Distributed Explicit State Space
Exploration with State Reconstruction
for RDMA Networks

Sami Evangelista and Laure Petrucci
LIPN, CNRS UMR 7030, Université Sorbonne Paris Nord,
99, av. J.-B. Clément, 93430 Villetaneuse, France {sami.evangelista,laure.petrucci}@lipn.univ-parisl3.fr
Lars Michael Kristensen
Faculty of Engineering and Science, Western Norway University of Applied Sciences,
Inndalsveien 28, 5020 Bergen, Norway |Lars.Michael.Kristensen@hvl.no

Abstract—The inherent computational complexity of validating
and verifying concurrent systems implies a need to be able
to exploit parallel and distributed computing architectures. We
present a new distributed algorithm for state space exploration
of concurrent systems on computing clusters. Our algorithm
relies on Remote Direct Memory Access (RDMA) for low-latency
transfer of states between computing elements, and on state
reconstruction trees for compact representation of states on the
computing elements themselves. For the distribution of states
between computing elements, we propose a concept of state
stealing. We have implemented our proposed algorithm using
the OpenSHMEM API for RDMA and experimentally evaluated
it on the Grid’5000 testbed with a set of benchmark models.
The experimental results show that our algorithm scales well
with the number of available computing elements, and that our
state stealing mechanism generally provides a balanced workload
distribution.

I. INTRODUCTION

Model checking of concurrent and distributed systems based
on state space exploration is a highly compute- and stor-
age intensive task requiring considerable computing resources
when applied to real-life systems. This has prompted research
into algorithms that are able to exploit networked computing
elements [1], [2]. In addition to specialised algorithms for the
exploration of the state space itself, these approaches typically
require tailored algorithms for the verification of properties,
including LTL-based model checking [3[], [4], [S].

The application of multiple computing elements for model
checking entails a non-trivial amount of overhead due to
synchronization and networked transfer of states between
the computing and storage elements. In this paper we con-
sider the use of Remote Direct Memory Access (RDMA)
which supports low-latency networking for cluster comput-
ing. Specifically, we consider RDMA as supported by the
OpenSHMEM API [6]. In addition to being based on low-
latency transfer of states, our proposed state space exploration
algorithm provides compact state representation via distributed
state reconstruction trees. This implies that for a substantial
number of the visited states, the full state descriptors are not
explicitly stored in memory, but their implicit representation
via the state reconstruction tree allows the full state descriptor
to be retrieved on-demand when required for comparison

with newly generated states. In addition, our algorithm relies
on a concept of state stealing to distribute the state space
exploration workload on the computing elements.

The rest of this paper is organised as follows. In section
we introduce the basic concepts associated with state recon-
struction and duplicate state detection, and explain the memory
and communication paradigms of RDMA architectures and
open shared memory. Section [II]| illustrates the key elements
in our proposed algorithm using a small example state space,
and section provides a specification of the algorithm. In
section |V| we present results from an experimental evaluation
of our approach. Finally, in section [VI|we sum up conclusions
and discuss future work.

II. BACKGROUND

To make the presentation of our algorithm independent of
any particular modelling language for concurrent systems, we
assume that § denotes the universe of syntactic system states
and E denotes the set of possible events. The system is given
through an initial state sy € S, a mapping enab : S — 2% asso-
ciating with each state a set of enabled events, and a mapping
succ : S X E — S used to generate a successor state from a
state and one of its enabled events. This definition of the succ
function implies that events are assumed to be deterministic
in order to reconstruct a unique state from a sequence of
events in the state reconstruction. Many modelling formalisms
(including Petri nets) have deterministic transitions (events).
As shown in [7], state reconstruction can be generalised to
handle also non-deterministic events.

State space exploration is concerned with computing the
set of states reachable from sg, i.e. states s such that there
exist eg,...,ey,—1 € ‘E, s1,...,5, €S with s = s, and, for all
i€{0,....,n—1}: ¢; € enab(s;) and succ(s;,e;) = si+1. State
space exploration in its basic form maintains a set X of visited
states, and a set O of currently open states for which successor
states have not yet been computed. The algorithm iterates until
there are no more open states. In each iteration, an open state
s is selected and state expansion is performed by exploring all
events enabled in s. Successor states that have not been visited
earlier are inserted into ® and O.


{sami.evangelista,laure.petrucci}@lipn.univ-paris13.fr
Lars.Michael.Kristensen@hvl.no

A. State space exploration with state reconstruction

The set R of visited states in basic state space exploration is
typically implemented as a hash table of full state descriptors
to make it easy to determine whether a newly generated state
has already been visited. State space exploration with state
reconstruction [8], [7], [9], [LO] trades space for time and
maintains instead a state reconstruction tree which constitutes
an inverse spanning tree rooted in the initial state. The state
reconstruction tree which can also be represented using a hash
table makes it possible to reconstruct full state descriptors
when needed for comparison with newly generated states, i.e.
to determine whether a duplicate state already included in the
set of visited states has been generated.

Figure || illustrates state reconstruction. The top of fig.
shows the state space where the upper part of each node
is the full state descriptor, the bottom part is its hash
value, and the thick edges are edges representing refer-
ences in the spanning tree. The lower part of fig. [T] is a
linearised graphical representation of the hash table stor-
ing the set R of currently visited states. The dashed arcs
represent references to parents in the reconstruction tree
and are labelled by corresponding generating events. Note
that full state descriptors appear in the table for the sake
of clarity, but they are not (explicitly) stored in memory.

