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Abstract. The implementation of model checking algorithms on real life sys-
tems usually suffers from the well known state explosion problem. Partial order
reduction addresses this issue in the context of asynchronous systems. We review
in this article algorithms developped by the Petri nets community and contribute
with simple heuristics and variations of these. We also report on a large set of ex-
periments performed on the models of a Model Checking Contest hosted by the
Petri Nets conference since 2011. Our study targets the verification of deadlock
freeness and liveness properties.

1 Introduction

System verification based on an exhaustive simulation suffers from the well known state
explosion problem: the system state space often grows exponentially with respect to the
system structure, making it hard if not impossible to apply it to real life systems. One
major source of this problem lies in the concurrent execution of system components
that often leads to a blowup of possible interleavings.

When dealing with asynchronous systems, it is often the case that the execution or-
der of system transitions is irrelevant because their occurences can be swapped without
consequences on the observed system. This observation has led to the development of
some partial order reduction algorithms [18,15,10] that exploit this independence rela-
tion between transitions. Although they differ in their implementation of this general
principle, they rely on a selective search within the state space: when considering a sys-
tem state only a subset of allowed transitions are considered to pursue the exploration
while the execution of other allowed transitions is postponed to a future state. Such a
subset is called stubborn [18], persistent [10] or ample [15] in the literature.

Ignoring some transitions has the consequence of ruling out some system states
and building a reduced state space that is more suitable for verification purposes. The
filtering mechanism must however fulfill some conditions for the reduced state space to
be of any use. Hence, several variations of the method have been designed depending
on the property being investigated.

We focus in this article on deadlock freeness and liveness properties for which we
review several algorithms. For deadlock freeness we consider Petri nets tailored algo-
rithms while for liveness properties the algorithms usually operate on the underlying
reduced state space and are thus language independent.

The contribution of this article is twofold. First, we introduce several simple heuris-
tics and optimisations for existing algorithms. Second, in order to evaluate some of



these algorithms, in particular the benefits of our contributions, we report on a large se-
ries of experiments performed on the Petri net models of the Model Checking Contest
[] which resulted in approximately 150,000 runs.

The rest of this paper is organised as follows. Background on Petri nets and partial
order reduction is given in Section 2. Section 3 recalls the elements of the stubborn set
theory for deadlock detection, reviews some algorithms developped for that purpose,
and presents our experimental evaluation of these. Likewise, in Section 4 we review
partial order reduction algorithms for liveness verification and present experimental
observations on these. Section 5 concludes our work and introduces some perspectives.
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2 Background

This section introduces notations and definitions used in the remainder of the paper.

Definition 1. A Petri net is a tuple (P,T,W ), where P is a set of places ; T is a set of
transitions such that T ∩P = /0 ; and W : (P×T )∪(T×P)→N is a weighting function.

From now on, we assume a Petri net N = (P,T,W ). For any n ∈ P∪T , •n and n•

respectively denote the sets {o ∈ P∪T |W (o,n)> 0} and {o ∈ P∪T |W (n,o)> 0}.

Definition 2. The set M = {m ∈ P→ N} is the set of markings of N. Let m ∈M and
t ∈ T . If W (p, t)≥m(p),∀p∈ P then t is firable at m (m[t〉 for short). The firing of t at m
leads to m′ ∈M (m[t〉m′ for short) defined by m′(p)=m(p)−W (p, t)+W (t, p),∀p∈P.
The set en(m) = {t ∈ T | m[t〉} is the set of firable (or enabled) transitions at m. A
deadlock is a marking m such that en(m) = /0.

The firing rule is extended to sequences of transitions (i.e., elements of T ∗). Let
m ∈M and σ ∈ T ∗. σ is firable at m, (m[σ〉 for short) if σ = ε or if σ = t.σ′, m[t〉m′ and
m′[σ′〉 where t.σ′ is the concatenation of t ∈ T and σ′ ∈ S∗ ; and ε the empty sequence.

Definition 3. The state space of (N,m0) (with m0 ∈M an initial marking) is a couple
(R,A) such that R and A are the smallest sets respecting: m0 ∈ R and if m ∈ R and
m[t〉m′ for some t ∈ T then m′ ∈ R and (m, t,m′) ∈ A.

Stubborn, ample, or persistent sets reductions rely on the use of a reduction function
that filters transitions to be used to generate the successors of a marking, leading to the
construction of a reduced state space.

Definition 4. A reduction function is a mapping f from M to 2T . The reduced state
space of (N,m0) with respect to f is a couple (R f ,A f ) such that R f and A f are the
smallest sets respecting: m0 ∈ R f and if m ∈ R f and m[t〉m′ for some t ∈ f (m) then
m′ ∈ R f and (m, t,m′) ∈ A f . If m[t〉 and t ∈ f (m) then we note m[t〉 f . Likewise, m[t〉 f m′

denotes that m[t〉 f and m[t〉m′.

https://www.grid5000.fr


If a marking m is such that en(m)∩ f (m)⊂ en(m), then it is said to be reduced. Oth-
erwise, it is said to be fully expanded. An exhaustive state space construction algorithm
can be modified to build a reduced state space, simply by considering en(m)∩ f (m)
instead of en(m) when processing a marking m.

Obviously, a reduction function must respect some conditions for the reduced state
space to be of any use. We review in subsequent sections sufficient conditions to pre-
serve deadlocks and liveness properties.

3 Stubborn sets for deadlock state detection

We recall in this section the theoretical background of the stubborn set theory for dead-
lock detection. We then review different algorithms that can be used in that context
before presenting our experimental results.

3.1 Stubborn set theory for deadlock detection

Dynamic stubborness is a key concept in the stubborn sets theory. Whatever the property
being investigated, it is used as the starting point to define reduction functions.

