

and ∀cp = 〈cp,1, . . . , cp,n〉 ∈ m(p), m(p)(cp) < α
or ∃i ∈ [1..n] | ei(ct) /∈ {⋆, cp,i}

then {(p, 〈e1(ct), . . . , en(ct)〉)}

else {(p, cp) | p ∈ •t and ∃(γ, α, 〈e1, . . . , en〉) ∈W−(p, t) such that
cp = 〈e1(ct), . . . , en(ct)〉 and γ(ct) 6= false

and ¬(∀i ∈ [1..n], ei(ct) 6= ⋆ and m(p)(cp) ≥ Γ (W−(p, t)))}

where Γ (map) =
∑k

i=1 αi with map =
∑k

i=1(γi, αi, Ei)

The size of the reduced reachability graph depends to a large extent on the
stubborn sets computed. Though always choosing the stubborn set with the
lowest number of enabled bindings does not necessarily yields the best reduc-
tion it seems however to be the best and simplest heuristic. The choice of the
scapegoats is a nondeterministic factor which can affect the number of enabled
bindings in the resulting stubborn set. For PT-nets different strategies have been
proposed in [21]. Our implementation of mapping scapegoat sorts “scapegoat
candidates” according to three criteria and chooses the first candidate according
to this sorting. These three criteria are (we note C the set of bindings classes
which are directly inserted into the stubborn set if the scapegoat if chosen): (1)
the number of enabled bindings in C, (2) the number of ⋆ which appear in the
classes of C, and (3) the number of classes in C. We thus try to limit the number
of enabled bindings and the number of transitions of the unfolded net inserted to
the stubborn set right after the choice of the scapegoat. Indeed, the number of
low-level transitions covered by a class directly depends on the number of stars
which appear in the class.

After intensive experiments we observed that this strategy competes favorably
against a pseudo-random strategy.

.

On the Computation of Stubborn Sets of Colored Petri Nets 161

Mappings disablingClasses and enablingClasses. Concluding, we de-
fine the mappings disablingClasses and enablingClasses.

The definition of mapping disablingClasses is based on this simple observa-
tion: a binding (t, ct) remains firable as long as any binding which could with-
draw tokens needed by (t, ct) are not fired. It is thus sufficient to inspect the
tokens consumed by (t, ct) and to identify the bindings which consume these
tokens by an application of the reverse operation. Therefore we closely follow
the stubbornness definition for PT-nets (definition 5).

Definition 17. The mapping disablingClasses from T × C⋆ to P(T × C⋆) is
defined by: disablingClasses(t, ct) =

⋃

p∈•t,t′∈p•,cp∈W−(p,t)(ct)

reverseMapt′,p(cp, W
−(p, t′))

To identify the bindings which can enable the instances of a class ct of transition
t we enumerate the scapegoats of (t, ct) and, for each scapegoat (p, cp), we look
at each input transition t′ of p. An application of the reverse operation gives us
the bindings of t′ which put tokens of class cp in p. Once again this definition
respects the static stubbornness definition for PT-nets.

Definition 18. The mapping enablingClasses from T × C⋆ ×M to P(T × C⋆)
is defined by: enablingClasses(t, ct, m) =

⋃

(p,cp)∈scapegoat(t,ct,m),t′∈•p

reverseMapt′,p(cp, W
+(p, t′))

4 Experiments

The algorithm described in this work has been implemented in our model checker
Helena [7]. This section reports the results of two series of experiments that have
been carried out. In the first series considered we analyzed some models obtained
from concurrent programs by an automatic translation using the Quasar [9] tool.
In the second one we considered several academic models included in the Helena
distribution (available at http://helena.cnam.fr) of which some are recurrent
examples of the CPN literature.

All measures were obtained on a Pentium IV with a 2.4 Ghz processor.