When required, the full
state descriptor for a state
can be reconstructed by
backtracking up to the
root node (initial state) for
which we have the full state

e

. hy
descriptor, and then forward
execute the reconstructing ~
sequence of  generating s21S4| |

events on the path leading g Tt
from the initial node (state)
to the node in question.
This is performed each time
the algorithm generates a successor state s’ from an open
state s and needs to determine whether s’ has already been
visited. As an example, consider fig. [I] and assume that the
algorithm has explored states sy to s3 and is expanding s4
corresponding to the exploration of the two thin edges. The
expansion of s4 generates sy and ss both hashed to h;. To
decide whether s, is new, we reconstruct all nodes of the
reconstruction tree that are also hashed to /&7 as these could
potentially be the same state. These correspond to the grey
cells of the hash table. For the first cell (s;), we have to follow
references labelled b, a to the initial state and finally execute
the reconstruction sequence a.b starting from the initial state.
Since this execution produces state s, we conclude that
executing e from s4 does not generate a new state. For state
s5, we have to reconstruct s, using again a.b as reconstructing
sequence, and s4 using the reconstructing sequence a.c. Since
succ(succ(so,a),b) # ss and succ(succ(so,a),c) # ss, then ss
is new and is inserted in the hash table with a reference to its
parent s4 labelled with event f.

Fig. 1. State reconstruction example

B. Multi-core state reconstruction with shared memory

In earlier work [10], we developed and experimentally
evaluated a state space exploration algorithm with state re-
construction for shared memory multi-core architectures. This
earlier algorithm operates in rounds and is based on barrier
synchronization to allow concurrently executing threads to
perform state space exploration in three phases within each
round. In the first phase the threads traverse the reconstruction
tree in order to generate a frontier set of states comprising the
next layer of states. The algorithm also stores open states in the
reconstruction tree (instead of full descriptors of open states)
which further reduces memory usage. In the second phase,
duplicate detection is performed on the frontier set resulting in
a merged candidate set of potentially new states. In the third
phase, the threads perform state reconstruction to determine
the candidate states that are new. Any new states are then
added to the reconstruction tree. The algorithm employs de-
layed duplicate detection and grouping of state reconstructions
as means to reduce the number of state reconstructions and
hence reduce the running time of the algorithm.

C. RDMA architectures and the OpenSHMEM specification

RDMA (Remote Direct Memory Access) is a communica-
tion mechanism that implements one-sided inter-process com-
munication. It relies on two basic communication primitives
put () and get () used by a process to write and read in
another process’s memory. Only a specific public memory area
can be reached from other processes.

An attractive feature of one-sided communications is that
only the process that initiates the communication needs to
take active part in it. The process that owns the memory area
it is reading from or writing into is not participating to the
communication, nor is it even aware that this communication
is happening. Fast cluster interconnection networks such as In-
finiBand implement RDMA communications with zero-copy,
meaning that the NIC transfers data directly from one process’s
memory into the other process’s memory, and, in particular,
without involving the other process’s operating system.

The RDMA paradigm is implemented in the OpenSHMEM
shared heap and communication interface. OpenSHMEM is an
API for parallel programs. It defines a set of one-sided RDMA
communication routines, designed specifically for clusters
featuring low-latency networks [[6]. The processes are called
Processing Elements (PEs). Each PE has its own (private)
memory, and exhibits a public heap. OpenSHMEM features a
symmetric heap: every PE has a shared heap of the same size,
which contains the same allocated objects and static global
objects as illustrated in fig.

Symmetry is maintained between shared heaps through
the use of dedicated memory management routines (such
as shmem_malloc() or shmem_free()). The OpenSHMEM
specification states that these routines are collective routines
and must end by something semantically equivalent to a
barrier. Hence, every object is allocated at the same offset
from the beginning of the buffer on all the PEs. Global
and static variables are also located in the shared heaps and
therefore remotely accessible by other PEs. The OpenSHMEM



PE0 PE1 PE2

[=T=] — o

Private
memory

Static global

Symmetric objects.

heap

Symmetric

objects

Fig. 2. OpenSHMEM memory model

specification also defines interfaces for atomic accesses (such
as compare-and-swap), collective operations, or locks.

III. ILLUSTRATION OF OUR ALGORITHM

In this section we first present the general memory layout
that our algorithm relies on: a state space scattered in a forest
of trees distributed upon all PEs (Processing Elements). We
then illustrate the execution of our algorithm step by step on a
small example state space to show how this forest is obtained.

A. Overview of the algorithm and its memory layout

The top of fig. 3] shows the graphical representation of
a small example state space, and the bottom part depicts a
possible outcome of our algorithm when distributed over three
PEs (PEy, PE; and PE,). As in earlier figures, each state is
split into its identity (top part) and its hash value (bottom part).

