
Hybrid On-the-Fly LTL Model Checking

with the Sweep-Line Method�

Sami Evangelista1 and Lars Michael Kristensen2

1 LIPN — Laboratoire d’Informatique de l’Université Paris Nord
99, av. J-B Clément, 93430 Villetaneuse, France

sami.evangelista@lipn.univ-paris13.fr
2 Department of Computer Engineering, Bergen University College, Norway

Lars.Michael.Kristensen@hib.no

Abstract. The sweep-line method allows explicit state model checkers
to delete states from memory on-the-fly during state space exploration
thereby lowering the memory demands of the verification procedure. The
sweep-line method is based on a least progress-first search order that
prohibits the immediate use of standard on-the-fly LTL model checking
algorithms that rely on a depth-first search order. This paper proposes
and experimentally evaluates an algorithm for LTL model checking com-
patible with the search order prescribed by the sweep-line method.

1 Introduction

A main paradigm in explicit state model checking is to limit memory require-
ments by storing only a subset of the visited states in memory at a time. This
means that the peak memory usage is reduced. The subsets of the state space
stored in memory during state space exploration are chosen in such a way that
termination of the exploration is still guaranteed. State caching [14,17] was one
of the first methods based on this paradigm and relies on storing only the states
on the depth-first search stack in memory. The sweep-line method [5,18] and the
to-store-or-not-to-store method [2] represent more recent methods based on the
paradigm of on-the-fly state deletion, and use other conditions for determining
the subsets of states that are to be stored in memory.

The basic idea of the sweep-line method is to exploit a notion of progress
exhibited by many systems. Exploiting progress makes it possible to explore all
reachable states while storing only small subsets of the state space in memory
at a time. The subsets of states stored are determined via a progress value
assigned to each state, and the method explores the states in a progress-first
order. The sweep-line method explore all states with a given progress value before
progressing to the states with a higher progress value. When the method proceeds
to the consider states with a higher progress value, it deletes the subset of states
with a lower progress value. The assumption is that the system does not make

� Supported by a Norwegian Research Council (NRC) Yggdrasil grant and NRC
project 194521 (FORMGRID).

S. Haddad and L. Pomello (Eds.): PETRI NETS 2012, LNCS 7347, pp. 248–267, 2012.
� Springer-Verlag Berlin Heidelberg 2012

Hybrid On-the-Fly LTL Model Checking with the Sweep-Line Method 249

regress, and hence states with a lower progress value will not be visited again
and do not need to be kept in memory. If the system does make regress, then the
method will mark states at the end of regress edges as persistent (i.e., make them
permanently stored in memory) in order to ensure termination. In presence of
regress, the sweep-line method may visit some states multiple times. The sweep-
line method is in its simplest form [5,18] aimed at on-the-fly verification of safety
properties , such as determining whether a reachable state exists that satisfies a
given state predicate. The theoretical foundation of the sweep-line method has
been further developed in several papers [3,11,18,20,19] and the method has
been implemented in the ASAP platform [25] and in the LoLA tool [22]. The
sweep-line method has been used [12,13,15,23] for the verification of several
industrial-sized protocols specified using the CPN modelling language.

An open research question that has not been addressed in the earlier papers
on the sweep-line method is how to combine the sweep-line method with on-
the-fly model checking of Linear Time Temporal Logic (LTL) properties. The
conventional approach to on-the-fly LTL model checking is based on the explo-
ration of a product Büchi automaton: the negation of the LTL formula to be
checked is represented as a Büchi automata [24] and the product of this property
automaton and the state space (viewed as a Büchi automata) is explored using
a nested depth-first traversal [7] in search for an acceptance cycle, i.e., a cycle
containing an acceptance state. The challenge in the context of the sweep-line
method is that the nested depth-first search of LTL model checking is incompat-
ible with the progress-based search order of the sweep-line method as the latter
cannot guarantee that states in an acceptance cycle will be present in memory
simultaneously. The basic idea of the hybrid approach developed in this paper
is to use nested depth-first search to detect acceptance cycles where the states
on the cycle all have the same progress value, and use a variation of the MAP
algorithm [1,4] to detect acceptance cycles that span multiple progress values.

The rest of this paper is organised as follows. Section 2 introduces the basic
concepts underlying LTL model checking and the sweep-line state space explo-
ration algorithm. Section 3 then presents our algorithm for conducting LTL
model checking with the sweep-line method. The correctness of this algorithm is
proved in Sect. 4 along with its complexity. In Sect. 5, we discuss some possible
extensions and variations of our algorithm. Section 6 presents the results from
the experimental evaluation that we have performed based on an implementa-
tion of the proposed algorithm. Finally, in Sect. 7 we sum up our conclusions
and discuss directions for future work. The reader is assumed to be familiar with
the basic idea of explicit state space exploration.

2 Background

2.1 LTL Model Checking

LTL model checking is usually performed following the automata-based approach
originating from [24] that proceeds in two steps, the first being the transla-
tion of the negation of the LTL formula to be checked into a Büchi automata.

250 S. Evangelista and L.M. Kristensen

In this paper we focus only on the second step of the process that can be reduced
to a graph problem [6]: given a graph representing the synchronised product of
the Büchi property automaton and the state space of the system, find a cycle
containing an accepting state. A state of the synchronised product is an ac-
ceptance state if the Büchi property automaton component of the state is an
acceptance state. Any such identified cycle determines an infinite execution of
the system violating the LTL formula. Acceptance cycles can be detected using
nested depth-first search [7] or a variation of Tarjan’s algorithm for strongly con-
nected component (SCC) detection [8]. Hence, we will only reason on automaton
graphs that result from the product of a Büchi property automaton and a state
space graph describing the behaviour of the modelled system.

Definition 1. An automaton graph G is a 4-tuple (S, E , s0,A) where S is a
finite and non-empty set of states; E ⊆ S × S is a finite set of edges; s0 ∈ S is
an initial state; and A ⊆ S is a set of accepting states.

Notation. For an automaton graph G = (S, E , s0,A) we write s → s′ if (s, s′) ∈
E ; and s →∗ s′ if there exists s1, . . . , sn with s1 = s, sn = s′ and si → si+1 for
1 ≤ i ≤ n−1. Acceptance states are graphically represented using double circles.

2.2 The Sweep-Line Method

The sweep-line method [5,18] deletes states on-the-fly by exploiting a particular
notion of progress in the system. Progress is formally captured by a progress
measure that quantifies the progression of a state:

Definition 2. Let G = (S, E , s0,A) be an automaton graph. A progress mea-
sure (or progress mapping) for G is a mapping from S to Φ, where Φ is a
non-empty set of progress values equipped with a total order �.

A progress mapping determines a partition of edges into progress edges cor-
responding to steps that increase the progress value (i.e., edges (s, s′) with
φ(s) � φ(s′)); stationary edges connecting two states with a same progress value;
and regress edges corresponding to steps that decreases the progress value (i.e.,
edges (s, s′) with φ(s′) � φ(s)). Algorithm 1 is the generalised sweep-line algo-
rithm [18] that maintains four data structures:

H is a hash table used to store states currently in memory;
G ⊆ H contains states that will be garbage collected (deleted) when possible;
R ⊆ H contains states that will serve as roots during the next sweep (i.e., an

iteration of the algorithm at ll. 4–10); and
Q ⊆ H contains states that have not yet been processed by the algorithm.