Models extracted from programs (table 1). Four real concurrent programs
were first translated using the tool Quasar: an implementation of Chang and
Roberts election protocol, two different implementations of the dining philoso-
phers and a client-server protocol with dynamic creation of servers to handle
client requests. Helena could not unfold these CPNs due to the huge color do-
mains of the nodes. Indeed, some places of the net model variables having high-
level data types, e.g., records or arrays. Each program is scalable by a parameter
and we considered several values of this parameter (the value is given in the first
column) and ran two tests: one without the stubborn method enabled (column

.

162 S. Evangelista and J.-F. Pradat-Peyre

Table 1. Data collected for some models extracted from concurrent software

5

Complete Graph Reduced Graph

|N | |A| T |N | |A| T
The leader election protocol

7 198 039 1 041 750 61 45 780 93 361 30
8 1 037 209 6 175 069 644 201 943 430 120 184
9 5 961 241 40 179 197 10 035 824 362 2 061 193 1 038

The dining philosophers (first implementation)
7 1 398 615 5 050 508 138 29 412 44 166 4
8 5 416 243 21 585 453 1 038 83 670 127 191 14
9 24 842 432 112 433 417 13 581 221 865 319 833 40

The dining philosophers (second implementation)
4 26 539 55 245 1 6 322 7 667 1
5 219 304 505 765 11 37 139 46 911 7
6 1 789 459 4 582 322 145 214 853 359 901 43

The client / server program
2 4 141 14 461 1 108 131 0
3 130 221 593 583 14 1 131 1 434 0
4 5 445 681 30 593 745 2 508 13 921 19 232 1

Complete Graph), the second with it (column Reduced Graph). The columns |N |,
|A|, and T indicate for each run the number of nodes and arcs of the graph, and
the exploration time of the graph in seconds.

We observe that, despite the complexity of the CPNs obtained from an auto-
matic translation of programs, our algorithm gives a significant reduction for the
four programs considered. The reductions factor goes from 7 in the worst case
(the leader election program) to almost 400 in the best case (the client / server
program) and makes realistic the automatic verification of concurrent software.

To further enhance the reduction we plan to combine our method with [13].
Concurrent programs can indeed easily be mapped to process-partitioned CP
nets of [13] with a simple static analysis of the program. For instance, places
corresponding to variables local to a process can be typed as local and places
corresponding to variables accessed by several processes can be typed as shared.

Academic models (table 2). We then considered several academic models
which size allows (except for one) an unfolding. For each model we therefore ran
an additional test with Prod and its stubborn set algorithm activated. Let us
recall that Prod unfolds the net in order to apply the stubborn set method. We
used the deletion algorithm of Prod (option -d) which is, to our best knowledge,
the most advanced algorithm for PT-nets. The reduction observed with Prod
must be seen as a lower bound which is hard to reach without unfolding the net.
Comparing the size of the graph reduced by Helena to the size of the complete
graph tells us how good the reduction is while comparing it to the graph reduced
by Prod tells us how good the reduction could be.

The examples studied can be classified in four categories.

On the Computation of Stubborn Sets of Colored Petri Nets 163

Table 2. Data collected for some academic models

Helena Prod

Complete Graph Reduced Graph Reduced Graph

|N | |A| T |N | |A| T |N | |A| T
The resource allocation system

2 550 759 11 435 684 49 72 637 100 925 2 72 637 100 925 7

The distributed database system (from [11])
649 540 4 330 282 19 67 585 112 662 1 232 242 0

The dining philosophers
1 153 351 10 416 483 34 602 493 2 131 338 18 265 143 616 555 41

Eisenberg and McGuire’s mutual exclusion algorithm
624 790 2 490 418 9 414 555 1 345 417 129 223 482 428 297 491

The distributed Sieve of Eratosthenes
2 028 969 9 947 808 59 273 272 0 Net not unfoldable

Lamport’s fast mutual exclusion algorithm (from [12]
1 672 728 7 944 684 41 959 494 3 176 750 188 197 554 338 504 58