The general principle of the memory layout of our algorithm
is to partition the reconstruction tree upon the different PEs
in such a way that each PE holds in its private memory a
forest of trees. Root states of these trees (states with a dark
gray background on the figure) are fully stored in memory, i.e.
their full state descriptor is available to the PE storing them.
Other states are stored as a reference to their parent in the
tree together with a transition label that allows reconstructing
the state from its parent. Dotted arcs represent links (edges)
between states that are not part of the reconstruction tree: they
were identified to lead to duplicate states by the duplicate
detection procedure. Arcs in the reconstruction tree linking
states on different PEs are indicated as thick arcs. The main
advantage of this layout is that state reconstruction can be
done locally since the reconstructing sequence of a referenced
state starts at the root of the tree this state belongs to —
root of which the PE has the full state descriptor — and
only contains states located on the same PE. For instance,
if PE, needs to reconstruct sg it will backtrack to s3, recover
its full state descriptor and execute a single event to retrieve
the full state descriptor of sg. It is straightforward to see that
reconstructing sequences can be shortened compared to our
multi-core algorithm [[10] where all reconstructing sequences
start at the initial state. Furthermore, the reconstruction starts
from a single root in the forest. As an obvious counterpart,
the total memory consumption of our distributed algorithm
exceeds the one of our multi-core algorithm since the latter
only requires the initial state to be fully stored in memory. On
the other hand, since the memory is distributed, we generally
have more memory available.

This layout raises the question of how states are distributed
upon PEs. A common approach in distributed model checking

Fig. 3. Example state space (top) and a possible distribution on PEs (bottom)

[1] is to use a partitioning function (e.g. based on the state
hash function) mapping states to PEs. Such an approach does
not seem relevant in our context since these functions usually
favour even distributions (to balance as much as possible
memory usage and workload) against locality (i.e. the fact that
the partition function is designed to gather as much as possible
states with their parents). The latter is our main concern: states
must be gathered as much as possible in local trees for our
technique to provide a good memory reduction (remember that
only the root of a local tree is fully stored in memory).

To distribute the tree upon PEs, our algorithm relies on a
work stealing strategy. In a nutshell, during the expansion of
a level of unexpanded states, a PE first proceeds by recon-
structing all these states (starting from the roots it possesses)
and puts their full state descriptors publicly available to all
PEs (including itself). An idle PE then looks in the pools of
states published by its peers and steals some of these to “plant”
new trees in its private memory. After a PE has stolen a state
from one of its peers (or simply took it back if it is the PE
that reconstructed it), the state is expanded. For instance, the
distribution observed on fig. [3] may have been obtained after
PE| and PE, stole s,, and s3 and sy, respectively from PEj.

B. Detailed execution of the algorithm

We now illustrate the steps performed by our algorithm to
produce the distributed reconstruction tree in fig. [3}

State expansion phase. Initially, one process, say PEj, owns
the initial state. It generates its successors si,...,s4 and puts
their full state descriptors in a private hash table Cy storing
candidate states in a similar way as our multi-core algorithm.
After this expansion step, duplicate detection is performed.
This phase normally involves all PEs and will therefore be
explained in greater details later. At this point, only PEj can
take part in this operation and since all outgoing edges of
so lead to new states, these can be directly inserted in the
reconstruction tree of PEy leading to the configuration of fig.[4]

Then starts the expansion of level 1. From sg, PE traverses
the tree to reconstruct sy, ...,s4. We do not detail this process
here, but state expansion as well as duplicate detection rely
on the same tagging principle as used by our multi-core
algorithm: a state to be reconstructed is marked as such by



flipping a specific bit and,
using backward pointers,
all states up to the root are
tagged as well to indicate
they lead to a state to be
reconstructed. Once recon-
structed, the state descrip-
tors of sq,...,54 are pub-
lished by PEj in the ROy
(reconstructed open states)
shared data structure, reaching the configuration in fig. [5

$1 52 53 54

PE,

Fig. 4. After the expansion of sg

Public

Private

ROy
S1 5 53 S4
PE,
Fig. 5. After the reconstruction of si,...,s4 for their expansion

At that point, PE| and PE, which have not yet participated
will see states published by PEy in ROq that contains open
states to be expanded. We assume here that PE| steals s, while
PE, steals s3 and s4, which leaves s; to PEy. The implemen-
tation of state stealing will be described in more detail in the
next section. Each PE; generates the successor states of the
open states it stole (or still has in its RO; data structure) and
puts these successors in its private candidate set C; (see fig. [6]
where dashed arrows represent network communications, as
in subsequent figures). Note that the full state descriptors of
candidates states are kept in the candidate set (depicted with
a light gray background) along with information needed to
insert the states in the reconstruction tree in case the candidate
is actually new: a reference to its parent state coupled with the
event labelling the arc between the two states. The three PEs
have now expanded all open states they own and can then
proceed to duplicate detection.

Duplicate detection phase. Moving from the state expansion
phase to the duplicate detection phase occurs in two situations.
First, duplicate detection is triggered when the size of the
candidate set has reached a predefined limit (set to bound the
amount of memory used for the candidate set). In addition, an
idle PE must periodically initiate duplicate detection to join
its peers since this operation involves all PEs. Note that, as
in [10], the passage from one step to another is controlled by
the use of synchronisation barriers.

PE, already noticed that the edge (s4,s3) led to a duplicate
state since sg has been already reached from s3 and is thus
already present in the candidate set C; when expanding s4. The
duplicate detection phase still has to identify several duplicates
(s7 present in both Cp and Cj ; s9 in C; and Cy ; and s; in
C; and in the private tree of PEy) and resolve hash conflicts
(on h; and hy4) before each PE can insert its candidates that
are actually new in its trees. Several operations are required
to achieve this goal.