A sweep works basically as a standard state space exploration initiated from
a set of root states R initialised, for the first sweep, with the initial state s0.
States are expanded and their successors that have not been visited so far are
put in Q to be later expanded. This process ends when Q becomes empty.

Hybrid On-the-Fly LTL Model Checking with the Sweep-Line Method 251

Algorithm 1. Sweep, the generalised sweep-line algorithm of [18]

1 algorithm Sweep is
2 s0.pers := false ; R := {s0} ; H := {s0}
3 while R �= ∅ do
4 Q := R ; R := ∅
5 while Q �= ∅ do
6 G := ∅ ; φm := Q.minProgress ()
7 while Q.minProgress () = φm do
8 s := Q.dequeue ()
9 visit (s)

10 H := H \ G

11 procedure visit(s) is
12 for (s, s′) ∈ E do
13 if s′ /∈ H then
14 s′.pers := φ(s′) � φ(s)
15 H := H ∪ {s′}
16 if s′.pers then
17 R := R ∪ {s′}
18 else
19 G := G ∪ {s′}
20 Q := Q ∪ {s′}

The search progresses using a least progress-first policy determined by map-
ping φ: the algorithm proceeds layer by layer, a layer being defined as a set of
states sharing the same progress value, i.e., connected by stationary edges. Two
differences are introduced by the sweep-line method compared to standard state
space exploration. First, we perform garbage collection at l. 10 by removing a
whole layer of states sharing progress value φm (ll. 7–9), and before processing
states with a higher progress value. Any state can be deleted this way except
for persistent states for which the detection is described below. Conceptually,
there exists a sweep-line that separates already visited (and deleted) states from
states to be processed present in Q. This line advances to include new states
after a whole layer of states with the same progress value has been processed.
The only situation the sweep-line can move back is before the start of a new
sweep. A second difference is that to guarantee termination, the algorithm iden-
tifies regress edges (l. 14), and marks their destination as persistent, indicating
that these may not be deleted from memory. Indeed, for any cycle it holds that
either all its states have the same progress value or at least two of its states
are connected by a regress edge. In the first case, no state of the cycle will be
garbage collected as long as at least one of its states remains in H and in the
second case, the destination of the regress edge will always remain in H after
having been detected. Hence, it is guaranteed that the algorithm will not visit
the same states over and over since at least one state per cycle will be present
in H. Note that the destination of a regress edge is not put in Q but in R to
serve as a root for the next sweep (ll. 16–17).

The snapshot of the Sweep algorithm at three different stages is presented in
Fig. 1 for a simple example. Information on accepting states have not been drawn
on this figure as they are not relevant to illustrate the principle of the algorithm.
States are ordered left to right according to their progress value. The conceptual
sweep-line is represented as a vertical dotted line. After the visit of states 0 and
1 (Stage 1) their successor states 2, 3 and 4 are put the queue. State 0 and 1
can then be deleted since they have been processed and their progress value is
strictly smaller than the minimal value found in Q, i.e., φ(2). Hence, the sweep-
line method makes the assumption that they cannot be reached from the set of
unprocessed states. At Stage 2, states 7 and 8 have been processed. All states from

252 S. Evangelista and L.M. Kristensen

7

8

10

8

Stage 1 Stage 2 Stage 3

0

3

2

5

6

4

9

0

1

3

5

2

6

4

7

9

1

0

2

3

4

1

φ φφ

deleted state persistent state unprocessed state (∈ Q)

Fig. 1. Snapshot of algorithm Sweep at different stages

0 to 6 have been previously deleted from H. The visit of state 8 then generated
state 6, already explored but deleted from memory, and state 9, seen for the first
time. Since edges (8,6) and (8,9) are both regress edges, states 6 and 9 are marked
as persistent and put in set R to serve as roots for the next sweep. Once the ex-
pansion of states 7 and 8 is finished they are deleted and this sweep terminates. A
new sweep starts with states 6 and 9 as roots. The algorithm then visits states in
the following order given by φ: 9, 6, 4, 10, 7, 8. After the visit of states 9, 6 and 4
(Stage 3), 9 and 6 will not be deleted since they were marked as persistent during
the previous sweep. Hence, the cycle 8→6→4→7→8 is detected during the visit
of state 8 that generates 6 already in H.

3 A Sweep-Line Algorithm for LTL Model Checking

In this section we introduce our new LTL model checking algorithm. This al-
gorithm consists of two distinct components each dedicated to the detection of
specific kinds of accepting cycles. Before introducing these two components, we
describe a property of accepting cycles.

Let us suppose that state 1 in Fig 1 is an accepting state. The accepting cycle
1→0→1 could be easily discovered by algorithm Sweep previously introduced
since all its states share the same progress value and will therefore be simultane-
ously present in memory at some stage. If state 6 is an accepting state, then the
accepting cycle 6→4→7→8→6 will not be discovered by the sweep-line method
since its states are distributed upon several layers. This property of cycles is
formalised through the following definition.

Definition 3. Let G = (S, E , s0,A) be an automaton graph, and φ be a progress
mapping for G. An accepting cycle c = s1 → s2 → . . . → sn → s1 is a single
layer accepting cycle (SLAC) if and only if φ(si) = φ(sj), ∀i, j ∈ {1, . . . , n}.
Otherwise c is a multiple layers accepting cycle (MLAC).

Hybrid On-the-Fly LTL Model Checking with the Sweep-Line Method 253

Our algorithm separates the detection of SLACs from the detection of MLACs. In
order to discover SLACs, the algorithm builds upon the classical NDFS algorithm
while MLACs are taken care of by a combination of the sweep-line algorithm and
the MAP algorithm [1,4]. Before introducing the LTL model checking algorithm,
we specify the property it should have in terms of being compatible with the
search order of the sweep-line method. The definition below specify that a sweep-
line compliant algorithm may not keep in memory a state behind the sweep-line
that would be deleted by algorithm Sweep.

Definition 4. Let G = (S, E , s0,A) be an automaton graph and φ be a progress
mapping for G. An LTL model checking algorithm storing states to process in a
queue Q is sweep-line compliant if and only if, at any step t of the algorithm:

∀s ∈ St : (∃s′ ∈ S with (s′, s) ∈ Et ∧ φ(s) � φ(s′)) ∨ (mins′∈Q(φ(s′)) � φ(s))

where St ⊆ S denotes all states kept in memory by the algorithm at step t, and
Et ⊆ E denotes all edges connecting states in St.

3.1 Combining NDFS and Sweep to Discover SLACs

Algorithm 2 contains the pseudo-code of procedure LTL-Sweep that is a variation
of the sweep-line algorithm equipped with a mechanism that allows the detection
of SLACs by performing local nested depth-first searches on layers of states
sharing the same progress value. A state has three associated boolean flags, all
initialised to false (ll. 12–14): pers indicating if the state is persistent and must
not be garbage collected; blue and red that indicate if the state has been visited
by the first level DFS (the blue DFS) or the second level DFS (the red DFS).