Definition 5. Let m ∈M . S ⊆ T is dynamically stubborn at m [20] if conditions D1
and D2 hold, where:

D1 ∀σ ∈ (T \S)∗, t ∈ S: m[σ.t〉 ⇒ m[t.σ〉
D2 if en(m) 6= /0 then ∃k ∈ S | ∀σ ∈ (T \S)∗: m[σ〉 ⇒ m[σ.k〉

A transition k in condition D2 is called a key transition. If all transitions of S are
key transitions, then S is strongly dynamically stubborn at m. A reduction function
producing dynamically stubborn sets preserves all deadlocks [19] in the reduced state
space. Such a reduction function is also characterised as dynamically stubborn.

The two conditions of Def. 5 rely on a notion of dependency as defined below.

Definition 6. A dependency relation D is a symmetric and reflexive relation over T×T
such that (t,u) /∈D implies that for all m ∈ R: m[t〉m′∧m[u〉 ⇒ m′[u〉.

Given a dependency relation D , we will note D(t) the set {t ′ ∈ T | (t, t ′) ∈D}.
Generally speaking, it is also required for D that t and u commute (that their execu-

tion order is irrelevant) but we have left out this condition, as it is obviously superfluous
in the case of Petri nets.

We will use the following proposition to serve as a basis for the implementation of
the stubborn set computation algorithms that we will experiment with.

Proposition 1. Let D be a dependency relation, m ∈M and S⊆ T be such that:

1. if en(m) 6= /0 then S∩ en(m) 6= /0 ;
2. if t ∈ S∩ en(m) then D(t)⊆ S ;
3. if t ∈ S\ en(m) then ∃p ∈ P | m(p)<W (p, t) and {t ∈ T |W (t, p)>W (p, t)} ⊆ S.

Then S is strongly dynamically stubborn at m.



According to Item 1 a non deadlock marking may not have an empty stubborn set. If
an enabled transition is stubborn then so are all its dependent transitons (Item 2). Last,
Item 3 states that if a disabled transition is stubborn then there is a place that disables
its firing and such that all transitions that could increase its marking are also stubborn.
It is easy to prove that the firing of any transition outside S cannot alter the firability of
transitions of S and conversely. Hence, stubborn sets respecting conditions of Prop. 1
are indeed strongly dynamically stubborn sets. Note however, that conditions could be
relaxed to ensure dynamic stubborness, see [20].

Prop. 1 is parametrized by D . We define below two such dependency relations.

Definition 7. The exact dependency relation De is such that (t,u) ∈ De if and only if
∃m∈ R such that m[t〉m′∧m[u〉∧¬m′[u〉. The static dependency relation Ds is such that
(t,u)∈Ds if and only if ∃p∈P such that min(W (t, p),W (u, p))<min(W (p, t),W (p,u)).

t1

t2

u1

u2

ct

cu

Fig. 1. De ⊂Ds for this net

It is straightforward to show that De and Ds
are dependency relations (as defined by Def. 6)
and that De ⊆Ds. Relation De is the smallest de-
pendency relation as its definition is based on the
state space. It is however useless in practice since
our goal is precisely to avoid the construction of
this state space. Nevertheless, we will use it in
our experiments (as first done in [9]) for compar-
ison purposes in situations where the full state
space can be computed with available resources.
Relation Ds (from [19,20]) might be larger and
may thus have a smaller reduction power but it
has the advantage to only rely on the structure of
the net and can therefore be the basis of a practi-
cal implementation of the stubborn set reduction.

It is noted in [9] that Def. 5 actually considers
for a marking m only its possible futures rather than the full state space. It is thus
possible to refine De and define a context-dependent relation (see [9], Sec. 3.1, page
44). We have not considered such a possibility and leave it for future experiments.

The net depicted on Fig. 1 shows a simple example net for which De and Ds differ.
Places ct and cu force an alternation between transitions t1.t2 and transitions u1.u2. So
there actually is no conflict between t1 and u1 whereas the structure of the net tells us a
different story. Therefore, we have De = /0 and Ds = {(t1,u1),(u1, t1)}.

3.2 Stubborn set algorithms for deadlock detection

We chose to introduce and experiment with three algorithms: the closure algorithm, the
deletion algorithm and a combination of these two. The first one has been chosen for its
simplicity and because one of our contributions is to introduce a simple optimisation to
this one that occurs to be quite helpful for some models. The second algorithm has been
chosen for its ability to produce minimal sets (with respect to inclusion and according
to the conditions of Prop. 1) despite its quadratic complexity.



Algorithm 1 clo, the closure algorithm
1: S := { pick from en(m) } ; Q := S
2: while Q 6= /0 do
3: t := pick from Q ; Q := Q\{t}
4: if t ∈ en(m) then
5: U := D(t)
6: else
7: C := {p ∈ P | m(p)<W (p, t)}
8: s := pick from C
9: U := {t ∈ T |W (t,s)>W (s, t)}

10: Q := Q∪ (U \S) ; S := S∪U
11: return S

The closure algorithm This first algorithm
(see Alg. 1) is a straightforward implemen-
tation of Prop. 1. It initiates the stubborn set
(S) construction by picking an enabled tran-
sition (condition 1). Based on conditions 2
and 3, it then inserts new transitions in S un-
til all transitions of S have been treated.