First, the identification of duplicates may naturally imply the
reconstruction of some previously generated states (i.e. that are
not present in any candidate set) as it is the case here for s;.
Thus, in order to identify these states, duplicate detection first
starts by PEs exchanging hash values of candidate states. To
do so, each PE; puts in its public area the hash values of its
candidates in set H;. This is illustrated in fig. [/} step 1.

After a synchronisation barrier, each PE retrieves the hash
values of its peers. It then knows which states it owns need to
be reconstructed. A direct solution to detect duplicates would
then be, for each PE, to publish in its public space the states
it owns (candidates or reconstructed) that share the same hash
values as those published by its peers in their H set. PEy
would for instance reconstruct s; and put it in its public space,
so that PE, can detect that edge (s4,s1) leads to a duplicate
state. However, since states sharing the same hash value may
be found on each PE, this solution would involve a polynomial
number of communications.

Our solution rather relies on the idea of detection proxy and
the use of a mapping dp : H — P (H being the set of hash
values, and P = {0,...|PE — 1|}). Basically, if dp(h) = i then
PE; will be responsible, during duplicate detection, of storing
any candidate or reconstructed state s such that hash(s) = h.

Going back to our example, after each PE; has retrieved the
hash values published by its peers, it first writes each of its
candidate states ¢ in the public space of p = dp(hash(c)) in the
DC;'7 state block (DC standing for distant candidates). Then,
each state s present in its tree and of which the hash value is
present in the H; of one of its peers must be reconstructed and
also written in the public space of its proxy. With our example,
PE thus has to reconstruct s;. Any reconstructed state s is then
written in the R;', state block (again with p = dp(hash(s))).
Assuming that dp(hs) = dp(hs) =0, dp(h1) = dp(he) =1, and
dp(hg) =2 we observe the configuration of fig. [7] step 2.

Duplicate detection can then be performed locally. Each PE;
merges candidate states it received (i.e. blocks DCi] ) in sets Ni]
from which it then removes reconstructed states it received
(i.e. blocks R/). Formally, sets N/ are defined as follows:
Vi € P,UjepN! = UjcpDC/ \ UjcoR] ; Vi, jk € P,j # k=
N/NNF=0; and Vi,j € P,N/ CDC/. In case a state s is
present in both DCI.’ and DCfc (with j # k) — as, for instance,
s7 present in DCg and DC& — PE; has to choose which
of its two peers, PE; or PEy, will store s. In our example
we made some assumptions on how these new states are
distributed upon PEs, but we will discuss in the next section
the actual implementation of this process. As an example, the
local duplicate detection performed by PE; thus leads to first
merge DC?,DC 11 and DCl2 hereby removing one occurence of
s9 and secondly to remove state s present in R(l) (obtained by
reconstruction from PEy). After these merging and deletion
steps, sets of new states are published by PEs in their public
space leading to the configuration of fig. [/| step 3.

After a last synchronisation barrier, the duplicate detection
phase ends with PEs processing new states: each PE;
remotely reads N(l;v"'l\]\if|71 and inserts all recovered states
in its private tree. Note that it is not necessary to store full
state descriptors in the sets Nij since the goal of duplicate



PE,

PE,

Public- |

Fig. 6. After stealing and expansion of open states

step 1 o ks
barrier -
PE
step 2 2
barrier
step 3
barrier — - ;\\ ~
‘ - ‘ . PE
step 4 2
$3 \\ S4
h3 hy

Fig. 7. The duplicate detection process. Step 1: publication of hash values of candidate states. Step 2: writing of candidates and reconstructed states in their
detection proxy’s public space. Step 3: publication of new states obtained after candidates merging and removal of reconstructed states. Step 4: PEs remotely
read new states they are assigned to and insert these in their trees.



detection is ultimately to insert reference states in the
reconstruction tree (i.e. a pair identifying the parent state and
a transition label). Hence, it is preferable, in order to reduce
communication times, to only store this meta information in
the Nij sets. At the end of duplicate detection, we reach the
configuration of fig. [7] step 4.

The operations described above will be reiterated on the
newly discovered states. Termination occurs when PEs do not
have any new open states to proceed. As we will see in the
next section this can be detected during duplicate detection.

IV. SPECIFICATION OF OUR ALGORITHM

We give in this section an algorithmic specification of the
core operations performed by our algorithm. The pseudo-code
for our algorithm, described below, is given in Figure [§]

For the sake of clarity of the presentation we first detail
some global data structures. These are private (i.e. in the
private memory space of the PE) unless specified with the
public keyword. ROOTS contains the list of root states of all
the trees owned by the PE. Full state descriptors of these roots
are stored and each such root is associated an integer identifier.
TREE encodes the tree structure. It maps any state identifier to
the list of its successors (i.e. the successor identifier and the
event that generated it) that are part of its tree. As in the
previous section, C, RO, H, DC, R and N denote respectively, the
set of candidate states, reconstructed open states, hash values,
distant candidates, reconstructed states and new states. The
candidate set C maps any candidate state ¢ to a pair (id,e)
where id is an integer identifying the predecessor state p of
¢ and e is the event such that succ(p,e) = c¢. The algorithm
has to memorise this information since the candidate may
ultimately be inserted in the TREE structure if it is found to be
new. Synchronisation variables are also required to check for
global termination (TERM) and level termination (LVL_TERMyg
and LVL_TERM_ALL).