Chang and Roberts leader election protocol
218 931 1 836 299 7 156 254 799 871 26 123 979 212 531 51

The load balancing system
9 324 768 54 723 965 295 275 090 499 615 11 252 458 477 487 867

The multiprocessor system (from [4])
7 322 076 85 522 635 356 138 239 283 646 76 138 239 283 646 572

Peterson’s mutual exclusion algorithm
1 242 528 4 970 112 19 186 037 386 272 46 80 193 152 565 38

The slotted ring protocol (from [15])
439 296 2 897 664 11 287 508 97 8514 26 20 613 37 806 2

In a first category we can put the models for which the graph is weakly reduced
by Helena but efficiently reduced by Prod. The two models which belong to this
category are the slotted ring protocol and to a lesser extent Lamport’s algorithm.
We are currently not able to explain the bad results obtained for these two models
but plan to investigate this.

The dining philosophers, Eisenberg and McGuire’s algorithm, and the election
protocol constitute a second category. Their characteristic is that their graph is
weakly reduced both by Helena and Prod. A surface analysis may let us think
that our algorithm performs a bad reduction for these models. However the poor
results obtained with Prod show that we can not expect much better. Indeed,
there are some problems for which partial order methods are inefficient. Models
such as the dining philosophers or the Eisenberg and McGuire’s algorithm which
make heavy use of shared resources such as global variables usually fall into this
category. These shared resources are a major source of conflicts which lead to
compute large stubborn sets yielding a small reduction.

A third category is made up of the distributed database system and Peterson’s
algorithm. For these two models Helena builds a very reduced graph but Prod can
do evenbetter byunfolding thenet.This particularlyholds for thedatabase system.

164 S. Evangelista and J.-F. Pradat-Peyre

Its initial graph is inO
(

N · 3N
)

.Helenabuildsa reducedgraph inO
(

N2 · 2N
)

.Prod

produces a reduced graph inO
(

N2
)

. An analysis of these nets reveals a certain com-
plexity in arcmappingswhichmakes it hard to efficiently detect dependencieswith-
out unfolding the net. Let us note that our reduced graph has exactly the same size
as in [13] where they use a semi-automatic algorithm.

At last, for the four other models Helena performs a reduction close or equal to
the reduction performed by Prod but outperforms significantly Prod with respect
to time. The best results are observed for Eratosthene’s algorithm: Helena builds
a reduced reachability graph which size is linear with respect to the parameter
of the system despite the high complexity of the arc functions. In addition, we
notice that the net could not be unfolded because of the size of the color domains.
For the multiprocessor and the resource allocation systems we obtain a reduced
graph which is exactly the same as the one obtained by Prod. Lastly, for the load
balancing system, the gain obtained by unfolding the net is completely marginal
with respect to the brutal increase of the exploration time.

5 Conclusion

The contribution of this paper is a stubborn sets computation algorithm for col-
ored Petri nets which avoids the unfolding by mixing two approaches. First we
do not directly handle explicit bindings but rather bindings classes. We there-
fore stay at the high-level and never explicitly enumerate the transitions of the
unfolded net. Second we define a syntactically restricted class of colored Petri
nets for which it is possible to detect dependencies in a symbolic manner while
preserving high expressiveness. As a counterpart, the detection of the depen-
dencies between transitions can not be as fine as on the unfolded net and some
approximations are done which lead to larger stubborn sets.

A set of experimental results have shown the benefits of our approach. For
many academic models we achieved a reduction close or equal to the one obtained
after an unfolding of the net. We were also able to significantly reduce the state
spaces of several concurrent programs automatically translated to colored nets
by the Quasar tool. The unfolding approach fails for these colored nets having
huge unfolded nets.

In future works we will combine our algorithm with the method of [13]. Our
algorithm exploits the structuring of our CPN class whereas their method is
based on user supplied informations. Both should therefore be fully compatible
and lead to better reductions.