When examining a disabled transition
t, Alg. 1 chooses a place that disables its
firing. Such a place is called a scapegoat
place in the literature because it is consid-
ered as responsible of t being disabled. The
choice of this scapegoat largely impacts the
construction of the stubborn set. To limit as
much as possible the choices of undesirable
scapegoats (in the sense that it may produce
unnecessary large sets), we introduce a modification of this algorithm that exploits the
past of the construction (see Alg. 2). A counter I is associated with each place. For
any p ∈ P, I[p] is initialised with the number of transitions that increase the marking
of p (lines 1–2). During the construction, each time a transition t is put in the stubborn
set, we decrement the counter of any place p of which the marking is increased by t
(lines 25–26). When the counter reaches 0 for some p ∈ P, then we know that p cannot
gain any token without a transition of S occurring first. Consequently, all output tran-
sitions of p that are disabled by p can be put in S (lines 27–30). However, a transition
u put in S by this way does not need to be further considered by the algorithm (this is
the purpose of the enqueue parameter of procedure new stub) since we know that p is
already a valid scapegoat place for t: all transitions that may increase its marking are
already stubborn.

Algorithm 2 clo?, an optimised closure algorithm
1: for p in P do
2: I[p] := |{t ∈ T |W (t, p)>W (p, t)}|
3: init stub()
4: while Q 6= /0 do
5: t := pick from Q
6: Q := Q\{t}
7: if t ∈ en(m) then
8: U := D(t)
9: else

10: C := {p ∈ P | m(p)<W (p, t)}
11: s := pick from C
12: U := {t ∈ T |W (t,s)>W (s, t)}
13: for u in U \S do
14: new stub(u, true)
15: return S

16: procedure init stub() is
17: t0 := pick from en(m)
18: S := /0

19: Q := /0

20: new stub(t0, true)
21: procedure new stub(t,enqueue) is
22: S := S∪{t}
23: if enqueue then
24: Q := Q∪{t}
25: for p in {p ∈ P |W (t, p)>W (p, t)} do
26: I[p] := I[p]−1
27: if I[p] = 0 then
28: for u in p• \S do
29: if W (p,u)> m(p) then
30: new stub(u, false)
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Fig. 2. An example net
illustrating Alg. 2

We illustrate the principle of our modification with the help
of Fig. 2. Let us first see how the basic algorithm proceeds. Sup-
pose that the algorithm is instantiated with Ds = {(t,u),(u, t)}
and that the stubborn set construction is initiated with t. Since
u∈Ds(t), u must also be put in the stubborn set. When process-
ing u, the algorithm has to choose among two scapegoats: r and
s. Choosing r causes the insertion of v while choosing s does
not cause any new transition to be put in the stubborn set and
halts the construction. Hence, the algorithm may produce either
{t,u,v} or either {t,u} depending on the scapegoat choice.

With our modification, if the construction is initiated with
t, the insertion of t in the stubborn sets causes I[s] to reach 0.
This causes the insertion of u to S without u being put in Q,
and immediately stops the construction. Hence, with the same starting transition, our
modified algorithm can only produce {t,u} as a resulting set.

Note that, as illustrated by our example, our modification does not improve on the
basic closure algorithm as any set produced by the former can also be produced by the
latter. Our modification must therefore be thought as a way to equip the basic algorithm
with a mechanism that can avoid the choice of inappropriate scapegoat places.

The nondeterminism of the closure algorithm stems from the two choices done for
the transition picked to initiate the construction of the set at l. 1 of Alg. 1 ; and for the
scapegoat place picked at l. 8 of Alg. 1.

We considered 4 strategies to choose the starting transition t to compute a stubborn
set S. They rely on a bijective mapping ord : P∪T →{1, . . . , |P∪T |} and two heuristics
he

t and h f
t where he

t (t) and h f
t (t) are respectively the number of enabled transitions and

the number of forward transitions (i.e., enabled transitions for which the firing leads to
an undiscovered marking) in S if t is chosen to initiate S. These 4 strategies are:

– rndt — Pick t randomly.
– fstt — Pick t st. ord(t) is minimal.
– mine

t — Pick t st. (he
t (t),ord(t)) is minimal.

– min f
t — Pick t st. (h f

t (t),he
t (t),ord(t)) is minimal.

Note that, using strategies mine
t , min f

t we trade the linear complexity of the algorithm
for a quadratic complexity since the closure algorithm is now invoked on every possible
starting transition.

For the choice of a scapegoat place s we considered 8 strategies. They rely on 3
heuristics ht

s, he
s and h f

s where ht
s(s), he

s(s) and h f
s (s) are respectively the number of

transitions, the number of enabled transitions and the number of forward transitions
inserted in S if s is chosen as a scapegoat. These 8 strategies are:

– rnds — Pick s randomly.
– fsts — Pick s st. ord(s) is minimal.
– mint

s and maxt
s — Pick s st. (ht

s(s),ord(s)) is minimal (maximal).
– mine

s and maxe
s — Pick s st. (he

s(s),h
t
s(s),ord(s)) is minimal (maximal).

– min f
s and max f

s — Pick s st. (h f
s (s),he

s(s),h
t
s(s),ord(s)) is minimal (maximal).



In the following, clo(t,s) and clo?(t,s) denote algorithms Alg. 1 and Alg. 2 re-
spectively, instanciated with strategies t and s for choosing the starting transition and
scapegoat places respectively.

The deletion algorithm This second algorithm avoids the necessity of choosing scape-
goats. It relies on the construction of a graph capturing transition dependencies.

Definition 8. Let D be a dependency relation, and m ∈M . A dependency graph for m
is a directed graph (V,E) with V = P∪T and E = E1∪E2∪E3 where:

E1 = (en(m)×T )∩D
E2 = {(t, p) ∈ (T \ en(m))×P | m(p)<W (p, t)}
E3 = {(p, t) ∈ P×T |W (t, p)>W (p, t)}

A dependency graph is nothing more than a reformulation of Prop. 1 as a graph
structure. The deletion algorithm iteratively tries to delete enabled transitions from this
graph. When a node is deleted then so are its immediate predecessors that are places
or enabled transitions. Disabled transitions are deleted when they do not have any suc-
cessor remaining in V . If, after a deletion step, the graph does not contain an enabled
transition anymore, then the deletion is undone and the algorithm tries to delete another
transition. Termination occurs when no transition can be further deleted. Set V ∩T is
then a valid stubborn set. Indeed, after a successful deletion, edges of E1 ensure that,
for any t ∈ en(m)∩V , all its dependent transitions are still in V ; and edges of E2 ensure
that, for any t ∈ (T \en(m))∩V , there is at least one p∈P∩V such that m(p)<W (p, t),
and, due to to E3, all transitions that increase the marking of p are also in V .