In the main procedure (1. [I7), PEy first plants a new tree
rooted in s9. The PEs then explore the state space in a breadth-
first manner. Each iteration of the main loop processes one
BFS level. The PE first reconstructs the open states it owns,
then explores these before trying to explore open states owned
by its peers. To control level and global termination, the
synchronisation variable LVL_TERMy is initialised to false,
indicating that the PE has not finished processing this level,
and the global termination flag TERM is set to true. If open
states of the current level generate new states, TERM may be
reset to false during duplicate detection (1. [73).

Procedure recons_open (1. 26) recursively reconstructs the
PE’s open states and puts their full state descriptors in the
set ROpE. This set is bounded: whenever it fills up, the PE
starts exploring its open states. Although, as presented, the
reconstruction implies a traversal of all nodes owned by the
PE, our algorithm makes use of the same tagging mechanism
as used in [10] to prune the tree and only visit tree nodes
leading to open states. We have hidden this process for the sake
of simplicity. The same remark applies to the reconstruction
process used during duplicate detection (1. [79).

el e R R A

80
81

PES: constant set of int = {0,

ME: constant int = PE’s identifier
C: map of (state — (int % event)) =
ROOTS: list of (int % state) = empty
TREE: map of (int — list(int = event)) =

empty

empty

ROme: public set of (int % state) = empty
Hmg: public set of int

DC. ... DCEESI-1: public set of state
R&E,...,RI\Z%Z"II' public set of state
N, oo, NEESI-1 public set of state

/% synchronisation variables =/

TERM: bool = false

LVL_TERMyg: public bool

LVL_TERM_ALL: bool

procedure main():

if ME == add

while not TERM:
LVL_TERMyg =
TERM = true
for (id, root) in ROOTS:
explore_my_open ()
explore_peers_open ()

(0, sp) to ROOTS, (0 — empty) to

false

recons_open (id, root)

procedure recons_open(id: int, s:
if is_open(id):

add (id, s) to ROyg

if ROyg is full: explore_my_open()
for (idc, e) in TREE(id): recons_open(idc,

state ):

procedure explore_my_open():
while ROyg is not empty:
stolen = steal_from (ME)

for (id, s) in stolen:

s)

explore_open (id,
procedure explore_open(id: int, s:
for e in enab(s):

s’ = succ(s, e)

if s’ not in C: add (s’

if C is full: dd()

state ):

— (id, e)) to C

procedure explore_peers_open ():
LVL_TERMpyg = true
LVL_TERM_ALL = false
while not LVL_TERM_ALL:

stolen = steal_from (choose_victim_pe ())

for (_, s) in stolen:
i = new_id ()
add (i, s) to ROOTS, (i — empty) to TREE
explore_open (i, s)

if do_dd(): dd()

procedure dd():

/% step 1 of [ig x/
for pe in PES: DChp = empty ; Ri: = empty

Hmg = { hash(c) for (¢ — _) in C }
wait_for_peers ()
/% check BFS level termination =/

LVL_TERM_ALL = V_pe in PES: LVL_TERM,.
/% step 2 of fig.[]] =/

for (id, root) imn ROOTS: recons_dd (id,
for (¢ — _) in C: add ¢ to DCYE )
wait_for_peers ()

root)

succ (s,

number of PEs - 1}

TREE

e))

/% step 3 of Iig. %/

for pe in PES: N = empty

for pe in shuffle (PES), ¢ in DC{;E: # merge candidates
if A pe’ st c in Njj;: add c to Ni

for pe in PES, r in R;: # delete duplicates

if 3 pe’ st r in NKZ;E: del r from Ni,;:
wait_for_peers ()
/% check global
TERM = TERM and
/% step 4 of fig.

termination =/

V pe, pe’ in PES: NI is empty)
%/

for (¢ — (id, e)) in C st ¢ in N{dv;l)l(ihash(c)): # new states

nid = new_id ()
add (nid — empty) to TREE and (nid,

procedure recons_dd(id: int, s: state):
if 3 pe st hash(s) in Hy: add s to RYG )
for (idc, e) in TREE(id): recons_dd(idc, succ(s,

Fig. 8. Pseudo-code of our algorithm

e) to TREE(id)

e))



When exploring open states present in its own ROyEg set
(procedure explore_my_open at 1.[32), a PE tries to pick one
of these in order to explore it. Since, meanwhile, another PE
may also steal some states from that same set, the PE must
not carelessly pick states from it: synchronisations are required
through the use of the steal_from procedure to guarantee a
proper consumption of reconstructed states.

The exploration of an open state (procedure explore_open
at 1. simply consists of putting all its successors in
the candidate set — an operation that may trigger duplicate
detection if the candidate set fills up.

Once a PE has finished exploring its own states it
tries to steal and process states from its peers (procedure
explore_peers_open at 1. [d3). The PE first chooses an-
other victim PE from which it tries to steal some state(s).
States stolen this way are also explored using procedure
explore_open with the difference that they must also be
inserted in ROOTS. As a requirement, this procedure must
also periodically invoke duplicate detection (I. mean-
ing that procedure do_dd that checks if duplicate detection
has to be initiated locally must eventually return true (we
leave the actual implementation of this procedure to the
next section). Indeed, other PEs may be waiting for their
peers to perform duplicate detection so this operation must
eventually be triggered by all PEs. Moreover the exit from
explore_peers_open — which, in turn, means moving to
the next BFS level — is also conditioned by the outcome of
the duplicate detection procedure as explained below.