The principle of NDFS is to interleave a blue DFS looking for accepting states,
and red DFSs looking for cycles containing accepting states reached by the blue
DFS. When the blue DFS backtracks from an accepting state s, it initialises a
red DFS rooted in s (called seed in the first presentation of the algorithm [7]) to
find whether s is reachable from itself. The algorithm works in linear time since
the result of a red DFS (i.e., marking visited states as red) can be reused in
subsequent red DFSs. In addition to this linear complexity, NDFS also has other
appreciable characteristics, among which: its low memory requirements (only 2
bits required per state, the blue and red bits), its ability to report accepting
cycles on-the-fly, and its easy combination with partial-order reduction [16].

Starting from the initial state, algorithm LTL-Sweep repeatedly perform sweeps
using procedure findSLAC, until no new persistent state is found. An iteration of
procedure findSLAC (ll. 17–22) consists of removing from the priority queue Q
all states with the lowest progress value and performing local NDFSs on theses
states. All non-persistent states visited by these NDFSs are then present in G
and can be removed from H (l. 22). If the main loop fails to find an SLAC,
the findMLAC is invoked to look for an MLAC. Procedures dfsBlue and dfsRed
follow the same principle as algorithm NDFS with the following modifications to
the DFSs:

254 S. Evangelista and L.M. Kristensen

Algorithm 2. LTL-Sweep, a sweep-line algorithm for LTL model checking

1 algorithm LTL-Sweep is
2 insert (s0)
3 R := {s0}
4 while R �= ∅ do
5 Q := R
6 R := ∅
7 findSLAC ()
8 findMLAC (H)
9 report “no cycle found”

10 procedure insert(s) is
11 H := H ∪ {s}
12 s.pers := false
13 s.blue := false
14 s.red := false
15 procedure findSLAC () is
16 while Q �= ∅ do
17 G := ∅
18 φm := Q.minProgress ()
19 while Q.minProgress ()=φm do
20 s := Q.dequeue ()
21 dfsBlue (s)
22 H := H \ G

23 procedure dfsBlue(s) is
24 if ¬s.blue then
25 s.blue := true
26 if ¬s.pers then G := G ∪ {s}
27 for (s, s′) ∈ E do
28 if s′ /∈ H then
29 insert (s′)
30 if φ(s) = φ(s′) then
31 dfsBlue (s′)
32 else if φ(s′) � φ(s) then
33 s′.pers := true
34 R := R ∪ {s}
35 else
36 Q := Q∪ {s}
37 if s ∈ A then dfsRed (s, s)
38 procedure dfsRed(s, seed) is
39 s.red := true
40 for (s, s′) ∈ E withφ(s) = φ(s′) do
41 if s′ = seed then
42 report “SLAC found”
43 else if ¬s′.red then
44 dfsRed (s′, seed)

– Any visited state is put in the garbage set G if not persistent (l. 26).
– DFSs are limited to states sharing the same progress value (ll. 30–31, l. 40).
– Finally, two alternatives arise for any new state s′ reached by the first level

DFS (dfsBlue) from a state s belonging to a different layer: it is put in the
root set R and marked as persistent if it is behind the sweep-line (ll. 32–
34); or, if it is in front of the sweep-line (ll. 35–36), it is put in the priority
queue Q to be later visited by a next NDFS during a subsequent iteration
of procedure findSLAC.

3.2 Combining MAP and Sweep to Discover MLACs

Local nested DFSs are guaranteed to find any SLAC, but the algorithm relies
on another procedure to find accepting cycles split upon several layers. This one
is based on the principle that any MLAC always contains at least one regress
edge and, hence, one persistent state. Thus, if the algorithm has failed to find
an SLAC it will launch procedure findMLAC to possibly discover an MLAC
containing a persistent state (l. 8 of Alg. 2). This procedure is invoked with the
hash tableH that contains, at l. 8 of Algorithm 2, all persistent states discovered.

The algorithm we propose to find MLACs is an adaptation of the MAP al-
gorithm initially designed in the context of distributed memory model checking
[4], and later adapted for external memory storage [1].

Hybrid On-the-Fly LTL Model Checking with the Sweep-Line Method 255

0

1

2

3

4

5

6

7

(a) Input graph

0

1

2

3

4

5

6

7

⊥

⊥

⊥

1

6

1

6

6

(b) MAP with 6>S2>S1

0

1

2

3

4

5

6

7

⊥

⊥

⊥

1

2

1

2

2

0

1

2

3

4

5

6

7

⊥

⊥

⊥

⊥

6

⊥

6

6

deletion of 1 and 2 from A

(c) MAP with 2>S1>S6 (top) and af-
ter deletion (bottom)

Fig. 2. Illustration of the MAP algorithm

Principle of the MAP Algorithm. For an automaton graphG = (S, E , s0,A),
MAP assumes a total order relation >S⊆ S×S that is used to determine a max-
imal accepting predecessor function mapG : S → A ∪ {⊥}. Intuitively mapG(s)
is the largest accepting state that is backward reachable from s (or ⊥ if there
is no such state). The mapping mapG can be computed using a breadth-first
search (MBFS) that propagates forward information on the maximal accepting
predecessor in O(|S| · |A|). Trivially, mapG(s) = s implies the existence of an
accepting cycle looping on s. Unfortunately the converse does not necessarily
hold (see Figure 2(c) for an example) as an accepting state a that is outside a
cycle containing an accepting state b will prevent from discovering this cycle if
a →∗ b ∧ a >S b (which implies that ⇒ mapG(b) = a). We will then say that b
(or the cycle) is hidden by a. Hence, MAP alternates between MBFSs used to
compute mapG and delete transformations used to remove states from A that
may hide accepting cycles. Deleted states are those that have been propagated
along the graph, i.e., the set {s ∈ A | ∃s′ ∈ S,mapG(s

′) = s}. If there is no such
state to delete, then there is no accepting cycle. Otherwise, it is guaranteed that
any accepting cycle will be discovered within a finite number of iterations.

The behaviour of MAP is illustrated on the graph of Fig. 2(a) with two dif-
ferent orders. With the first order (see Fig. 2(b)), MAP finds the accepting cycle
around 6 during the first iteration (since mapG(6) = max{1,2,6} = 6). With the
second order (see Fig. 2(c)), the accepting cycle around 6 is not discovered after
the first computation of mapG (since mapG(6) = max{1,2,6} = 2). States 1 and
2 that have been propagated during this first MBFS are both deleted from A
before a second MBFS is initiated. Since 6 is now the only accepting state, the
cycle is discovered. In the absence of edge (6, 7), MAP would have stopped after
this second iteration and reported the absence of accepting cycle.

