Combining the Sweep-Line Method with the Use of an External-Memory Priority Queue*

Sami Evangelista¹ and Lars Michael Kristensen²

LIPN — Laboratoire d'Informatique de l'Université Paris Nord 99, av. J-B Clément, 93430 Villetaneuse, France sami.evangelista@lipn.univ-paris13.fr

² Department of Computer Engineering, Bergen University College, Norway Lars.Michael.Kristensen@hib.no

Abstract. The sweep-line method is an explicit-state model checking technique that uses a notion of progress to delete states from internal memory during state space exploration and thereby reduce peak memory usage. The sweep-line algorithm relies on the use of a priority queue where the progress value assigned to a state determines the priority of the state. In earlier implementations of the sweep-line method the progress priority queue is kept in internal memory together with the current layer of states being explored. In this paper we investigate a scheme where the current layer is stored in internal memory while the priority queue is stored in external memory. From the perspective of the sweep-line method, we show that this combination can yield a significant reduction in peak memory usage compared to a pure internal memory implementation. On an average of 60 example instances, this combination reduced peak memory usage by a factor of 25 at the cost of an increase in execution time by a factor of 2.5. From the perspective of external memory state space exploration, we demonstrate experimentally that the state deletion performed by the sweep-line method may reduce the I/O overhead induced by duplicate detection compared to a pure external memory state space exploration method.

Keywords: Algorithms and storage methods for explicit-state model checking, Engineering and implementation of software verification tools, External-memory algorithms, Sweep-line method.

1 Introduction

A large collection of explicit state space-based methods for software verification has been developed relying on various paradigms to make the approach feasible in presence of the inherent state explosion problem. Of particular relevance in the context of this paper are methods that delete states from internal memory to free storage resources during state space exploration, and methods that use external memory to increase the storage resources available.

^{*} This work has been supported by an Yggdrasil mobility grant from the Research Council of Norway (RCN) and RCN project 194521 (FORMGRID).

A. Donaldson and D. Parker (Eds.): SPIN 2012, LNCS 7385, pp. 43–61, 2012.

 $^{\ \, \}bigcirc \,$ Springer-Verlag Berlin Heidelberg 2012

Deleting states from memory during state space exploration to free storage resources is the paradigm underlying state caching [20], the to-store-or-not-store method [6], and the sweep-line method [9]. The basic idea of the sweep-line method is to exploit a notion of progress exhibited by many systems. Exploiting progress makes it possible to explore all reachable states while storing only small fragments of the state space in internal memory at a time. This means that the peak memory usage is reduced. Progress in a system can originate from, e.g., phases in a transaction protocol, sequence numbers, control flow, and retransmission counters. The foundation of the sweep-line method has been developed in several papers [9,17,23] and the method has been implemented in the ASAP verification platform [30] and the LoLA tool [27]. The sweep-line method has been applied for the software verification, in particular in the domain of protocols [18,19,21,28]. Algorithms based on directed model checking [12] are also related to the sweep-line method in that a value is associated with each state to determine the search order. In the case of directed model checking, this value is used to obtain a heuristic for how close a state is to goal (error) state.

Increasing the resources available for storing the set of visited states is the paradigm underlying external memory model checking algorithms. Checking whether a newly encountered state has already been explored (i.e., performing duplicate detection) then ultimately involves costly I/O operations. Most external memory algorithms are based on the idea of delayed duplicate detection: duplicate detections are not interleaved with state explorations but instead grouped together to reduce I/O overhead. From an I/O perspective this replaces multiple "random" accesses by a single file scan. Breadth-first search [10] is a typical exploration algorithm that can be efficiently coupled with that strategy. Another approach to reducing the I/O overhead of duplicate detection is to use partitioning [3] and store the set of currently visited states (and unprocessed states) in a set of files (e.g., one file for each partition). A single partition is then loaded into memory at a time. When no more processing is possible for the currently loaded partition, it is moved to external-memory and another partition is loaded into memory for processing. Both the breadth-first and partitioning approaches will be compared to our new algorithm in this paper. We discuss further the relationship to external-memory directed model checking when presenting the implementation of the new sweep-line algorithm.

The primary contribution of this paper is the idea of combining the sweep-line method with the use of external memory, and to conduct an extensive experimental evaluation based on an implementation in the ASAP platform [30]. Our experimental results show that our approach can be viewed as both an improvement of the sweep-line method (reducing peak memory usage) and of external memory algorithms (reducing I/O overhead). A secondary contribution is the identification and experimental evaluation of an external memory priority queue [7] in the context of explicit state model checking. Our algorithm can also be viewed as a state space partitioning algorithm that uses the progress notion of the sweep-line method to partition the state space, but this partitioning is used internally in the external memory priority queue in contrast to the explicit

partitioning approach of [3]. We thus do not have to deal with it explicitly in contrast to other external memory model checking algorithms.