Finally, the duplicate detection procedure (procedure dd at
1. follows the different steps introduced in our example
(see fig.[7). We draw the reader’s attention to the operation that
consists of merging candidates sent by peers (1. [67). In order
to balance the workload as much as possible, the algorithm
does not consider PEs one by one starting from PEy — which
would result in processes having a workload that decreases
with their identifier — but instead in a random way.

Duplicate detection being a rendez-vous between all PEs, it
allows for an easy detection of termination of both the current
BFS level and the global search. First these termination checks
(at 1. [60] and must be placed after barriers to avoid any
race condition. The current BFS level may be considered as
terminated (1. [60) if all PEs have executed the statement at
1. [44] If this holds, then it is guaranteed that any open state of
the current BFS level either has been explored by its owner, or
has been stolen and processed by another PE. Finally, global
termination is detected if no candidate was identified as new
d. during the exploration of the current BES level.

V. EXPERIMENTAL EVALUATION

We have implemented our algorithm in the Helena tool [[11]]
and conducted experiments with models of concurrent systems
specified in the DVE input language of the DiVinE model
checker [12]]. Models we have experimented with are listed in
Table [, together with the number of states and arcs in their
state space, their height (i.e. the number of BFS levels in their
state space) and the size of their state vector (in bytes). The
content of the last colum will be described herafter. All models
come from the BEEM database [13].

A. Cluster computing infrastructure

Our experiments were carried out using the Grid’5000 [14]]
testbed, supported by a scientific interest group hosted by Inria
and including CNRS, RENATER and several Universities as
well as other organisations (see |https://www.grid5000.fr). We
have conducted the experiments on the grimoire cluster of
the Nancy site which features 8 nodes with 2 Intel Xeon
E5-2630 v3 CPUs and 8 cores per CPU, connected through
a 56 Gbps Infiniband network. We used the OpenSHMEM
implementation provided by OpenMPI 2.0.1.

B. Algorithm configuration and implementation choices

In the previous section we deliberately omitted some im-
plementation details, especially regarding the state stealing
mechanism that we now address.

Stealing individual states appeared to be too costly
communication-wise and unsuitable to achieve a good load
balance. We instead implemented the stealing algorithm in
such a way that blocks of states of size B can be stolen and
we set B =100 in our experiments. Some initial experiments
showed that this parameter did not have a significant impact
unless set to a too small or too large value (i.e. < 10 or >
1,000). Finally, our state stealing implementation relies on the
atomic compare-and-swap routines provided by OpenSHMEM
that are used to prevent race conditions between processes.

For the choice of the victim PE to steal from (1. [47] of fig. [§),
we implemented the following: PE i first tries to steal from its
right neighbour (i.e. PE (i+1) mod |PES|) and keeps stealing
from this one as long as its attempts are successful. It then
repeats this process on following PEs: (i+2) mod |PES|, (i+
3) mod |PES|, ... We have experimented with other strategies
(e.g. always steal from the same PE) but found out that a ring-
based strategy performs better overall.

The decision of initiating duplicate detection is determined
by procedure do_dd (1. [52] of fig. [§)) that may not indefinitely
postpone the operation. We have implemented this decision
in such a way that do_dd returns true only after |PES|— 1
successive failed attempts. Finally, we set the maximal sizes of
candidate sets and sets of reconstructed open states to 100, 000.

C. Experimental results

We have launched a full state space exploration for 8, 16,
32, 48, ... 128 processes, i.e. for 1, 2, 4, 6, ... 16 processes
per node. We were also able to perform a sequential execution
for 6 of our 8 models. Each experiment was run 5 times and

Model States Arcs | Height | State size | Stolen states
collision.5 431 M| 1,644 M 182 52 1.72%
firewire_tree.7 121M| 778 M 343 647 2.93%
iprotocol.8 447 M | 1,501 M 353 45 1.78%
leader_election.7 235 M | 1,712 M 248 281 3.52%
needham.7 806 M | 3,546 M 44 98 3.87%
pgm_protocol.11 499 M | 1,207 M| 2,238 129 3.88%
public_subscribe.5 | 1,153 M | 5,447 M 170 36 1.61%
synapse.9 1,675 M | 3291 M 88 58 3.28%

TABLE I

DVE MODELS USED IN THE EXPERIMENTS


https://www.grid5000.fr

plots present the average and standard deviation of the set of
measurements. We checked that all runs on the same model
resulted in the same number of states.

Execution times have been plotted in fig.[0] We observe that
the execution times generally follow the same pattern. It de-
creases as more processes participate, but reaches a threshold
with approximatively hundred of processes and then stagnates
for largest configurations. Only on models needham.7 and
public_subscribe.5 do we observe a continued decrease of the
runtime. Model pgm_protocol.11 also stands out in that its
best execution time is reached with 80 processes and more
importantly, it grows significantly beyond that number.

To have a better understanding of the performances of our
algorithm, we also investigated how the stealing mechanism
distributes the workload upon processes. We have plotted in
fig. [10] the workload of a single run with 128 processes for
4 models. On the x-axis is the time in seconds and on the y-
axis is the number of states processed during the last elapsed
second by the most (dashed green curve) and least (red dotted
curve) loaded process for that second. It can be seen that
for the models in fig. a), (b), and (d) the discrepency
between workload is well-controlled, but in fig. @ke) there
is some continued growth until the very end of the state space
exploration. A possible cause for this may lie in the fact that
the state space of the pgm_protocol.11 model is a long (and
hence narrow) state space compared to the state space of the
other models (cf. Table [I).