The only source of nondeterminism of the deletion algorithm is in the choice of the
transition t to delete at each step. We considered 6 strategies to make that choice. They
rely on two heuristics he

d and h f
d where he

d(t) and h f
d(t) are respectively the number of

enabled transitions and the number of forward transitons deleted by the algorithm if t is
picked as the transition to be deleted from the graph. These 6 strategies are:

– rndt — Pick t randomly.
– fstt — Pick t st. ord(t) is minimal.
– mine

t and maxe
t — Pick t st. (he

d(t),ord(t)) is minimal (maximal).
– min f

t and max f
t — Pick t st. (h f

d(t),h
e
d(t),ord(t)) is minimal (maximal).

For the four last strategies, the algorithm has to simulate the deletion of all enabled
transitions remaining in the graph before picking one. This however does not impact the
algorithm complexity since in the worst case every transition has to be checked anyway.

In the following, del(t) denotes the deletion algorithm instanciated with strategy t
for choosing the transition to be deleted at each iteration.

The clodel algorithm It is also possible to chain both algorithms: a stubborn set is
first computed using the closure algorithm ; then the deletion algorithm is used on the
resulting set to try to further eliminate transitions. We call this combination the clodel
algorithm. Its principle has been given by Valmari and Hansen [21] (section 7, page 58).



The clodel algorithm can be instanciated as the closure algorithm is. We could also
consider in the instanciation the strategy followed by the deletion algorithm to pick
transitions to delete but, to avoid a blowup of experimented configurations, we only
considered the fstt strategy.

In the following, clodel(t,s) denotes the stubborn set construction algorithm that
first invokes clo?(t,s) and then tries to reduce it with del(fstt).

3.3 Experimentation context

We have implemented the algorithms introduced in the previous section in the He-
lena [6] tool and we have performed experiments on models of the MCC model database.
We also experimented with the Prod [23] tool that implements the deletion algorithm
and the incremental algorithm based on strongly connected components and that is
parametrised as is the closure algorithm. In the following, inc(t,s) denotes the incre-
mental algorithm instanciated with strategies t and s for choosing starting transitions
and scapegoat places respectively.

All our experimental data are available on the following web page:
https://www.lipn.univ-paris13.fr/˜evangelista/recherche/por-xp

Input models The MCC model database 1 comprises 128 Petri net models ranging from
simple ones used for educational purposes to complex models corresponding to real life
systems. Most of these are obtained from parametrised higher level descriptions (e.g.,
colored Petri nets) and can be instanciated. Although we have experimented with in-
stances of 130 models (all models of the MCC database as well as two models of our
own) we have voluntarily left out some of these. Several reasons can explain this: in-
ability of partial order reduction to reduce the state space, timeout in the state space
exploration, timeout in the model compilation, . . . . The reader may find on the afore-
mentioned web page the details on our selection process. As a result, our report deals
with 0 models. For each of these we considered two of its instances, or a single one for
non parametrized models. This resulted in 0 instances.

Algorithmic configurations With Helena, we have experimented with all algorithm in-
stances considered in Section 3.2: 32 instances for algorithms clo, clodel and clo? and
6 instances for algorithm del. Moreover, we have experimented with the Ds and, when
available, the De dependency relations. Since the computation of De required to first
perform a full state space exploration to store the state space on disk (as done in [9]) we
could not experiment with De on instances for which this operation was not feasible.

With Prod, we experimented with the 8 algorithmic configurations it provides: del(d),
∀d ∈ {fstt ,rndt}, and inc(t,s), ∀(t,s) ∈ {fstt ,rndt ,mine

t }×{fsts,rnds}.

Randomness and static node ordering All algorithm instances rely either on a random
selection of nodes, or either on a static ordering of nodes computed prior to the explo-
ration (even strategies based on, e.g., a minimisation process, rely on a static ordering

1 See https://mcc.lip6.fr/models.php for the list of models. All models from 2011 to
2022 (included) have been considered.

https://www.lipn.univ-paris13.fr/~evangelista/recherche/por-xp
https://mcc.lip6.fr/models.php


when several sets of minimal size are available). It is therefore relevant to explore to
which extent these mechanisms alter the reduced state space size. Thus, for each model
instance, we randomly shuffled the net description 5 times to generate as many differ-
ent static orderings of nodes and launched each algorithm instance with these 5 settings.

Considering all parameters, our experiments resulted in 0 runs. We checked that all
runs on the same model instance produced the same number of deadlock states.

3.4 Experimental observations
We start by general observations before presenting a sample of our results. We only
consider for now, the static dependency relation Ds. The comparison with the exact
relation De will be addressed later in this section.

First, strategies based on a random selection process perform generally worse. For
the deletion algorithm, the rndt strategy outperformed others for three instances only
(airplane(20), airplane(50) and erk(100)). Likewise, for the three variants of the closure
algorithm, selecting the starting transition randomly was the best strategy for only one
instance (erk(100)). On all other instances it performed (sometimes significantly) worse.
The same remark applies to the choice of the scapegoat place. It is somehow surprising
that, all things being equal, choosing the first node according to some static ordering is
generally preferable to choosing the node randomly. We conjecture that, unlike random
strategies, choosing the first node leads to compute similar stubborn sets when process-
ing similar markings (i.e., whose marking differs on a small number of places) which
is probably preferable.