Outline. In Sect. 2, we introduce the required background on the sweep-line method and external memory algorithms, and we present some initial experimental results that made us pursue the combination of the sweep-line method with the use of an external memory priority queue. In Sect. 3 we present the sweep-line algorithm that uses external memory, the data structure used to realise the priority queue in external memory, and we give a theoretical analysis of the I/O complexity of the algorithm. Section 4 presents the results from the experimental evaluation of our algorithm. Finally, in Sect. 5, we sum up the conclusions and discuss future work. The reader is assumed to be familiar with the basic ideas of explicit state space exploration methods.

2 The Sweep-Line Method and Motivation

For the presentation, we assume a universe of system states S, an initial state $s_0 \in S$, and a successor function $succ : S \to 2^S$. We want to explore the state space implied by these parameters, i.e., the triple (R, E, s_0) such that $R \subseteq S$ is the set of reachable states and $E \subseteq R \times R$ is the set of edges defined by:

$$R = \{s_0\} \cup \{ s \in \mathcal{S} \mid \exists s_1, \dots, s_n \in \mathcal{S} \text{ with } s = s_n \land \forall i \in \{0, \dots, n-1\} : s_{i+1} \in succ(s_i) \}$$

$$E = \{(s, s') \in R \times R \mid s' \in succ(s) \}$$

The progress exploited by the sweep-line method is formalised by providing a progress measure as defined below.

Definition 1 (Progress Measure). A progress measure is a tuple $\mathcal{P} = (O, \sqsubseteq, \psi)$ such that O is a set of progress values, \sqsubseteq is a total order on O, and $\psi : \mathcal{S} \to O$ is a progress mapping. \mathcal{P} is monotonic if $\forall (s, s') \in E : \psi(s) \sqsubseteq \psi(s')$. Otherwise, P is non-monotonic

A progress mapping implies a partition of edges upon progress edges marking a system step that increase the progress value (i.e., edges (s, s') with $\psi(s) \sqsubset \psi(s')$); stationary edges connecting states having the same progress value; and regress edges that decrease the progress value (i.e., edges (s, s') with $\psi(s') \sqsubset \psi(s)$).

The progress measure used by the sweep-line method can either be obtained based on a structural analysis of the model or it can be provided by the user/analyst based on knowledge about the modelled system. It is important to note that the sweep-line method can use any mapping from states to progress values. In particular, there is no proof obligation associated with a provided progress measure for the sweep-line method to work.

The operation of the sweep-line method is illustrated in Fig. 1 which depicts a generic snapshot during state space exploration. The progress mapping partitions the state space into *layers* where all states in a given layer shares the same progress values. State space exploration starts from the initial state s_0 and states

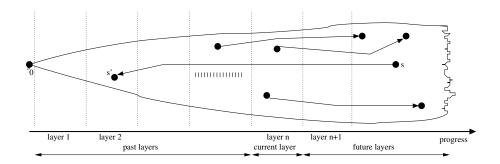


Fig. 1. Snapshot illustrating basic principle of sweep-line state space exploration

are processed (i.e., successor states calculated) in a least-progress first-order using a priority queue to store states that are still to be processed. At any given moment, the state space being explored is divided into three regions: past layers (where all states have been processed), current layer, and future layers. The heuristic assumption underlying the sweep-line method is that the system makes progress which means that no states in future layers have edges going back to states in the current or past layers. This means that once all states in the current layer n have been processed, then these can be deleted from memory, and the states in layer n+1 can now be processed. This heuristic assumption is indeed valid if the progress measure used is monotonic (which can be checked on-the-fly during the state space exploration). If the progress measure is non-monotonic, i.e., there exists regress edges leading from a state s to a state s' such that the progress value of s is larger than the progress value of s', then the sweep-line method marks s' as persistent which means that it can never be deleted again. The sweep-line method then uses multiple explorations (called *sweeps*) of the state space where new persistent states added in the current sweep are used as roots in the subsequent sweep. In case of non-monotonic progress measures, the sweep-line method may therefore explore parts of the state space multiple times. As proved in [23], complete state space coverage and termination is guaranteed.

Peak memory usage is reduced with the sweep-line method compared to conventional state space exploration due to the fact that states in past layers are not stored in memory. The actual peak experienced with the use of the sweep-line method is influenced by the number of states in each layer, the number of states generated in future layers, and the number of persistent states. A heuristic for getting a low peak memory usage is to keep the layers small and also ensure locality so that not too many states are pushed into future layers as these also need to be stored in memory. The initial hypothesis underlying the work presented in this paper was that in many cases the individual layers contains few states, but a substantial number of the states stored in memory are states in future layers that will not be processed until much later in the state space exploration. It would therefore be potentially useful to store the states in future layers in external memory instead of internal memory.

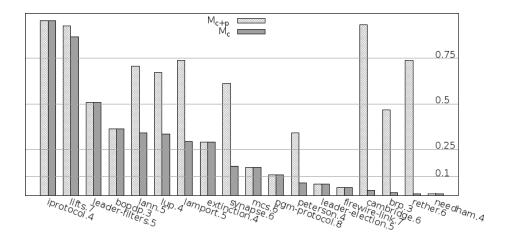


Fig. 2. Measuring memory usage of the sweep-line algorithm

As an initial investigation of this hypothesis, we report below on some statistics we collected using the ASAP [30] verification tool. We ran the sweep-line algorithm on a number of models from the BEEM database [25] and recorded for each run:

- $-M_{c+p+f}$ The peak memory usage during the state space exploration¹.
- $-M_{c+p}$ The peak memory usage when not counting states in future layers.
- $-M_c$ The peak memory usage when not counting states in future layers and persistent states in past layers.