To provide details on the state distribution we have plotted
the number of states stored for each of the 128 processes in
fig.[T1] Here fig.[TT|c) confirms the uneven distributed of states
which in turn results in the uneven distribution of workload.
Still, it can be seen that the majority of the processes have
similar state distributions.

Last we observe that the proportion of stolen states (last
column of Table I, value obtained by computing the average
over the 5 runs with 128 processes and reported to the
state space size) remains low. This is a crucial aspect of
our algorithm since stolen states are fully stored in memory.
Therefore the memory usage of our algorithm remains close to
the one of our multi-core algorithm [[10]. Moreover, although
we cannot provide these data due to lack of space, this ratio
does not seem to be increase with the number of processes.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a new state space exploration algorithm
for cluster computing architectures that rely on the Remote
Direct Memory Access (RDMA) paradigm for low-latency
networking and communication between computing elements.
The novelty of our algorithm lies in the concept of state
reconstruction forests which can be seen as a generalisation
of our earlier state reconstruction trees developed for multi-
core architectures. As a further contribution, we introduce
the concept of state stealing as a new approach to workload
distribution. We have implemented our proposed algorithms
and experimentally evaluated it on a large computing cluster
using a variety of concurrent systems models.

Our experimental results generally show that our algorithm
performs well in terms of speed-up and workload distribution

on state spaces with a large diameter. In contrast, our algorithm
shows less impressive performance on narrow state spaces
where the parallelisation potential is smaller. For future work,
we have also observed instances of models where our heuristic
for ensuring locality, i.e. to avoid many small reconstruction
trees in the forest, needs further improvement. Experimentally
exploring larger parts of the parameter space of our algorithms
is also a task for future work.

We conjecture that the workload can be further balanced
by using informed state stealing strategies that e.g. keep track
of the number of states available for stealing on each PE. An
even distribution of states among PEs seems the key for our
algorithm to scale on larger networks.

Verification of safety properties will be relatively straight-
forward for a forest of state reconstruction trees as we can
easily reconstruct full state descriptors in parallel on the
computing elements. A more challenging future line of re-
search resulting from the present work is to investigate how
CTL and LTL model checking algorithms in general can be
developed that are able to operate on the distributed forest of
reconstruction trees that we have introduced in this work.

Acknowledgements: The work of L.M. Kristensen was
partially funded by the SFI Smart Ocean NFR Project
309612/F40.

REFERENCES

[1] U. Stern and D. L. Dill, “Parallelizing the Murphi Verifier,” in CAV’1997,
ser. LNCS, vol. 1254. Springer, 1997, pp. 256-278.

[2] H. Garavel, R. Mateescu, and I. Smarandache, “Parallel State Space
Construction for Model-Checking,” in SPIN’2001, ser. LNCS, vol. 2057.
Springer, 2001, pp. 217-234.

[3] J. Barnat, L. Brim, and J. Stribrnd, “Distributed LTL Model-Checking
in SPIN,” in SPIN’2001, ser. LNCS, vol. 2057.  Springer, 2001, pp.
200-216.

[4] L. Brim, I. Cerna, P. Krcal, and R. Pelanek, “Distributed LTL Model
Checking Based on Negative Cycle Detection,” in FSTTCS 2001, ser.
LNCS, vol. 2245.  Springer, 2001, pp. 96-107.

[5] L. Brim, I. Cernd, P. Moravec, and J. Simsa, “Accepting Predecessors
Are Better than Back Edges in Distributed LTL Model-Checking,” in
FMCAD’04, ser. LNCS, vol. 3312.  Springer, 2004, pp. 352-366.

[6] “OpenSHMEM Application Programming Interface version 1.5,” http:
/Iwww.openshmem.org, Jun 2020.

[71 M. Westergaard, L. Kristensen, G. Brodal, and L. Arge, “The Comback
Method - Extending Hash Compaction with Backtracking,” in ATPN’07,
ser. LNCS, vol. 4546. Springer, 2007, pp. 445-464.

[8] S. Evangelista and J.-F. Pradat-Peyre, “Memory Efficient State Space
Storage in Explicit Software Model Checking,” in SPIN’05, ser. LNCS,
vol. 3639. Springer, 2005, pp. 43-57.

[9] S. Evangelista, M. Westergaard, and L. Kristensen, “The ComBack

Method Revisited: Caching Strategies and Extension with Delayed

Duplicate Detection,” ToPNoC, vol. 5800, no. 3, pp. 189-215, 2009.

S. Evangelista, L. M. Kristensen, and L. Petrucci, “Multi-threaded Ex-

plicit State Space Exploration with State Reconstruction,” in ATVA’2013,

ser. LNCS, vol. 8172. Springer, 2013, pp. 208-223.

S. Evangelista, “High Level Petri Nets Analysis with Helena,” in

ATPN’05, ser. LNCS, vol. 3536. Springer, 2005, pp. 455-464.

Z. Baranova, J. Barnat, K. Kejstova, T. Kucera, H. Lauko, J. Mrazek,

and P. R.and V. gtill, “Model Checking of C and C++ with DIVINE

4, in ATVA 2017, ser. LNCS, vol. 10482. Springer, 2017, pp. 201-207.