Algorithm clo? outperforms clo on several non trivial instances while we did not
find out any instance for which the converse holds. Moreover, the scapegoat choice
strategy has a lesser impact with algorithm clo?, which is not surprising considering that
the goal of clo? is precisely to restrict the number of scapegoat candidates. Nevertheless,
when both perform comparably, clo can be significantly faster than clo?.

For the clo and clo? algorithms strategy fstt (and rndt as said above) for choos-
ing the starting transition is largely outperformed by strategies based on a minimi-
sation process. We only found out one model instance for which always choosing
the first candidate transition to build the stubborn set produced a smaller state space
(qcertifprotocol(6)). Nevertheless when a run based on that strategy could terminate with
a number of markings in the same order of magnitude as those based on strategies mine

t

or min f
t , it was usually much faster due to its linear complexity.

For the closure algorithm and its variants, minimisation based strategies (mint
s, mine

s

and min f
s ) are clearly preferable for the choice of the scapegoat. They exhibit simi-

lar performances. As one could expect maximisation based strategies (maxt
s, maxe

s and
max f

s ) perform the worse. As noted above, the strategy used to pick a scapegoat place
has clearly a lesser impact with algorithm clo?.

Identifying forward transitions and using this information generally has a small im-
pact. Moreover, this identification has a non-negligible cost as it requires to execute
all enabled transitions and check for the existence of successors in the state space.
Hence, algorithmic instances relying on that process are generally slower by approx-
imately 20% compared to strategies that only require to count enabled transitions. On



four model instances (those of models diffusion2d and neighborgrid) they significantly
outperformed other algorithmic instances, even guaranteeing the success of the run in
two cases.

For the deletion algorithm, strategies maxe
t and max f

t are clearly the best. On only
13 instances (over 0) did none of these two perform the best (compared to the four
other strategies). Moreover, when this occured, the differences observed were negli-
gible whereas strategies maxe

t and max f
t often significantly outperformed their rivals,

sometimes making the run successful.
Sadly, clodel does not bring an improvement with respect to clo?. For the models

for which clodel built smaller state spaces (e.g., aslink, lamport, shieldrvt) the gain was
very negligible in terms of reduction (typically less than 10% w.r.t. clo?) and it often
led to an important increase of the search time (remember that clodel first invokes clo?

then tries to reduce the stubborn set with del). This seems to indicate that clo? already
often produces stubborn sets that are minimal (w.r.t. inclusion).

The way nodes are ordered can have a large impact on the reduction. In a few patho-
logical situations, we observed that an unfortunate ordering could lead to a state explo-
sion. However, this observation seems more valid for “toy” examples, although there
still are real life models (tagged as industrial on the MCC webpage) for which signif-
icant differences could be observed according to the ordering (e.g., gpufp or shieldrvt)
whatever the algorithm used.

Algorithms clo? (using strategies mine
t or min f

t ) and del (using strategies maxe
t or

max f
t ) have, on the average, comparable performances regarding both the reduction

power and the search time. Nevertheless, significant differences can be observed when
using both algorithms on the same instance.

We conclude our observations with a comparison of relations Ds and De. We could
compute the exact relation De for 0 model instances (over 0). For most of these 0 in-
stances the use of De was useless or of very little help (with an additional reduction
typically less than 5%). Table 1 gives, for the 12 instances for which relation De per-
formed the best (w.r.t. Ds) the minimal numbers of states in the reduced state space over
all runs using the static (column min(Ds)) and exact relations (column min(De)). Table
is sorted according to the ratio min(De)

min(Ds)
. This observation is somehow disappointing as it

seems to indicate that there is not much thing that can be expected from refining the de-
pendency relation. Data reported in [9] (see Table 2, p. 49) exhibit better performances
of relations based on the analysis of the full state space. We believe the difference with
respect to our results can be explained by the DVE modelling language used in [9].
DVE processes synchronise through shared variables or rendez-vous and it is hard, in
contrast to Petri nets, to perform a precise static analysis of such models which can in
turn explain why semantic based relations space can fill that gap. Moreover algorithms
in [9] are parametrized by two relations: the dependency and precedence relations while
we only considered the first one here.

3.5 Experimental results sample

To back up our observations, we present in this section a sample of our experimen-
tal results. We only consider here the static dependency relation Ds. For comparison



purposes, we computed a state score (or more simply score) defined for an algorithm
alg ∈ A (A being the set of all algorithmic instances) and a model instance inst as:

score(alg, inst) = ∑
i∈{1,...,5}

20 · Smin(inst)
S(alg, inst, i)

(1)

where S(alg, inst, i) is the number of states in the reduced state space built by algorithm
alg on model instance inst during run i ∈ {1, . . . ,5} if the run terminated within our
time limit (30 min.), or ∞ otherwise ; and Smin(inst) = minalg∈A ,i∈{1,...,5} S(alg, inst, i).
Thus a score ranges from 0 if the algorithm did not terminate on the instance for any of
the 5 runs to 100 if the algorithm performed the best on all its 5 runs.

Table 2 provides scores for 15 non trivial model instances as well as the average
over the 0 model instances we experimented with. The bottom row gives the number of
successful runs of an algorithmic instance over all model instances, which is at most 700
(5 runs × 0 model instances). On the basis of our previous observations and to lighten
the table, we voluntarily ruled out several algorithmic configurations. We provide next
to each model name, the minimal number of visited states over all algorithms (Smin).

In general, Prod’s implementation of algorithm del performs better than Helena’s as
evidenced by a comparison of columns del(fstt) of the two tools. We conjecture that this
may be due to a finer implementation of the dependency graph (see, e.g., [22], Def. 3.5,
page 136) that permits the computation of smaller sets. Instance smhome(8) is an in-
teresting case from that perspective as Prod, using del(fstt), significantly outperforms
all its competitors. Nevertheless, using the maxe

t and max f
t strategies, Helena’s deletion

algorithm usually performs better than Prod’s. It could be worthwhile experimenting
with these two strategies on a refined dependency graph as computed by Prod.