Hence, M_{c+p} is insensitive to the quantity of states in future layers while M_c is also insensitive to the quantity of persistent states found so far. Obviously it holds that $M_{c+p+f} > M_{c+p} > M_c$.

We have plotted in Fig. 2, the values M_{c+p} and M_c for a number of models. Both values are expressed relatively to M_{c+p+f} which is given a value of 1. For instance, for model pgm_protocol.8, we have $M_{c+p} \approx M_c \approx 0.11 \cdot M_{c+p+f}$. Table 1 also gives, for each of these models, the proportion of regress (Reg.), forward (Fwd.) and stationary (Sta.) edges. Figure 2 shows that there is indeed some room for improvement. For example, the state space of model needham.4 has 6,525,019 states. The progress measure used is very successful in clustering the state space as attested by the fact that the largest layer only contains 420 states. However, the peak memory usage of the algorithm still reaches 1,339,178 states and since the state space does not have any regress edges, this means that a huge proportion of states memorised by the algorithm are states belonging to

¹ Throughout this paper, we use as a memory usage measure the number of states present in memory at a given step rather than actual memory sizes. This is due to implementation issues that prevent us from easily measuring memory usage during a run. Moreover, this measure has the advantage of being implementation independent.

Model	Edges			Model	Edges		
	Reg.	Fwd.	Sta.		Reg.	Fwd.	Sta.
bopdp.3	0.0 %	27.6 %	72.4 %	leader_filters.5	0.0 %	9.1 %	90.9 %
brp.3	3.3~%	38.6%	58.1~%	lifts.7	0.5~%	2.4~%	97.1~%
cambridge.6	3.5~%	39.8~%	56.7~%	lup.4	17.3%	82.7~%	0.0~%
extinction.4	0.0~%	22.5%	77.5~%	mcs.6	0.0 %	40.2~%	59.8~%
firewire_link.7	0.0~%	13.4~%	86.6~%	needham.4	0.0 %	30.5~%	69.5~%
iprotocol.4	0.0~%	2.4~%	97.6~%	peterson.4	1.8~%	46.7~%	51.5~%
lann.5	2.0~%	17.3~%	80.7~%	pgm_protocol.8	0.0 %	27.9%	72.1~%
lamport.5	2.9~%	19.4~%	77.6~%	rether.6	5.5~%	47.4~%	47.1~%
leader_election.5	0.0~%	29.9~%	70.1~%	synapse.6	14.7~%	60.7~%	24.6~%

Table 1. Edge distribution for the models of Fig 2

future layers that will not be processed immediately. Moreover, the distribution of edges indicates that even in the extreme case where we only keep in memory the states of the current layer (i.e., with a peak memory usage of 420 states), only 30.5% of the edges will generate an I/O since 69.5% of edges connects states within the same layer and that should be simultaneously present in memory. Note that this distribution is somehow surprising since we would expect from the small layer sizes to instead have a large majority of forward edges.

The initial investigations reported above indicated that states stored in future layers can be a main determining factor in terms of peak memory usage and that storing future layers instead in external memory would be beneficial (Fig. 2). Furthermore, compared to a pure external memory state space exploration algorithm, the deletion of states in the past layers would potentially be able to reduce the I/O overhead as there would be fewer states for which duplicate detection needs to be performed (Table 1). The latter is certainly the case when the progress measure is monotonic, and in case of non-monotonic progress measure the I/O overhead may be reduced in cases where there are not too many states being re-explored.

3 Using an External Memory Priority Queue

We introduce in this section a new algorithm that combines the sweep-line method with the use of external memory. Details are also given on the external priority queue data structure we use, as this represents a central component of our algorithm. Moreover, the description of this data structure is required to have a better insight on the I/O complexity of our algorithm which is examined in the last part of this section.

3.1 Description of the Algorithm

Algorithm 1 presents a sweep-line algorithm that uses an external priority queue Q to store future layers and persistent states. The algorithm maintains the following data structures:

- The disk files \mathcal{AP} , \mathcal{P} , and \mathcal{NP} contain, respectively, the set of <u>All Persistent</u> states found so far; the set of <u>Persistent</u> states discovered by the current sweep; and the set of <u>New Persistent</u> states obtained by as the difference of the two first ones.
- An internal memory hash table \mathcal{H} contains, during a sweep, states of the currently processed layer and a set $\mathcal{U} \subseteq \mathcal{H}$ contains states to be processed by the algorithm. Both are present in internal memory.
- An external memory priority queue Q stores, during a sweep, states in future layers. This structure also has some internal memory part as described later in this section.