R. Peldnek, “BEEM: Benchmarks for Explicit Model Checkers,” in

SPIN’2007, ser. LNCS, vol. 4595. Springer, 2007, pp. 263-267.

F. C. et. al.,, “Grid’5000: A large scale and highly reconfigurable grid

experimental testbed,” in SC’05: Proc. The 6th IEEE/ACM International

Workshop on Grid Computing CD. 1EEE/ACM, 2005, pp. 99-106.

[10]

[11]

[12]

[13]

[14]


http://www.openshmem.org
http://www.openshmem.org

1508.89 barrier time
1,400 s. dd time
—— execution time
1,200 s.
1,000 s.
800 s.
600 s.
400 s,
200 s.
0s.
1 8 16 32 48 64 80 96 112 128
processes
(a) collision.5
1441.85 barrier ti
1,400 s. arrier time
dd time
1,200, —}— execution time
1,000 s.
800 s.
600 s.
400 s.
200s.
0s.
1 8 16 32 48 64 80 96 112 128
processes
(c) iprotocol.8
#4151.28
barrier time
4,000 s. .
dd time
—— execution time
3,000s.
2,000s.
1,000 s.
0s.
1 8 16 32 48 64 80 96 112 128
processes
(e) needham.7
f497.16 barrier time
1,400 s. dd time
—}— execution time
1,200 s.
1,000 s.
800 s.
600 s.
400 s.
200s. ..141,31 > 61.58  144.16  141.61
e 115,60, 91.96 82.63 72741571
0s.
8 16 32 48 64 80 96 112 128
processes

Fig. 9. Execution times

(g) public_subscribe.5

2,000 5. 197687 barrier time
dd time
1,750s. —— execution time
1,500 s.
1,250 s.
1,000s.
750 s.
500s.
250s.
Waora 52
0s.
1 8 16 32 48 64 80 96 112 128
processes
(b) firewire_tree.7
p159-22 barrier time
3,000s. dd time
—— execution time
2,500s.
2,000s.
1,500 s.
1,000 s.
500 s.
0s.
1 8 16 32 48 64 80 96 112 128
processes
(d) leader_election.7
p7o0-81 barrier time
3,500s. dd time
—— execution time
3,000s.
2,500s.
2,000s.
1,500 s.
1,000 s.
500s.
0s.
1 8 16 32 48 64 80 96 112 128
processes
(f) pgm_protocol.11
barrier time
[120y.37
1,200 s. dd time
—— execution time
1,000 s.
800 s.
600 s.
400 s.
200s.
0s.
8 16 32 48 64 80 96 112 128
processes

(h) synapse.9




0 sec. 20 sec. 40 sec. 60 sec. 80 sec. 100 sec. 120 sec.

(b) needham.7

175,000 st.

25,000 st.
150,000 st.
20,000 st. 125,000 st.
0, .
15,000 st. 100000
75,000 st.

10,000 st.
50,000 st.

5,000 st.
25,000 st.
0 st. 0 st.

0 sec. 10 sec. 20 sec. 30 sec. 40 sec. 50 sec. 60 sec.
(a) firewire_tree.7
70,000 st. 140,000 st.
60,000 st. 120,000 st.
50,000 st. 100,000 st.
40,000 st. 80,000 st.
30,000 st. 60,000 st.
20,000 st. 40,000 st.
10,000 st. 20,000 st.
0 st. 0 st.
0 sec. 25 sec. 50 sec. 75 sec. 100 sec. 125sec. 150sec. 175 sec.

(c) pgm_protocol.11

Fig. 10. Difference between the least and most loaded process at each second for

919 714 s 7,000,000 st.
1,000,000 st. 1,019,714 st
- 6,000,000 st.
800,000 st. 271838 st
5,000,000 st.
600,000 st. 4,000,000 st.
3,000,000 st.
400,000 st.
2,000,000 st.
200,000 st.
1,000,000 st.
0 st. 0st.
0 sec. 10 sec. 20 sec. 30 sec. 40 sec. 50 sec. 60 sec.
(a) firewire_tree.7
1,478 st.
10,000,000 st.
4,000,000 st.
8,000,000 st.
3,000,000 st.
6,000,000 st.
2,000,000 st.
4,000,000 st.
4,189 st.
1,000,000 st. 2,000,000 5.
0st. 0st.

0 sec. 25sec. 50sec. 75sec. 100sec. 125sec. 150sec. 175 sec.

(c) pgm_protocol.11

Fig. 11. State distribution at each second for a single 128-process run

10

0 sec. 20 sec. 40 sec. 60 sec. 80sec. 100sec. 120sec. 140 sec.

(d) public_subscribe.5

a single 128-process run

1,822 st.

2,876 st

0 sec. 20 sec. 40 sec.

(b) needham.7

60 sec. 80 sec. 100 sec. 120 sec.

0 sec. 20sec. 40sec. 60sec. 80sec. 100 sec.

(d) public_subscribe.5

120 sec. 140 sec.

,063,236 st.

9,688 st.



	Introduction
	Background
	State space exploration with state reconstruction
	Multi-core state reconstruction with shared memory
	RDMA architectures and the OpenSHMEM specification

	Illustration of our algorithm
	Overview of the algorithm and its memory layout
	Detailed execution of the algorithm

	Specification of our algorithm
	Experimental Evaluation
	Cluster computing infrastructure
	Algorithm configuration and implementation choices
	Experimental results

	Conclusions and Future Work
	References