Instance ibmb2s565s3960 is one the few for which the simplest algorithm (clo with
strategy fstt ) is competitive with other algorithmic instances. Moreover it naturally sig-
nificantly outperforms these regarding the execution time due to its linear complexity.

Instances aslink(1,a), deploy(3,a), or lamport(4) illustrate that clo? can significantly
outperform clo reducing further the state space by a factor of approximately 2.

Instance aslink(1,a) illustrates the impact of the scapegoat choice strategy with al-
gorithm clo and its lesser importance with algorithm clo?. With the former, using the
same starting transition choice strategy, strategy fsts performs clearly worse that mine

s

and min f
s while this observation is less valid when using algorithm clo?.

Model instance min(Ds) min(De)

hexagonalgrid(1,2,6) 111,684 901
triangulargrid(1,50,0) 81,198 764
triangulargrid(1,20,0) 13,563 288
hexagonalgrid(1,1,0) 6,708 196

robot(5) 196 10
mapk(8) 3,483 619

Model instance min(Ds) min(De)

anderson(5) 219,420 104,406
anderson(4) 12,519 6,753
safebus(3) 3,052 2,784
egfr(20,1,0) 162 159

shieldsppp(1,a) 5,453 5,423
deploy(4,a) 571,200 568,234

Table 1. Comparison of relations and Ds and De
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Table 2. Scores (according to Eq. (1)) of selected algorithmic instances on 15 model instances
and average scores over all experimented model instances



4 Stubborn sets for liveness verification

The principle of state space reduction based on stubborn set reduction is somehow to
reorder transitions in such a way that only stubborn transitions are considered to gener-
ate the successors of a marking while the firing of non stubborn transitions is postponed
to a future marking. However, such a marking may never occur due to the so called
ignoring problem. To illustrate this situation, let us assume a net having a transition t
disconnected from the rest of the net (i.e., ∀p ∈ P,W (p, t) =W (t, p) = 0). Then, since
Ds(t) = /0 and m0[t〉m0, a dynamically stubborn reduction function may build a reduced
state with a single self loop marking. In other words, t hides the dynamics of the rest of
the net. The reduced state space is therefore of very little use besides the one of proving
that the system does not halt.

As in the previous section, we first recall in this section the theoretical background
of the stubborn set theory for liveness verification. We then review different algorithms
that can be used in that context and introduce two variations of previous algorithms
before presenting our experimental results. Algorithms considered here are not specific
to Petri nets. Therefore we will often use here more generic terms, such as state instead
of marking, or action instead of transition.

4.1 Stubborn set theory for liveness verification

The above example has shown that dynamic stubborness is not sufficient for the ver-
ification of several properties, including liveness properties, because of the ignoring
problem. Formally, transition ignoring occurs when a transition is enabled for some
state of a cycle but never executed along that cycle. Otherwise, the reduced state space
fullfils the strong cycle proviso defined below:

Definition 9. Let f be a reduction function. The reduced state space has the strong
cycle proviso property if, for any m1[t1〉 f m2[t2〉 f . . .mn[tn〉 f m1, the following holds for
any t ∈ T : (∃i ∈ {1, . . . ,n} such that mi[t〉)⇒ (∃ j ∈ {1, . . . ,n} such that m j[t〉 f ).

To verify linear time temporal logic properties, an addition condition linked to the
visibility of transitions is required [18,15] but this is out of the scope of our study.

A sufficient condition for a reduction function to ensure the strong cycle proviso is
that along any cycle of the reduced state space, there is at least one fully expanded state:

Proposition 2. Let f be a reduction function. If, for any m1[t1〉 f m2[t2〉 f . . .mn[tn〉 f m1,
there is i ∈ {1, . . .n} such that en(mi) ⊆ f (mi) then the reduced state space has the
strong cycle proviso property.

Hereafter, we refer to the condition of Prop. 2 as the weak cycle proviso or more
simply cycle proviso. Checking that each cycle contains a fully expanded state is easier
and can be done on-the-fly, i.e., during the construction of the reduced state space.
Hence, while it is a stronger condition that may bring less reduction, this proposition
serves as a basis for all the algorithms we review in the following.



4.2 Stubborn set algorithms for liveness verification

State of the art Most algorithms operate on-the-fly: they address the cycle proviso as
they generate the state space. Therefore they are tightly linked to a specific search order.

For DFS, a sufficient condition to ensure the cycle proviso is to forbid a cycle-
closing edge (i.e., an edge of which the destination is in the DFS stack) outgoing from
a reduced state [15]. An alternate implementation for DFS has also been introduced in
[7]. For BFS, a dual sufficient condition is that a reduced state only has successors in
the BFS queue [2]. This principle has been generalised in [3] to any search order.

Several optimisations and variations for DFS (including Tarjan algorithm) have
been proposed in [5] that lead to an improvement over [15] and [7] in practice. A lesson
that can be drawned from the experimentation is that the full expansion of the destina-
tion state of a cycle-closing edge should be preferred in practice (rather than the full
expansion of the source state, as done in [15] and [7]). Indeed, the destination state
needs to be fully expanded when leaving the stack and at that moment, the algorithm
may have discovered that the full expansion is no more required (e.g., if all its succes-
sors have been fully expanded). This can save useless full state expansions.

The algorithm of [1] alternates expansion phases, during which states are expanded
without taking care of the cycle proviso, with topological sorts (efficiently performed
in a distributed way) of the resulting reduced state space to detect states to be fully
expanded to prevent action ignoring. The full expansion of these states may then lead
to new states used to initiate a new expansion phase. The algorithm stops when the
topological sort does not produce any new states.