The main procedure alternates between sweeps exploring the state space and detection of new persistent states. A sweep may indeed find new persistent states through the exploration of regress edges and the purpose of procedure detect-NewPersistent is to determine whether these are actually new or have already been found during previous sweep(s). This set of new persistent states, \mathcal{NP} , is computed by removing all persistent states found during previous sweeps (\mathcal{AP}) from the set of persistent states discovered during the last sweep (\mathcal{P}) . It is then inserted into \mathcal{AP} and all its elements put in the priority queue \mathcal{Q} to serve as root states during the next sweep. The difference of the two sets can be efficiently implemented by first loading \mathcal{P} into \mathcal{H} , and then reading states from \mathcal{AP} one by one to remove them from the table. If \mathcal{P} is too large to fit in memory an alternative is to first sort the states in \mathcal{P} which can be done efficiently in $\mathcal{O}(N \cdot log_2 N)$ I/O operations [1] and then merge the two files.

An iteration of procedure sweep first loads in an internal memory hash table \mathcal{H} all states of \mathcal{Q} sharing the same minimal progress value. These states are also added to \mathcal{U} to be processed by procedure expandLayer. Once this procedure has finished, sweep can terminate if the priority queue has been emptied or otherwise move to the next layer. Procedure expandLayer works as a basic exploration algorithm operating on a queue of unprocessed states \mathcal{U} and storing visited in an hash table \mathcal{H} . The only difference is that when a state s' has a different progress value than the one of the state s it is generated from, s' is put in the priority queue \mathcal{Q} if it belongs to a future layer or in the set of persistent set \mathcal{P} if it belongs to a past layer.

3.2 External Priority Queue Data Structure

A priority queue is a data structure that must support two operations: an *insert* operation; and a *deleteMin* operation that removes and returns from a queue the smallest state (i.e., with the smallest progress measure in our case). We use an external-memory data structure called *external array heaps* [7]. Our choice is mainly motivated by the simplicity of this data structure and the fact that it achieves a nearly optimal I/O complexity. External-memory directed model checking also relies on the use of a priority queue, and an external-memory priority queue designed for this context was presented in [22]. The data structure of [22] was not considered appropriate for our purposes as it may store all states

Algorithm 1. A sweep-line algorithm designed for external memory priority queues

```
1: procedure externalSweep is
                                                                      19: procedure detectNewPersistent is
           \mathcal{AP} := \emptyset
                                                                                  \mathcal{NP} := \mathcal{P} \setminus \mathcal{AP}
 2:
                                                                      20:
           Q := \{s_0\}
                                                                                  \mathcal{AP} := \mathcal{AP} \cup \mathcal{NP}
 3:
                                                                      21:
           while Q \neq \emptyset do
                                                                                  \mathcal{Q}:=\emptyset
                                                                      22:
 4:
                sweep ()
                                                                                  for s \in \mathcal{NP} do
                                                                      23:
 5:
                detectNewPersistent ()
                                                                                       Q := Q \cup \{s\}
 6:
                                                                      24:
     procedure sweep is
                                                                            procedure expandLayer is
                                                                      25:
           \mathcal{P} := \emptyset
                                                                                  while \mathcal{U} \neq \emptyset do
 8:
                                                                      26:
           while Q \neq \emptyset do
                                                                                       pick and delete s from \mathcal{U}
 9:
                                                                      27:
                \mathcal{H} := \emptyset
                                                                                       for s' \in succ(s) do
10:
                                                                      28:
                \mathcal{U} := \emptyset
                                                                                            if \psi(s') = \psi(s) then
11:
                                                                      29:
                \phi := minProgress (Q)
                                                                                                 if s' \notin \mathcal{H} then
12:
                                                                      30:
                while \phi = minProgress (Q) do
                                                                                                       \mathcal{H} := \mathcal{H} \cup \{s'\}
13:
                                                                      31:
                     s := deleteMin (Q)
                                                                                                      \mathcal{U} := \mathcal{U} \cup \{s'\}
                                                                      32:
14:
                     if s \notin \mathcal{H} then
                                                                                            else if \psi(s') \sqsubseteq \psi(s) then
15:
                                                                      33:
                                                                                                 \mathcal{P} := \mathcal{P} \cup \{s'\}
                          \mathcal{H} := \mathcal{H} \cup \{s'\}
16:
                                                                      34:
                          \mathcal{U} := \mathcal{U} \cup \{s'\}
                                                                                            else
17:
                                                                      35:
                expandLayer ()
                                                                                                 \mathcal{Q} := \mathcal{Q} \cup \{s'\}
18:
                                                                      36:
```

with the same heuristic value (i.e., the progress measure in our case) in a single file. Since the ideal progress measure clusters the state space into many small progress layers, storing each layer in a single file is not desirable.

The external array heaps structure [7] is a two level data structure with smallest states being kept in internal memory and others in external memory. Figure 3 is a graphical representation of its organisation. The internal part can be implemented with any data structure that efficiently supports insert, deleteMin and deleteMax operations. For instance, a balanced binary tree matches these requirements and we will assume this choice hereafter. The internal memory part is split in two parts: one balanced tree \mathcal{T}_{ins} storing states put in the queue via the insert operation and one balanced tree \mathcal{T}_{del} used as a buffer to store the last states read from external memory and filled in by the deleteMin operation. It is an invariant property that a state stored in external memory cannot be smaller than a state stored in internal memory (in \mathcal{T}_{ins} or \mathcal{T}_{del}).