256 S. Evangelista and L.M. Kristensen

Adaptation of the MAP Algorithm for MLAC Detection. Unlike state-
of-the-art algorithms for LTL model checking, MAP is not based on a depth-first
search and is as such a good candidate for a combination with the sweep-line
method. However, we would like to have an algorithm that is sweep-line compli-
ant (Def. 4) and a straightforward adaptation of the MAP algorithm would not
have this property as it has to remember somehow accepting states removed from
A by the delete transformation. We instead exploit the fact that any MLAC we
are looking for contains at least one persistent state. This is a direct consequence
of the fact that the cycle is distributed upon several layers and, hence, contains
at least one regress edge. We therefore switch from the idea of maximal accept-
ing predecessor to the one of maximal persistent predecessor formalised below.
Note that the mppPG function defined below associates a pair to each state, the
second boolean component giving information on the backwards reachability of
an accepting state as explained below.

Definition 5. Let G = (S, E , s0,A) be a automaton graph, P ⊆ S be a set of
persistent states, and >S be a total order relation on S. For a state s ∈ S,
R(s) = {p ∈ P | p →∗ s} denotes the set of persistent states backwards reachable
from s. The maximal persistent predecessor function mppPG : S → {⊥} ∪
(P × {false, true}) is defined by:

mppPG(s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(p, true) if R(s) �= ∅, ∀p′ ∈ R(s) \ {p} : p >S p′

and ∃a ∈ A such that p →∗ a →∗ s
(p, false) if R(s) �= ∅, ∀p′ ∈ R(s) \ {p} : p >S p′

and �a ∈ A such that p →∗ a →∗ s
⊥ otherwise

Intuitively, if mppPG(s) = (p, b), then p is the largest persistent state that is
backward reachable from s and b = true if and only if there is a path from p
to s containing an accepting state. Hence, the following proposition is a direct
consequence of Def. 5.

Proposition 1. Let G = (S, E , s0,A) be an automaton graph and P ⊆ S. If
mppPG(s) = (s, true) then G has an accepting cycle containing state s.

Procedure findMLAC (see Algorithm 3) is an adaptation of the MAP algorithm
for MLACs detection. Each iteration of the algorithm (ll. 4–7) consists of com-
puting the mppPG function; and then removing set D from P . This set D contains
states that have been propagated during the computation of mppPG and that
may hide some accepting cycle(s). It is initialised to P before each computa-
tion even though procedure mpp will discard from it hidden persistent states.
In order to optimise the search, we also remove from P the states s such that
mppPG(s) = (, false) (l. 7). It follows from Def. 5 that these cannot be part
of an accepting cycle. The procedure terminates when set P has been emptied
meaning that all persistent states have been propagated.

Procedure mpp is a sweep-line compliant algorithm computing the maximal
persistent predecessor function with states behind the sweep-line being deleted

Hybrid On-the-Fly LTL Model Checking with the Sweep-Line Method 257

Algorithm 3. Procedure findMLAC to discover multiple layers accepting cycles

1 procedure findMLAC (H) is
2 P := H
3 while P �= ∅ do
4 D := P
5 mpp ()
6 P := P \ D
7 P := P \ {s | s.mpp = (,false)}
8 procedure visit(s, prop) is
9 for (s, s′) ∈ E do

10 if prop = (s′, true) then
11 report “MLAC found”
12 if s′ /∈ H then
13 insert (s′) /* see Alg. 2 */
14 s′.mpp := ⊥
15 if prop >mpp s′.mpp then
16 Q := Q ∪ {s′}
17 s′.mpp := prop

18 procedure mpp() is
19 for s ∈ P do
20 s.mpp := (s, s ∈ A)
21 Q := P
22 while Q �= ∅ do
23 G := ∅
24 φm := Q.minProgress ()
25 while Q.minProgress () = φm

do
26 s := Q.dequeue ()
27 (p, acc) := s.mpp
28 prop := (p, acc ∨ s ∈ A)
29 if s ∈ P and p >S s then
30 D := D \ {s}
31 visit (s, prop)
32 if ¬s.pers then
33 G := G ∪ {s′}
34 H := H \ G

at l. 34. Before visiting a state s, we first determine the maximal persistent
predecessor prop it will propagate to its successors (ll. 27–28). It is s.mpp with
the second component set to true if s is accepting. Moreover, if s is persistent
and hidden by s.mpp (ll. 29–30) it must be removed from set D as it must not
be touched by the deletion transformation operated at l. 6.

The visit procedure evaluates whether a maximal predecessor value prop com-
puted as explained above should be propagated to the successors s′ of a state
s. This decision is made according to the result of the comparison of prop and
s′.mpp using the order relation defined below.

Definition 6. Let G = (S, E , s0,A) be an automaton graph and >S be a total
order relation on S. We define the total order relation >mpp on {⊥} ∪ (S ×
{false, true}) as follows:

m >mpp m′ ⇔
{

m = (s, b) ∧m′ = (s′, b′) ∧ (s >S s′ ∨ s = s′ ∧ b ∧ ¬b′)
∨ m = (s, b) ∧m′ =⊥

The definition states that propagation takes place if we have found for s′ a
larger persistent predecessor than the previous one, or, starting from the same
persistent predecessor, an alternative path containing an accepting state has
now been found. State s′ then has to be put in the priority queue Q to be later
visited according to the same process. Note that from Def. 6 and ll. 12–14, prop
is always propagated if s′ is a new state. Finally, as stated by Prop. 1 an MLAC
is found at ll. 10–11 if one reaches s′ with s′.mpp = (s′, true).

An example is illustrated by Fig. 3. At the first iteration, we have P =
{1, 2, 3} (states in dark gray on the figure). We assume that the order rela-
tion on S is such that 3 >S 2 >S 1. The computation of the maximal persistent

258 S. Evangelista and L.M. Kristensen

0

1

3

2

4 5

6

7

φ

(3,T)

(3,F)

(3,F)
deletion of 2

and 3 from P

0

1

3

2

4 5

6

7

φ

(1,T)

Fig. 3. Detection of an MLAC

predecessor function gives the following results: mppPφ (2) = mppPφ (3) = (3, false)

and mppPφ (1) = (3, true). The set D of states to remove from P is the single-
ton {3} because 1 and 2 have been hidden by 3 and, hence, discarded from D.
However, we can also delete 2 from P since, as mppPφ (2) = (3, false), no path
starting from 1, 2, or 3 and leading to 3 can contain an accepting state. Hence,
P = {1} after the removal, and after the second iteration, mppPφ (1) = (1, true)
and the MLAC 1→4→5→1 is discovered.

4 Correctness Proof and Complexity of LTL-Sweep

We first prove the correctness of our algorithm. The proof of Theorem 1 is
inspired by the proof of the MAP algorithm [4].

Theorem 1. Algorithm LTL-Sweep reports an accepting cycle if and only if the
automaton graph has an accepting cycle.

Proof. We prove that if the graph has an accepting cycle then a cycle is neces-
sarily reported by the algorithm. The other direction follows immediately from
the computation of s.mpp and Prop. 1. Let C = {s1, . . . , sn} be an accepting
cycle with s1 → . . . → sn → s1. We consider two cases.

1. C is an SLAC. Since algorithm Sweep visits all states, and ∀si, sj ∈ C, φ(si) =
φ(sj), the first NDFS initiated on one of the states si ∈ C will obviously
report the cycle.