We finally mention the static algorithm of [12] and the two-phase algorithm of [14].

New algorithms ensuring the cycle proviso

A BFS based on destination state revisit. The principle of the dst proviso of [5] can
be combined with the proviso of [2] for BFS (see Alg. 3). S denotes in the algorithm a
set of safe destination states, in the sense that any reduced state may have successors in
S without endangering the cycle condition. S consists of all fully expanded states (see
line 6). An invalid cycle may be closed each time the algorithm discovers an edge from
an unsafe state to another state that is neither safe, neither in the queue. In that case,
the destination state s′ of the edge is reinserted in the queue to be fully reexpanded (see
lines 15–16). This is the purpose of the second component of items put in Q: if set to
true, the state must be fully expanded. Otherwise it can be reduced using function stub
that can be any dynamically stubborn function (see line 5).

This proviso is especially suited for distributed model checking based on state space
partitioning (as done in [17]). In that context, whenever a process p generates a state
s′ it puts s′ in the queue of the owner process p′ of s′. Ownership is determined using
typically the hash value of the state. If the generating process is not the owner process,
a communication is needed. With the proviso of [2], a round trip between the two pro-
cesses would be necessary for p′ to notify p whether s′ is in its queue (or unvisited)
which makes it unusable in that context. With a proviso based on the full expansion of
the destination state, p now delegates the responsability of checking the cycle proviso
to p′. Hence, it does not require additional communications.



Algorithm 3 Algorithm BFSdst ensuring the cycle proviso
1: R := {m0} ; Q := {(m0, false)} ; S := /0

2: while Q 6= /0 do
3: (m, fexp) := pick from Q
4: Q := Q\{(m, fexp)}
5: U := if fexp then en(m) else stub(m)
6: if U = en(m) then S := S∪{m}
7: expand marking(m,U)
8: return S

9: procedure expand marking(m,U) is
10: for t ∈U ∩ en(m) do
11: let m′ be such that m[t〉m′
12: if m′ /∈ R then
13: R := R∪{m′}
14: Q := Q∪{(m′, false)}
15: else if ¬(m ∈ S∨m′ ∈ S∪Q) then
16: Q := Q∪{(m′, true)}

New offline optimal provisos. We propose two algorithms that perform optimally in
the sense that they do not uselessly (fully) re-expand reduced states to verify the cycle
proviso: if the algorithm fully re-expands a state, then it is because it is part of a cy-
cle of reduced states. Such an algorithm will be characterised as WCP-optimal (Weak
Cycle Proviso-optimal) hereafter. It is easy to find counter examples showing that all
algorithms we previously reviewed are not WCP-optimal. Likewise, an algorithm is
SCP-optimal (Strong Cycle Proviso-optimal) if it does not uselessly visit new transi-
tions to verify the strong cycle proviso: if the algorithm forces the execution of some
transition t at a state s, then it is necessarily because s is part of a cycle that ignores t.

The two algorithms have very little practical use as they operate offline and consume
a significant additional amount of memory per state (the adjacency list) but can be used
experimentally to evaluate how other algorithms perform. Both are a variation of the
topological sort based algorithm [1] and rely on an alternation of an expansion phasis
with a cycle proviso checking phasis.
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Fig. 3. Expansion and checking phases of our WCP-optimal algorithm. Fig. 3(a): after a 1st

expansion step; Fig. 3(b): after a 1st checking step; Fig. 3(c): full expansion of s; Fig. 3(d): after
a 2nd expansion step; Fig. 3(e): after a 2nd checking step.



Our WCP-optimal algorithm can be illustrated with the example depicted on Fig. 3.
In a first step, the state space is generated starting from the initial state s0 using a dy-
namically stubborn reduction function, (i.e., without taking care of transition ignoring).
The reduced state space obtained after this first expansion step is depicted on Fig. 3(a)
where states with double circles are fully expanded states. The second step, the check-
ing step, consists of marking fully expanded states as safe meaning that these cannot be
part of a cycle of reduced states. States of which all successors or all predecessors are
safe are also marked as such and this procedure is repeated until no more state can be
marked. This leads us to the configuration of Fig. 3(b) where safe states are green (and
marked with a cross). The outcome of the checking step is to pick an unsafe state (s in
our example) and fully expand it (see Fig. 3(c)). This may generate new states which are
then used as initial states for a new expansion step (s1

0 and s2
0 in our example). After this

one (see Fig. 3(d)) a new checking step is triggered and the algorithm may terminate if
all states are safe (see Fig. 3(e)).

It is easy to see to that this algorithm is WCP-optimal. Indeed, if after an expansion
step the reduced state space already has the weak cycle proviso property then all states
will be marked as safe and the algorithm will immediately terminate whereas if it fully
expands an unsafe state then it is because this state belongs to a cycle of reduced states.

For the strong proviso, this algorithm can be adapted by repeating the checking
step for each transition. A state s is marked as safe for some transition t (denoted by
t-safe hereafter) if either t is disabled at s, or either t has been executed at s (i.e., it
is enabled and stubborn at s). The checking step then proceeds similarly: any state
of which all the successors or all the predecessors are t-safe becomes t-safe. If some
state is detected as not being t-safe after this step, the algorithm picks such a state and
computes a stubborn set that includes t (both the closure and the deletion algorithms
can be easily modified to compute stubborn sets including a specific transition). As in
the WCP-optimal algorithm, new states that may be reached through this process are
used as initial states for a new expansion step. The algorithm may terminate if, after a
checking step, all states are marked as t-safe for each transition t.