The *insert* operation puts the new state in \mathcal{T}_{ins} . If the size of \mathcal{T}_{ins} exceeds a specified threshold denoted T, we remove the B largest states from this tree and write them into a new disk file as described below. The *deleteMin* operation removes and returns the smallest state kept in internal memory in one of the two balanced trees \mathcal{T}_{ins} or \mathcal{T}_{del} . If the state is taken from \mathcal{T}_{del} the deletion can then trigger disk accesses as described below.

Let us now describe the organisation of the external memory part of this data structure. It consists of an array of disk files. Each disk file is a sorted list of states, the smallest state first. This array is organised in levels. Each level consists of μ disk files: level 0 contains files $0, \ldots, \mu - 1$, level 1 contains files $\mu, \ldots, 2 \cdot \mu - 1$ and so on. Following an *insert* operation, we may have to write B

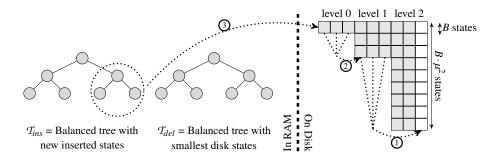


Fig. 3. Organisation of the external memory priority queue with $\mu = 3$. Dashed arrows indicate operations triggered when tree \mathcal{T}_{ins} reaches the bound of T states: merging of the 3 files of level 1 in an available slot of level 2 (op. 1), same operation for level 0 merged into a newly available slot of level 1 (op. 2), and writing of the B largest states of \mathcal{T}_{ins} in the first slot of level 0 (op. 3).

sorted states to a disk file of level 0. If there is no free slot at this level, all files of level 0 are merged resulting in a new sorted list that is written to a disk file of level 1. If level 1 is also full, we first have to merge level 1 into a new disk file of level 2 and so on. Hence, a disk file of level $l \geq 0$ always contains at most $B \cdot \mu^l$ states. The next unprocessed K states (i.e., to be removed from the queue via the deleteMin operation) of every file are kept in internal memory in the binary tree \mathcal{T}_{del} . If, following a deleteMin operation, \mathcal{T}_{del} does not contain anymore any state of a specific disk file, the K next states of this file are read and inserted in \mathcal{T}_{del} . The correctness of deleteMin stems from the fact that (1) files are sorted and (2) all the smallest unprocessed states stored in external memory are in \mathcal{T}_{del} .

The dashed arrow of Fig. 3 describes the operation sequence performed after a state insertion. If the memory tree become full, i.e., contains T states after the insertion, the largest B states must be sorted and written in a disk file associated with a slot of level 0. Since this level is full, we first have to merge its slots in a slot of level 1, which for the same reason implies to merge the slots of level 1 in the last slot of level 2 which is free (arrow 1). We can then merge level 0 in the first slot freed by the previous operation (arrow 2) and finally write the B largest states of \mathcal{T}_{ins} in the first slot of level 0 (arrow 3).

This data structure occupies at most $T+K\cdot f$ states in internal memory where f is the maximal number of disk files simultaneously in use $(T \text{ for } \mathcal{T}_{ins} \text{ and } K\cdot f \text{ for } \mathcal{T}_{del})$. Although f is theoretically unbounded, it grows logarithmically, hence it is not a problem in practice.

3.3 I/O complexity

We now examine the I/O complexity of our algorithm.

Theorem 1. Let F be the number of forward edges, P be the number of persistent states computed by Alg. 1 (i.e., set \mathcal{AP}) and w be the number of sweeps

performed by the algorithm (i.e., calls to procedure sweep). Algorithm 1 with the external priority queue data structure presented in Sect. 3.2 and parametrised by levels of size μ and an internal memory buffer of size B performs at most $P \cdot (w+2) + w \cdot F \cdot 2 \cdot \log_{\mu} \left(\frac{F}{B} + 1 \right)$ state I/Os.

Proof. A persistent state is read and written once in \mathcal{NP} . It is then read from \mathcal{AP} during each subsequent call to procedure detectNewPersistent (invoked once for every sweep). This procedure thus performs at most $P \cdot (w+2)$ state I/Os.

Since only forward edges generate states put in the priority queue \mathcal{Q} , the size of this structure is bounded by F. The largest level containing disk files is the smallest integer l^m satisfying: $\mu \cdot \sum_{i \in [0..l^m]} \mu^i \cdot B \geq F$ where $\mu^i \cdot B$ denotes the number of states stored in each disk file of level i. Since $\sum_{i \in [0..l^m]} \mu^i = \frac{\mu^{l^m+1}-1}{\mu-1}$, it follows that $\mu \cdot \frac{\mu^{l^m+1}-1}{\mu-1} \geq \frac{F}{B}$ and that $l^m \geq \log_{\mu} \left(\frac{F}{B} \cdot \frac{\mu-1}{\mu} + 1\right) - 1$. Now let $l = \log_{\mu} \left(\frac{F}{B} + 1\right) - 1 > l^m$. The destination state of a forward edge is written once in a file of level 0 and then due to level merging, it can be moved l times from any level $i \in \{0, \dots, l-1\}$ to level i+1. This implies at most $2 \cdot (l+1)$ I/Os per state. Since each sweep performed by the algorithm can explore all the F forward edges, it follows that the overall number of state I/Os performed to maintain the priority queue is bounded by $w \cdot F \cdot 2 \cdot \log_{\mu} \left(\frac{F}{B} + 1\right)$.