2. C is an MLAC. We denote by Pi the content of set P of states used as roots
during the ith call to procedure mpp. Let smax be the largest persistent state
of the cycle (i.e. smax ∈ C∩P0) such that ∀si ∈ (C∩P0)\{smax}, smax >S si.
This state exists since otherwise, we would have P0 = ∅ which would in turn
mean that ∀si, sj ∈ C, φ(si) = φ(sj) and, hence, that C is an SLAC. If the
cycle C is not reported by the ith call to procedure mpp then it necessarily
holds that once the procedure has terminated, smax.mpp = (m, true) with
m >S smax which implies that smax /∈ D and m ∈ D. Now, once mpp has

Hybrid On-the-Fly LTL Model Checking with the Sweep-Line Method 259

terminated, if ∃s ∈ S | s.mpp = (s′, b) with s′ �= s then s′ ∈ D and s /∈ D.
This, combined with the fact that smax.mpp = (m, true), implies that smax

is not touched by the deletion transformation (ll. 6–7 of Alg. 3) and therefore
belongs to Pi+1 while m does not. Since P is finite, C (or another MLAC)
is necessarily reported by a jth (with j > i) call to mpp. ��

Theorem 2. Algorithm LTL-Sweep terminates after having explored at most 2 ·
|P| · |S|+2 · |P|3 · |S| states where P denotes the set of persistent states computed
by Algorithm Sweep.

Proof. Algorithm Sweep explores at most |P| · |S| states [18]. Therefore the same
algorithm combined with NDFS to detect SLACs explores at most 2 · |P| · |S|
states. Procedure mpp of Alg. 3 visits each state s ∈ P at most 2 · |P| times: for
any s′ ∈ P with s′ >S s, it can be visited a first time with s.mpp = (s′, false)
and a second time with s.mpp = (s′, true). Each visit by procedure mpp of s ∈ P
generates at most |S| visits. Hence, procedure mpp terminates after visiting at
most 2 · |P|2 · |S|. Therefore, since procedure findMLAC performs at most |P|
iterations and calls to mpp, it explores at most 2 · |P|3 · |S| states. ��

5 Extensions

We propose in this section extensions to the algorithm we introduced in the
previous section. The first extension has been implemented in our tool and the
experimental section discusses its benefits. The second and third extensions are
opportunities for future research directions and have not been implemented yet.

5.1 On-the-Fly MLAC Detection

The algorithm we introduced can detect SLACs on-the-fly, i.e., without the need
of exploring the entire graph. Indeed, each time a sweep will encounter a layer
containing an SLAC, the use of NDFS guarantees an early termination of the
algorithm. However, an MLAC will be discovered only when no SLAC has been
discovered and, hence, after a complete visit of the automaton graph. One could
however prioritise the discovery of MLACs by interleaving both searches. The
modification we propose is to launch procedure findMLAC each time a sweep
of the first level algorithm (i.e., procedure findSLAC of Algorithm 2) looking
for SLACs has finished. The search of findMLAC is then initiated from states
that were used as roots by the first level sweep and is bound to persistent states
that have already been visited (i.e., not discovered by the last sweep performed).
Let us denote by Ri the set of root states during the ith sweep of the first level
algorithm. After sweep i has terminated, procedure findMLAC will be launched
to look for an MLAC including at least one persistent state of Ri and possibly
some states of ∪j∈{0..i−1}Rj . Procedure findMLAC of Alg. 3 has to be modified
in such a way that, after sweep i has terminated, P is initialised at l. 2 with
Ri. With this modification, it is guaranteed that an MLAC containing some
persistent states p1 ∈ Rp̂1 , . . . , pn ∈ Rp̂n will be reported once the mth sweep

260 S. Evangelista and L.M. Kristensen

has finished where m = max{p̂1,...,p̂n}. In the following, we refer to LTL-Sweepoff

as the algorithm where findMLAC is followed by findMLAC and LTL-Sweepon

as the version that interleaves the discovery of the two types of cycles.

5.2 Informed Search for MLACs

For now, there is no interaction between the two search procedures whereas
procedure findMLAC could benefit from the experience of the previous search for
SLACs. For example, in case the automaton graph does not have any accepting
state, the search for MLACs could be avoided by just noticing this information
during the previous step. More generally, we propose to build, as the search
progresses, the progress graph as defined below.

Definition 7. Let G = (S, E , s0,A) be an automaton graph with a progress
mapping φ : S → Φ. The progress graph of G with φ is an automaton graph
Gφ = (Sφ, Eφ, sφ0 ,Aφ) defined by:

– Sφ = {sα | ∃s ∈ S with φ(s) = α} ;
– (sα, sβ) ∈ Eφ ⇔ ∃(a, b) ∈ E with φ(a) = α and φ(b) = β ;

– sφ0 = sφ(s0) ; and
– sα ∈ A ⇔ ∃s ∈ A with φ(s) = α.

This graph provides information on the connectivity between progression layers
of the state space graph and can be used to prune the search for MLACs. We
can for instance avoid the visit of any state s such that, in the progress graph,
sφ(s) is not in a strongly connected component with an accepting state. It is a
direct consequence of Def. 7 that this state can not be part of an accepting cycle.

5.3 Using the Progress Measure to Order States

Another direction we would like to pursue is to study whether the progress
mapping could be useful in the definition of the order relation used to calculate
the maximal persistent predecessor function. We arbitrarily chose in the current
implementation to order states according to the bit vectors they are encoded in
before insertion in the hash table. The sweep-line method works well for systems
for which it is possible to derive a progress measure clustering the state space
into multiple layers with few regress edges. On the basis of this assumption, we
would like to experiment with an order relation that considers the progress value
of states. Let s1 and s2 be two states such that φ(s1) � φ(s2) with s2 being part
of an accepting cycle. If the progress measure has the desired properties, then
it is more likely that s1 →∗ s2 than s2 →∗ s1. In this situation it would then
make sense that s2 >S s1 so that if it is indeed the case that s1 →∗ s2 and if
both states are used as roots during the computation of the maximal persistent
predecessor function, then state s1 would not hide s2 and the accepting cycle
containing that state. It would then not be necessary to perform an iteration of
the algorithm in order to delete s1 to be able at the next iteration to detect the

Hybrid On-the-Fly LTL Model Checking with the Sweep-Line Method 261

accepting cycle. For instance, with the graph of Fig. 3, this heuristic would imply
to order states in such a way that 1 >S 2 and 1 >S 3 (since φ(2) � φ(1) and
φ(3) � φ(1)). We would then have mpp(1) = (1, true) after the first iteration
and the accepting cycle 1 → 4 → 5 → 1 would be detected without the need of
deleting 2 and 3 from P and reiterating the search.