4.3 Experimentation context

We experimented with the following algorithms:

– DFSsrc([7]): DFS + full expansion of source states of cycle closing edges
– DFSdst([5]): DFS + full expansion of destination states of cycle closing edges 2

– BFSsrc([2]): BFS + full expansion of source states of backward edges
– BFSdst: BFS + full expansion of destination states of backward edges (i.e., Alg. 3)
– OPTwcp: the WCP-optimal algorithm presented above

All these algorithms have been integrated in Helena.
Based on the outcome of our first experiment, we selected the following dynam-

ically stubborn functions: clo?(t,s), ∀(t,s) ∈ {min f
t ,mine

t }× {mint
s,min f

s ,mint
s}, and

2 We implemented the ColoredDest variant of [5] which makes use of state tagging mechanisms
to avoid useless full expansions.



del(t), ∀t ∈ {maxe
t ,max f

t , fstt}. These were among the best strategies for algorithms
Clo? and Del.

We also included to this second experiment a few additional model instances that
were left out in our first experiment (for the reason that all dynamically stubborn func-
tion computed the exact same reductions for these) and removed some for which no
run could terminate within our time limit (set, as in our first experiment, to 30 min.).
Overall this second experiment was performed on 0 model instances of 0 models (over
130) resulting in 0 runs.

4.4 Experimental observations

As in the previous section, we start with general observations before presenting some
selected results.

First, as noted elsewhere [2], BFS based provisos perform significantly worse than
DFS based provisos. On only one model instance (MAPK(20)) did a BFS based proviso
perform significantly better than its DFS analogous. BFS based provisos may however
still be useful for specific contexts such as distributed model checking which do not
allow a depth-first search order.

Our results confirm those of [5]: in DFS, the full expansion of destination states
of cycle closing edges (rather that source states) is preferable, i.e, DFSdst outperforms
DFSsrc in general. This also holds for BFS: BFSdst performs better than BFSsrc.

We observe that OPTwcp does not bring any improvement with respect to DFSdst.
When both algorithms could terminate, they performed comparably — DFSdst being
even slightly better. This seems to indicate that DFSdst is already close to optimal in the
sense that it never uselessly reexpands states. Moreover, when it does, it “picks” better
states (destinations of cycle closing edges) than OPTwcp, that picks them randomly.

4.5 Experimental results sample

Table 3 provides scores of the 5 search algorithms for 15 selected model instances and 4
selected dynamically stubborn functions. Average scores and total number of successful
runs (over 685) are also provided at the bottom of the table.

Instance deploy(3,a) illustrates that choosing stubborn sets reducing forward transi-
tions may be unappropriate for liveness properties as it tends to trigger more state reex-
pansions. Indeed, we observe that, regardless of the search algorithm used, del(maxe

t )

and clo?(mine
t ,mine

s) perform better than del(max f
t ) and clo?(min f

t ,min f
s ) respectively.

A single run of the OPTwcp algorithm on instance ibmb2s565s3960 coupled with
reduction function del(fstt) (not shown on the table) could produce a reduced graph
with an order of magnitude smaller — which explains the low scores reported in the
table. We plan to further investigate the net structure and the conditions that made such
a drastic reduction feasible.

Instance shieldtppp(1,b) is one of the few instances for which DFSsrc competes fa-
vorably against DFSdst.

As said above, algorithm OPTwcp does not improve on DFSdst. It performed slightly
better on 5 of the 15 model instances selected: aslink(1,a), eisenbergmcguire(4), lam-
port(4), raft(2) and shieldtppp(1,b). Note however that the average score computed over
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Table 3. Scores (according to Eq. (1)) of selected algorithmic instances on 15 model instances
and average scores over all experimented model instances



all instances must be taken with care since, as witnessed by the last row, runs of algo-
rithm OPTwcp timed out more frequently. It is likely that with a higher time limit, the
average scores of OPTwcp and DFSdst would have been very close.

5 Conclusion

We have contributed with this paper with a number of simple algorithmic variants and
heuristics for stubborn set construction algorithms. In the context of deadlock detection,
we introduced for the closure algorithm an optimisation used to avoid the selection of
unappropriate scapegoats and, for the deletion algorithm, we introduced very simple
heuristics to choose the transition to delete. For liveness properties we introduce a BFS
algorithm based on [2,5] and an offline algorithm that has the property to fully expand
states only when absolutely needed.

A second contribution of our work is a large experimentation of these algorithms
and variants on models of the MCC database resulting in approximately 150 000 runs
using both Prod and Helena tools. These showed that our algorithmic contributions,
despite their simplicity, can bring significant results on many instances.

We plan to pursue these experiments in several directions in order to identify room
for improvements or to design new heuristics.

First, we would like to experiment with other forms of dependence and precedence
relations (as done in [9]) based on the full state graph in order identify if there are still
room for improvement in that perspective.

We also plan to implement, for the deletion algorithm, a finer dependency graph, as
done by Prod, to study the impact of our heuristics (or others) on it.

Stubborn set construction algorithms may also exploit other informations than the
net structures, such as place invariants, or unit decomposition [8] and we plan to inves-
tigate how these can be used.

There also exists some algorithms based on integer linear programming techniques
[13]. Comparing them to algorithms discussed here is relevant.

For liveness properties, we have only considered the resolution of the ignoring prob-
lem, putting aside other conditions required for, e.g., LTL model checking, regarding
the visibility of transitions. It seems worth experimenting with such conditions.

Considering the ignoring problem, our experiments are somehow disappointing in
the sense that the DFSdst algorithm seems hard to outperform. Still we have not ex-
perimented with algorithm OPTscp and plan to do so in order to check whether new
algorithms reasoning on the strong cycle proviso could be of practical use.

Last we have not considered safety properties in our study and we would like to
experiment with an algorithm tailored to these, e.g., [16,11], and compare them to gen-
eral purpose algorithms, i.e., stubborn sets construction algorithm coupled with a cycle
proviso and conditions on transition visibility.
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