For the sake of comparison, we give in Table 2 the I/O complexity of two other external memory algorithms: $\mathsf{BFS}^\mathsf{ext}$, the external memory breadth-first search from [10] and PART, a state space partitioning based algorithm from [3]. Using $\mathsf{BFS}^\mathsf{ext}$, a state will be written once in external memory when first met, and then read once during each of the subsequent duplicate detections. Since the algorithm performs exactly one duplicate detection per BFS level, a state s will be read at most h times where h is the height of the graph, i.e., the number of BFS levels.

An important parameter for the I/O complexity of PART is the number of cross edges implied by the partitioning function mapping states to partitions. A cross edge is an edge linking to states belonging to different partitions. To give a better insight of its complexity we recall that the principle of algorithm PART is to cluster the state space using a partition function and to store each partition in a single disk file. During the exploration, only one partition is loaded in memory

Table 2. Comparison of I/Os bound of three external memory algorithms

Algorithm	Source	State I/Os bound
BFS ^{ext}	[10]	$S \cdot (1+h)$
PART	[3]	$S \cdot (1 + C^{max})$
SL ^{ext}	This work	$P \cdot (w+2) + w \cdot F \cdot 2 \cdot \log_{\mu} \left(\frac{F}{B} + 1\right)$

 $S = \overline{\text{states in the graph}}$ $C^m = \text{max. over all partitions } p \text{ of cross edges}$ with a destination in p

F =forward edges P =persistent states computed by Alg. 1

h = height of the graph w = sweeps performed by Alg. 1

at a time. Any cross edge (s, s') visited by the algorithm is eventually followed by the reading of the disk file associated with the partition of s' to check whether s' is a new state or not. With this algorithm, a state will be written once in external memory when first met and then read again each time the partition it is stored in is loaded in memory, hence at most C^m times where C^m is the maximum over all partitions p of cross edges with a destination in p.

In the case of BFS^{ext}, the bound given is usually close to the number of I/Os actually performed while the practical I/O complexity of PART is in general much smaller than the theoretical bound we give here. The proportion of cross edges has nevertheless a large impact on its performance. Similarly, the bound of Algorithm 1 may seem high at first sight since the number of sweeps performed by the algorithm is bounded by the number of regress edges. However, in practice, w is usually low, typically less than 10. This is precisely why the sweep-line method works well in practice for a wide range of models. First because the progress measure provided usually generates few regress edges. Second because it is very seldom that a single sweep identifies only one new persistent state which in turn means that the number of iterations performed is usually not correlated to the number of regress edges. Moreover, the upper bound we give here does not take into account caching effects that might further decrease the amount of disk accesses. This occurs when the destination state s of a forward edge is already present in T_{ins} when the edge is explored. Then the queue is unchanged.

4 Experimental Evaluation

We have implemented the external memory algorithm introduced in Sect. 3 in the ASAP verification platform [30] and experimented with models of the BEEM database [25]. We automatically derived a progress measure based on an off-line analysis of the full state spaces. Our progress measures project the state vector of the system to a subset of its components. This subset is selected in an heuristic way: each progress measure generated has a level ranging from 1 to 6 corresponding to a bound on the proportion of regress edges. At level 1 the progress measure is guaranteed to be monotonic and the proportion increases with the level to reach 20% at level 6.

We compared our external algorithm (denoted SL^{ext}) to the internal memory sweep-line algorithm of [23] (denoted SL) and to the external memory algorithms BFS^{ext} [10] and PART [3] combined with the dynamic partitioning strategy we introduced in previous work [15]. For each model, we first ran SL and SL^{ext} , and then BFS^{ext} and PART giving them the same memory amount that was used by SL^{ext} . The priority queue of SL^{ext} has been parametrised as follows: $\mu = 10, T = 20,000, B = 10,000$ and K = 1,000. We recall that the memory usage of the priority queue data structure is bounded by $T + K \cdot f$ where f is the maximal number of files simultaneously in use. We also experimented with different comparable (wrt. memory usage) parameter configurations but since this had few consequences we selected the configuration above.

The 43 instances we selected all have between 1,000,000 and 50,000,000 states and each instance has from 1 to 6 progress measures. This selection resulted in 125 pairs (model instance, progress measure) analysed. Out of these 125 pairs we only kept those for which SL^{ext} consumed significantly less memory than SL(selected to be 5 times less the consumption of SL) and leave out the other pairs. Keeping instances for which both algorithms consumed a comparable amount of memory would indeed not be relevant to study the performances of SL^ext and may moreover lead to a biased analysis. This second filtering resulted in 60 pairs of which we picked out a representative set of 16 instances to be presented in this section. These models are listed in Table 3 together with some experimental results obtained with algorithm SL^{ext}. Peak memory corresponds to the maximal number of states stored in internal memory during the search (regardless of their location). Revisit factor is the number of states visited by algorithm SL^{ext} relative to the number of states in the state space (i.e., column States). Columns Visited gives the number of edges visited by algorithm SL^{ext} . It may then be larger than the number of edges in the state space if the revisit factor is larger than 1. The last three columns give the distribution of these visited edges upon regress, forward and stationary edges.