6 Experiments

We have implemented our algorithm in its two variants LTL-Sweepoff and LTL-
Sweepon on the ASAP verification platform [25], and experimented with it using
DVE models from the BEEM database [21]. The 85 instances we selected have
a number of states ranging from 100,000 to 10,000,000 states. Out of these 85
instances, 49 had an accepting cycles and the 36 remaining ones did not. We
compared our algorithm to two LTL model checking algorithms: the classical
NDFS algorithm [7] and the MAP algorithm [4]. We also compared it to the
sweep-line algorithm Sweep from [18] designed for checking safety properties. As
the full graph must be explored in the absence of an accepting cycle, the perfor-
mance of Sweep served, in that context, as a baseline to assess the performance
of LTL-Sweep: the latter cannot visit (or store) fewer states than Sweep. We used
automatically generated progress measures for each model according to the gen-
eration process described in [9]. Each measure projects a state vector to some of
its components (e.g., local variables, program counters) chosen after a prelimi-
nary exploration of the system. For the sake of clarity, we have selected a set of
representative instances from our experiments with respect to several parame-
ters (complexity of the model, size of the graph, and performance). However, for
completeness, the reader may find all our experimental data in [10].

Our experimental data are reported in Table 1. We have separated instances
for which the property analysed holds (top part of the table) from those contain-
ing an accepting cycle (bottom part). The first column provides information on
each graph we analysed: the instance name, the number (in the BEEM database)
of the analysed property and the number of states (st.) and edges (ed.) in the
automaton graph1. Each entry in the table provides data for a single run, i.e.,
a triple (instance, property, algorithm): the peak number of states stored (first
row) and the number of states visited (second row). For sweep-line based al-
gorithms an entry also reports the number of persistent states once the search
has terminated (third row). All these numbers are expressed as fractions of the
number of states of the automaton graph. Finally, for instances exhibiting an
accepting cycle, a small letter to the left of stored states indicates, for our algo-
rithm, the type of cycle detected (S for an SLAC and M for an MLAC).

Our interpretation of the data first deals with graphs without an accepting
cycle. We then discuss the models with falsified properties. Throughout this
section all our comments dealing with LTL-Sweep apply to both versions of the
algorithm: LTL-Sweepoff and LTL-Sweepon.

1 We will not detail the models and their properties in this article but we invite the
reader to consult this database online at http://anna.fi.muni.cz/models/.

http://anna.fi.muni.cz/models/

262 S. Evangelista and L.M. Kristensen

Table 1. Experimental data

ND
FS

MAP Sw
eep LT

L-

Sw
eep

on LT
L-

Sw
eep

off

Verified properties

bopdp.3, prop. 4 1.000 1.000 0.074 0.074 0.106
1,703,192 st. 1.000 1.000 2.021 15.739 8.349
4,619,673 ed. – – 0.009 0.009 0.009

leader filters.5, prop. 2 1.000 1.000 0.086 0.086 0.086
1,572,886 st. 2.000 14.462 1.000 2.000 2.000
4,319,565 ed. – – 0.000 0.000 0.000

lifts.6, prop. 2 1.000 1.000 0.012 0.012 0.012
998,570 st. 1.332 16.564 1.552 4.076 3.387

2,864,768 ed. – – 0.006 0.006 0.006

lup.3, prop. 2 1.000 1.000 0.330 0.336 0.336
2,346,373 st. 1.170 10.954 3.909 50.486 8.511
4,965,501 ed. – – 0.111 0.111 0.111

peterson.4, prop. 4 1.000 1.000 0.184 0.205 0.224
2,239,039 st. 1.500 11.546 5.322 103.883 25.443
11,449,204 ed. – – 0.046 0.046 0.046

pgm protocol.8, prop. 4 1.000 1.000 0.043 0.045 0.143
3,069,399 st. 1.000 5.000 1.127 2.995 5.029
7,125,130 ed. – – 0.025 0.025 0.025

rether.6, prop. 2 1.000 1.000 0.069 0.121 0.175
6,046,531 st. 1.001 2.000 1.463 45.663 9.681
7,980,886 ed. – – 0.045 0.045 0.045

Falsified properties

extinction.4, prop. 2 0.408 1.000 0.068 S 0.022 S 0.022
2,001,372 st. 0.817 2.585 1.000 0.115 0.115
6,856,693 ed. – – 0.000 0.000 0.000

iprotocol.4, prop. 4 0.006 0.614 0.109 M 0.032 M 0.123
8,214,324 st. 0.006 1.077 1.803 0.938 7.565
30,357,177 ed. – – 0.108 0.029 0.108

mcs.6, prop. 4 0.140 1.000 0.339 S 0.045 S 0.045
665,007 st. 0.279 8.289 3.414 0.183 0.183

3,283,155 ed. – – 0.003 0.000 0.000

plc.2, prop. 3 0.004 0.005 0.013 M 0.000 S 0.001
130,220 st. 0.004 0.006 1.051 0.009 0.053
210,710 ed. – – 0.013 0.000 0.000

rether.3, prop. 6 0.001 0.129 0.255 M 0.056 M 0.476
607,382 st. 0.001 0.193 1.612 0.413 15.660
991,098 ed. – – 0.040 0.007 0.040

synapse.1, prop. 3 0.059 0.103 0.393 S 0.219 S 0.219
159,888 st. 0.059 0.081 2.099 1.050 0.270
721,531 ed. – – 0.183 0.033 0.033

Hybrid On-the-Fly LTL Model Checking with the Sweep-Line Method 263

Instances without Accepting Cycle. On the criterion of explored states,
MAP and LTL-Sweep, are in general incomparable although we found that, on
the average,MAP have more stable performance. However, this observation is not
surprising if we recall that the time complexity of MAP is O(|A|2 · |S|) while our
algorithm works in O(|P|3 · |S|). The relative performance of both algorithms
then depends on the number of accepting states and the quality of the progress
measure that has an impact on the number of persistent states. Still, even in
the presence of very few persistent states (e.g., instances bopdp.3, rether.6) our
algorithm can explore a large number of states: it also depends on how the
deletion transformation (ll. 6–7 of Alg. 3) succeeds in removing states from the
set of persistent states P that procedure findMLAC will search for cycles on.

If we compare the two variants of our algorithm on the same criterion (ex-
plored states) we observe that LTL-Sweepoff is generally faster than LTL-Sweepon.
With algorithm LTL-Sweepoff, procedure findMLAC is invoked only once with
all persistent states discovered by the algorithm whereas with algorithm LTL-
Sweepon, the procedure is invoked withR0,R1, . . . (Ri being the set of root states
during the ith sweep of the top level algorithm looking for SLACs). Hence, the
delete transformation is usually more successful in the off-line variant as it can
potentially remove more states from P and perform fewer computations of the
maximal persistent predecessor function. Stated in a different manner, it is better
to perform a single invocation of findMLAC on a set S rather than partitioning
S and then performing several invocations on each class of this partition. Av-
eraged over all instances with no accepting cycle, LTL-Sweepon was 12.6 slower
than NDFS while this number goes down to 5.3 with algorithm LTL-Sweepoff. If
we now compare both algorithms to Sweep these ratios become 7.6 and 3.9.