References

1. R. Brgan and D. Poitrenaud. An efficient algorithm for the computation of stub-
born sets of well formed petri nets. In Application and Theory of Petri Nets, volume
935 of LNCS, pages 121–140. Springer, 1995.

2. L. Capra, G. Franceschinis, and M. De Pierro. A high level language for structural
relations in well-formed nets. In Applications and Theory of Petri Nets, volume
3536 of LNCS, pages 168–187. Springer, 2005.

On the Computation of Stubborn Sets of Colored Petri Nets 165

3. G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. On well-formed coloured
nets and their symbolic reachability graph. In Application and Theory of Petri
Nets, pages 373–396. Springer, 1990.

4. G. Chiola, G. Franceschinis, and R. Gaeta. A symbolic simulation mechanism for
well-formed coloured petri nets. In Simulation Symposium, 1992.

5. E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. The MIT Press, 1999.
6. C. Dutheillet and S. Haddad. Structural analysis of coloured nets. application to

the detection of confusion. Technical Report 16, IBP/MASI, 1992.
7. S. Evangelista. High level petri nets analysis with Helena. In Applications and

Theory of Petri Nets, volume 3536 of LNCS. Springer, 2005.
8. S. Evangelista, S. Haddad, and J.-F. Pradat-Peyre. Syntactical colored petri nets

reductions. In Automated Technology for Verification and Analysis, volume 3707
of LNCS. Springer, 2005.

9. S. Evangelista, C. Kaiser, C. Pajault, J.-F. Pradat-Peyre, and P. Rousseau. Dy-
namic tasks verification with Quasar. In Reliable Software Technologies, volume
3555 of LNCS. Springer, 2005.

10. G.J. Holzmann and D. Peled. An improvement in formal verification. In Formal
Description Techniques, pages 197–211, 1994.

11. K. Jensen. Coloured petri nets: A high level language for system design and anal-
ysis. In Advances in Petri Nets, volume 483 of LNCS. Springer, 1991.

12. J.B. Jørgensen and L.M. Kristensen. Computer aided verification of lamport’s fast
mutual exclusion algorithm using colored petri nets and occurrence graphs with
symmetries. IEEE Transactions on Parallel and Distributed Systems, 10(7), 1999.

13. L.M. Kristensen and A. Valmari. Finding stubborn sets of coloured petri nets
without unfolding. In Application and Theory of Petri Nets, volume 1420 of LNCS,
pages 104–123. Springer, 1998.

14. D. Peled. All from one, one for all: on model checking using representatives. In
Computer Aided Verification, volume 697 of LNCS, pages 409–423. Springer, 1993.

15. D. Poitrenaud and J.-F. Pradat-Peyre. Pre- and post-agglomerations for LTL
model checking. In Application and Theory of Petri Nets, volume 1825 of LNCS,
pages 387–408. Springer, 2000.

16. A. Valmari. Error detection by reduced reachability graph generation. In Applica-
tion and Theory of Petri Nets, volume 424 of LNCS. Springer, 1988.

17. A. Valmari. State Space Generation : Efficiency and Practicality. PhD thesis,
Tampere University of Technology, 1988.

18. A. Valmari. Eliminating redundant interleavings during concurrent program ver-
ification. In Parallel Architectures and Languages, volume 366 of LNCS, pages
89–103. Springer, 1989.

19. A. Valmari. Stubborn sets for reduced state space generation. In Advances in Petri
Nets, volume 483 of LNCS, pages 491–515. Springer, 1991.

20. A. Valmari. Stubborn sets of coloured petri nets. In Application and Theory of
Petri Nets, pages 102–121, 1991.

21. K. Varpaaniemi. On choosing a scapegoat in the stubborn set method. In Workshop
on Concurrency, Specification & Programming, pages 163–171, 1993.

22. K. Varpaaniemi. On the Stubborn Set Method in Reduced State Space Generation.
PhD thesis, Helsinki University of Technology, 1998.