Comparison of Memory Usage and Disk Access. Figure 4 compares SL^{ext} to SL with respect to peak memory usage and to PART with respect to state I/Os. We deliberately left out data of algorithm BFS^{ext} in Fig. 4 (and Fig. 5). As attested by Table 4, BFS^{ext} was not competitive on these models and including its results in the figures would have reduced their readability. We gave the data

		Results of SL ^{ext}					
Model	States	Peak Revisit Edges					
		memory	factor	Visited	Reg.	Fwd.	Sta.
bakery.6	11,845,035	30,119	1.305	52,406,033	11.3 %	51.0%	37.6%
bopdp.7	15,236,725	32,244	2.566	100,779,572	1.0~%	37.6%	61.4%
brp.4	12,068,447	43,892	1.122	27,752,570	1.1~%	40.3%	58.6%
cambridge.6	3,354,295	39,392	12.360	106,771,249	3.5~%	39.8%	56.7%
elevator2.3	7,667,712	30,811	1.172	64,737,253	0.3~%	88.4%	11.2%
extinction.7	20,769,427	85,764	1.215	92,560,320	1.8~%	35.3%	62.9%
firewire_link.5	18,553,032	128,620	1.000	59,782,059	0.0~%	6.9%	93.1%
firewire_tree.5	3,807,023	22,837	1.000	18,226,963	0.2~%	80.8%	19.0%
iprotocol.6	41,387,484	89,480	1.724	239,771,446	3.8~%	22.8%	73.5%
leader_election.5	4,803,952	32,400	1.000	28,064,092	0.5~%	53.5%	46.0%
needham.4	6,525,019	30,420	1.000	22,203,081	0.0~%	30.5%	69.5%
peterson.4	1,119,560	38,338	5.286	19,974,479	1.8~%	46.7%	51.5%
pgm_protocol.10	29,679,589	25,142	1.324	81,985,078	2.5~%	55.7%	41.8%
plc.4	3,763,999	2,447	1.043	6,358,220	1.1~%	11.3%	87.5%
rether.6	5,919,694	31,599	1.496	11,902,295	5.5~%	47.4%	47.1%
synapse.7	10,198,141	203,448	1.333	24,201,729	11.2~%	66.9%	21.9%

Table 3. Statistics on selected models with experimental results of SL^{ext}

observed with SL or PART a reference value of 1. For example, with instance firewire_tree.5, SL^{ext} used 5–6% of the internal memory used by SL and performed 10–12% of the state I/Os performed by PART.

The conclusions we can draw from Fig. 4 are rather positive as the general trend in that SL^{ext} consumes significantly less memory than SL while performing less disk accesses than PART. The comparison of SL and SL^{ext} confirm our initial intuition that SL is sometimes unable to significantly reduce the peak memory usage although the progress measure used efficiently divides the state space upon multiple progress layers. Out of the 16 instances we selected, our algorithm performed a comparable number of I/Os with respect to PART on 2 instances: elevator 2.3 and synapse. 7. The high proportion of forward edges (that increases disk accesses performed by SL^{ext}) combined with the special shape of their state space (wide and short) which makes them especially suited for PART can explain this difference. The figure indeed attests that the shape of the graph has an impact on the disk accesses performed by the two algorithms. The advantage of SL^{ext} over PART is more significant when the state space is long and narrow, e.g., for instances plc.4 or rether.6. If we only consider disk accesses, the performances of PART degrade for these models while SL^{ext} is insensitive to that parameter. For some models like cambrige.6 and (to a lesser extent) bopdp.7, Table 3 shows that, it is likely that the relatively high amount of state I/Os performed stems from the revisit factor of algorithm SL^{ext} (whereas PART does not revisit states).

Comparison of Execution Times. Figure 5 gives the execution times of algorithms SL, PART and SL^{ext} on the same instances. For each model we gave to the slowest algorithm a reference value of 1, and the execution times of the two other algorithms are expressed relatively to this one. We see a correlation between the disk accesses we previously observed and the execution times of SL^{ext} over PART. For most instances on which SL^{ext} performed significantly less disk accesses it outperformed PART. This is the case for instances brp.4, plc.4 or rether.6. Models firewire_link.5 and firewire_tree.5 go against this trend for reasons explained below. Nevertheless, the conclusions are somewhat disappointing in that the clear advantage of SL^ext over PART with respect to disk accesses is less significant when it comes to execution times even though we will see below that SL^{ext} is, on the average, faster than PART. One reason is that SL^{ext} visits more states that PART and the visit of a state implies some non-trivial operations like the computation of enabled events and the generation of successor states. We also profiled the code of some instances, and found out that comparing states according to their progress values — operations that are not performed by PART — contribute to degrade the relative performances of SL^{ext}. This operation is performed not only during state exploration but also during the merging of files operated for maintaining the priority queue. This explains the divergence between disk accesses and execution times for models firewire_link.5 and firewire_tree.5. On these two models, internal memory operations are the most time consuming operations and disk accesses play a lesser role.