From a different perspective, calling procedure findMLAC once with a large
set naturally causes the algorithm to consume more memory (with respect to
several calls with smaller sets). This is why the peak number of states stored
observed with LTL-Sweepoff is generally larger than with LTL-Sweepon (e.g., in-
stances bopdp.3, pgm protocol.8 or rether.6). For the on-line variant, the differ-
ence observed in stored states between Sweep and LTL-Sweepon is due to the way
the mpp procedure processes: it does not really perform sweeps as algorithm
Sweep does (i.e., visiting states layer-by-layer by increasing the progress value
and then starting again a sweep from some persistent states) but each time it
meets a persistent state s after executing a regress edge, it puts s in the priority
queue, and then continues the search normally. Hence, the sweep-line moves back
each time a persistent state is met. We plan to implement and experiment with
both versions in a future version of our prototype. The negative observations
we made on our algorithm regarding visited states must, however, be related
to its lower memory usage. In most cases, Table 1 shows that the number of
states stored of LTL-Sweepon and LTL-Sweepoff equalled or at least approached
the consumption of Sweep.

In order to compare algorithms on both visited and stored states we mea-
sured for each algorithm on a specific instance a score defined as the product
of stored and visited states. This score indicates to which extent state revisits

264 S. Evangelista and L.M. Kristensen

Table 2. Instances for which an algorithm got the best score (i.e., minimised |Visited| ·
|Stored|)

MAP NDFS LTL-Sweepon LTL-Sweepoff

36 instances
without an 11.1% 44.4% 61.1% 36.1%

accepting cycle

49 instances
with an 34.6% 85.7% 53.06% 53.06%

accepting cycle

are compensated by memory reduction, the lower score the better. We com-
puted for each algorithm A the percentage of instances for which algorithm A
got the smallest score. This data can be found in Table 2. Note that the sum
of these percentages exceeds 100% since several algorithms can obtain the same
best score. This for example occurs if the graph does not have any accepting
state. The results indicate that the run time increase of LTL-Sweep is usually
acceptable in that it is counterbalanced by an effective memory usage. More-
over, it appears that our algorithm obtained bad scores mainly on instances for
which the sweep-line method is anyway not adapted. These include models such
as peterson.4 or lup.3. Their graphs are composed of a single connected compo-
nent and do not really exhibit progress. The only exception is model rether.6.
As Table 1 shows, algorithm Sweep performs quite well on that model but the
performance of LTL-Sweepon and LTL-Sweepoff is poor.

Instances with Accepting Cycle(s). On most instances, NDFS is the algo-
rithm performing the best, reporting an accepting cycle faster than its competi-
tors. Even if we consider the number of states stored NDFS, Table 2 shows that
NDFS is the clear winner. However, we found out some instances, for which LTL-
Sweep outperformed both NDFS and MAP. Two such examples are extinction.4
and mcs.6. In both cases it happened that the SLAC reported by LTL-Sweep
contained states close to the initial state (from the progress measure perspec-
tive) which possibly explains why the algorithm could terminate relatively early.
In contrast, using NDFS, it is likely that this cycle would be discovered later
since, by proceeding depth-first, the first states the algorithm backtracks from
(launching the search for accepting cycles) are deeper in the graph and usually
with a higher progress value. If we compare MAP and LTL-Sweep we again ob-
serve very different performances and there is no clear winner between the two.
Relying in these two algorithms on an arbitrary order relation (comparison of
bit state vectors) can also explain their unpredictable performances.

A comparison of the two variants of our algorithm reveals the impact of the
type of accepting cycles found in the graph. If the graph only contains SLACs (or
if contains MLACs including persistent states met after an SLAC is reported),
then the number of states visited by LTL-Sweepoff is guaranteed to be fewer or
equal than the one with LTL-Sweepon. Indeed, in that case, LTL-Sweepon will in-
terleave between searches for SLACs and (useless) searches for MLACs whereas

Hybrid On-the-Fly LTL Model Checking with the Sweep-Line Method 265

LTL-Sweepoff will postpone the latter and discover SLACs sooner. This, for ex-
ample, explains the difference observed in visited states for instance synapse.1.
If the graph has both types of cycles, looking for MLACs as soon as possible
can be fruitful. This explains why LTL-Sweepon terminated faster on instance
plc.2. Algorithm LTL-Sweepoff could report an SLAC only during the last itera-
tions. Finally, if the graph only has MLACs (e.g., for instances iprotocol.4 and
rether.3), then we observe that LTL-Sweepon is usually much faster showing again
the benefit of searching for MLACs as soon as possible.

7 Conclusion and Perspectives

We have introduced in this article an LTL model checking algorithm that can be
used with the on-the-fly deletion of states performed by the sweep-line method.
The major difficulty of designing such a combination stems from the algorithm
the sweep-line method relies on. For reachability properties, the search uses a
progress-based policy whereas state-of-the-art algorithms for LTL model check-
ing rely on a depth-first search that is best suited for cycle detection.

Our algorithm LTL-Sweep is made of two distinct building blocks each one
being dedicated to a specific kind of accepting cycle. For accepting cycles con-
taining states with the same progress value (i.e., SLACs), we simply adapt the
basic Sweep algorithm to perform nested depth-first searches on layers of states.
If the accepting cycle spans several layers (i.e., MLACs) we use a variation of
the MAP algorithm in order to look for accepting cycles containing persistent
states. The choice of MAP originates from its independence from any search or-
der policy which makes it more easily compatible with the sweep-line method.
Since the two searches are independent, we propose two versions of our algo-
rithm. The off-line version first tries to look for SLACs and then for MLACs if
the first search did not detect an acceptable cycle. The on-line variation, inter-
leaves both searches and is thus able to report existing MLACs faster. We have
implemented th algorithms in the ASAP verification platform and compared it
with other LTL model checking algorithms. The conclusions we drew from these
experiments are:

– LTL-Sweep uses roughly the same amount of memory as Sweep while being
4 times slower than Sweep in its off-line version and 8 times slower in its
on-line version;

– When the run time increases it is usually compensated by a low memory
consumption that keeps LTL-Sweep competitive with other algorithms ;

– MAP and LTL-Sweep are in general incomparable: their performance can
considerably vary according to the model analysed ;

– LTL-Sweep could in general not compete with NDFS for fast accepting cycles
discovery but could terminate earlier for some specific models ;

– Both the on-line and off-line versions have their pros and cons: the former
can usually report accepting cycles earlier while the latter usually visits fewer
states in the absence of accepting cycle. This suggests that each could be
useful at different stages of the verification process.

266 S. Evangelista and L.M. Kristensen

We identified some possible rooms for improvement. First, data could be ex-
changed between the two procedures to optimise the search for MLACs. We
propose to maintain as the search progresses, a progression graph that sum-
marises the connections between the layers and that could be useful to prune the
search for MLACs. Second, we plan to investigate to which extent the progress
measure could be used to order states efficiently when looking for MLACs.

Our experiments showed that our algorithm achieves a good memory reduc-
tion if we take algorithm Sweep as a reference. This can, however, be penalised
by an increase of the execution time. One direction for future research would
be to design a parallel version of LTL-Sweep to address this issue. As algorithm
MAP, and unlike NDFS, LTL-Sweep does not use an inherently sequential nested
depth-first search this motivates this research direction. Moreover, the two com-
ponents LTL-Sweep is made of are relatively independent: the search for SLACs
and the search for MLACs can be performed in parallel. Several issues still have
to be tackled. For instance, we have to take care that such a combination does
not cancel the sweep-line reduction by letting processes explore different layers
of states (while the sequential algorithm always keep a single layer in memory at
a time). On the other hand, using a global “clock” to determine how processes
explore the system would not necessarily yield a good time reduction.

References

1. Barnat, J., Brim, L., Šimeček, P., Weber, M.: Revisiting Resistance Speeds Up I/O-
Efficient LTL Model Checking. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 48–62. Springer, Heidelberg (2008)

2. Behrmann, G., Larsen, K.G., Pelánek, R.: To Store or Not to Store. In: Hunt
Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 433–445. Springer,
Heidelberg (2003)

3. Billington, J., Gallasch, G., Kristensen, L.M., Mailund, T.: Exploiting Equiva-
lence Reduction and the Sweep-Line Method for Detecting Terminal States. IEEE
Transactions on SMC - Part A 34(1), 23–38 (2004)

4. Brim, L., Černá, I., Moravec, P., Šimša, J.: Accepting Predecessors Are Better than
Back Edges in Distributed LTL Model-Checking. In: Hu, A.J., Martin, A.K. (eds.)
FMCAD 2004. LNCS, vol. 3312, pp. 352–366. Springer, Heidelberg (2004)

5. Christensen, S., Kristensen, L.M., Mailund, T.: A Sweep-Line Method for State
Space Exploration. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031,
pp. 450–464. Springer, Heidelberg (2001)

6. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. The MIT Press (1999)
7. Courcoubetis, C., Vardi, M.Y., Wolper, P., Yannakakis, M.: Memory Efficient Al-

gorithms for the Verification of Temporal Properties. In: Clarke, E., Kurshan, R.P.
(eds.) CAV 1990. LNCS, vol. 531, pp. 233–242. Springer, Heidelberg (1991)

8. Couvreur, J.-M.: On-the-Fly Verification of Linear Temporal Logic. In: Wing, J.M.,
Woodcock, J. (eds.) FM 1999. LNCS, vol. 1708, pp. 253–271. Springer, Heidelberg
(1999)

9. Evangelista, S., Kristensen, L.M.: Search-Order Independent State Caching. In:
Jensen, K., Donatelli, S., Koutny, M. (eds.) Transactions on Petri Nets and Other
Models of Concurrency IV. LNCS, vol. 6550, pp. 21–41. Springer, Heidelberg (2010)

Hybrid On-the-Fly LTL Model Checking with the Sweep-Line Method 267

10. Evangelista, S., Kristensen, L.M.: Hybrid On-the-fly LTL Model Checking with the
Sweep-Line Method. Technical report, Université Paris 13 (2012),
http://www-lipn.univ-paris13.fr/ evangelista/biblio-sami/doc/

sweep-ltl.pdf

11. Gallasch, G.E., Billington, J., Vanit-Anunchai, S., Kristensen, L.M.: Checking
Safety Properties On-the-fly with the Sweep-Line Method. STTT 9(3-4), 371–392
(2007)

12. Gallasch, G.E., Han, B., Billington, J.: Sweep-Line Analysis of TCP Connection
Management. In: Lau, K.-K., Banach, R. (eds.) ICFEM 2005. LNCS, vol. 3785,
pp. 156–172. Springer, Heidelberg (2005)

13. Gallasch, G.E., Ouyang, C., Billington, J., Kristensen, L.M.: Experimenting with
Progress Mappings for the Sweep-Line Analysis of the Internet Open Trading Pro-
tocol. In: CPN, pp. 19–38 (2004)

14. Godefroid, P., Holzmann, G.J., Pirottin, D.: State-Space Caching Revisited. In:
Probst, D.K., von Bochmann, G. (eds.) CAV 1992. LNCS, vol. 663, pp. 178–191.
Springer, Heidelberg (1993)

15. Gordon, S., Kristensen, L.M., Billington, J.: Verification of a Revised WAP Wire-
less Transaction Protocol. In: Esparza, J., Lakos, C.A. (eds.) ICATPN 2002. LNCS,
vol. 2360, pp. 182–202. Springer, Heidelberg (2002)

16. Holzmann, G., Peled, D., Yannakakis, M.: On Nested Depth First Search. In: SPIN
1996 (1996)

17. Holzmann, G.J.: Tracing Protocols. AT&T Technical J. 64(10), 2413–2434 (1985)
18. Kristensen, L.M., Mailund, T.: A Generalised Sweep-Line Method for Safety Prop-

erties. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS, vol. 2391, pp.
549–567. Springer, Heidelberg (2002)

19. Kristensen, L.M., Mailund, T.: Efficient Path Finding with the Sweep-Line Method
using External Storage. In: Dong, J.S., Woodcock, J. (eds.) ICFEM 2003. LNCS,
vol. 2885, pp. 319–337. Springer, Heidelberg (2003)

20. Mailund, T., Westergaard, M.: Obtaining Memory-Efficient Reachability Graph
Representations Using the Sweep-Line Method. In: Jensen, K., Podelski, A. (eds.)
TACAS 2004. LNCS, vol. 2988, pp. 177–191. Springer, Heidelberg (2004)

21. Pelánek, R.: BEEM: Benchmarks for Explicit Model Checkers. In: Bošnački, D.,
Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg
(2007)

22. Schmidt, K.: LoLA A Low Level Analyser. In: Nielsen, M., Simpson, D. (eds.)
ICATPN 2000. LNCS, vol. 1825, pp. 465–474. Springer, Heidelberg (2000)

23. Vanit-Anunchai, S., Billington, J., Gallasch, G.E.: Analysis of the Datagram Con-
gestion Control Protocols Connection Management Procedures using the Sweep-
line Method. STTT 10(1), 29–56 (2008)

24. Vardi, M.Y., Wolper, P.: An Automata-Theoretic Approach to Automatic Program
Verification. In: LICS 1986, pp. 332–344 (1986)

25. Westergaard, M., Evangelista, S., Kristensen, L.M.: ASAP: An Extensible Platform
for State Space Analysis. In: Franceschinis, G., Wolf, K. (eds.) PETRI NETS 2009.
LNCS, vol. 5606, pp. 303–312. Springer, Heidelberg (2009)

http://www-lipn.univ-paris13.fr/~evangelista/biblio-sami/doc/sweep-ltl.pdf
http://www-lipn.univ-paris13.fr/~evangelista/biblio-sami/doc/sweep-ltl.pdf

	Hybrid On-the-Fly LTL Model Checkingwith the Sweep-Line Method
	Introduction
	Background
	LTL Model Checking
	The Sweep-Line Method

	A Sweep-Line Algorithm for LTL Model Checking
	Combining NDFS and Sweep to Discover SLACs
	Combining MAP and Sweep to Discover MLACs

	Correctness Proof and Complexity of LTL-Sweep
	Extensions
	On-the-Fly MLAC Detection
	Informed Search for MLACs
	Using the Progress Measure to Order States

	Experiments
	Conclusion and Perspectives
	References