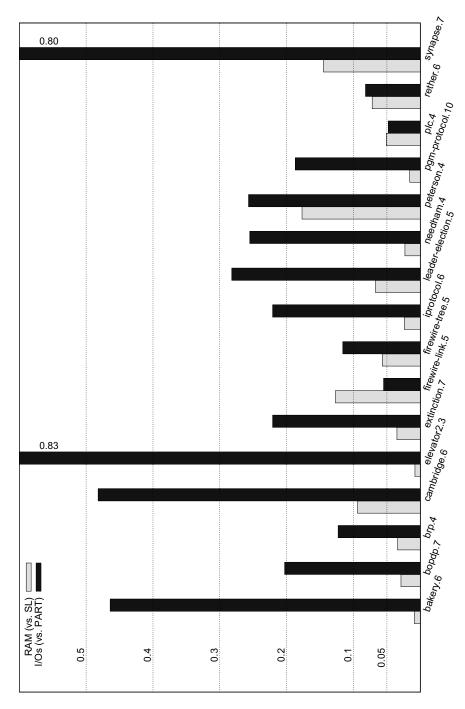


Fig. 4. Peak memory usage of SL^{ext} (this work) compared to SL [23] and state I/Os performed by SL^{ext} compared to PART [3] on the instances of Table 3

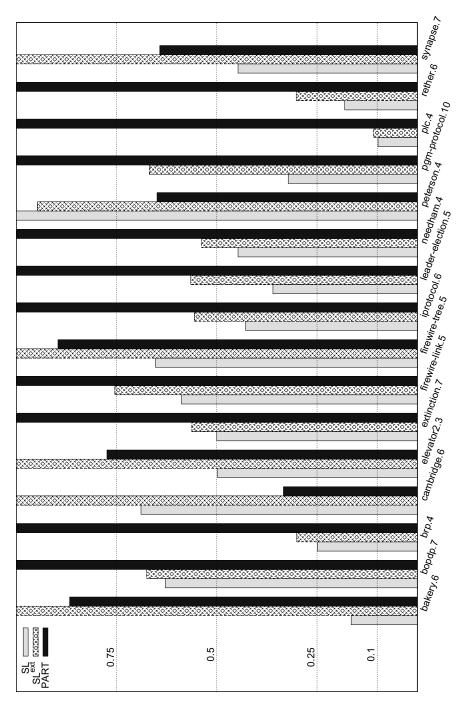


Fig. 5. Execution times of algorithms SL [23], SL^ext (this work) and PART [3] on the instances of Table 3

Summary of Experiments. We conclude this analysis with Table 4 that compares SL^{ext} to the three other algorithms we experimented with. Each cell gives for a specific parameter (Time, I/Os per state, or Memory usage) the result of a specific algorithm averaged on our 60 problem instances and with respect to SL^{ext} . For example, on the average of our 60 instances, SL^{ext} has been 8.29 times faster than BFS^{ext}.

As we previously mentioned, the table shows that BFS^{ext} is not competitive with other algorithms. This observation must however be nuanced by the fact that several heuristics have been proposed [5,14,24] in order to reduce the impact of duplicate detection (i.e., checking whether newly generated states are already present in previous BFS layers), which is clearly the most costly operation performed by BFS^{ext}. These are highly effective for long graphs that are the worst candidates for BFS^{ext}. A detailed comparison with BFS^{ext} based on the more advanced heuristics is part of future work.

PART generates significantly more disk accesses than SL^{ext} but the latter is only approximately twice faster than PART for the reasons given above. The table also shows that keeping the priority queue and the persistent states in external memory does not bring an intolerable increase of the run time especially if we relate the increase of the execution time to the important memory usage reduction we observe. This suggests that SL^{ext} can be an interesting alternative when the I/O overhead of PART is too severe and SL fails to reduce peak memory usage even if the progress measure efficiently splits the state space upon multiple small layers. Figures 4 and 5 show that models like brp.4, plc.4 or rether.6 are good application examples for our algorithm.

	SL ^{ext}	SL	PART	BFS ^{ext}
Time	$\times 1.00$	× 0.40	$\times 1.88$	\times 8.29
I/Os per state	$\times 1.00$	$\times 0.00$	\times 9.27	\times 217.50
Memory usage	$\times 1.00$	$\times 27.74$	$\times 1.00$	$\times 1.00$

Table 4. Summary of performance on 60 problem instances

5 Conclusions and Future Work

In this paper we have explored the combination of the sweep-line method and the use of external memory. The key to this combination is the use of an external memory priority queue for storing states that are not in the current layer of states being processed. Using the benchmark suite of examples from the BEEM database, we have experimentally demonstrated that the combined approach significantly reduced peak memory usage (compared to the conventional RAM-based sweep-line method) and that the combination in many cases also reduces I/O operations (compared to a conventional external memory state space exploration). Furthermore, the reduction in peak memory usage comes with an acceptable run-time penalty caused by the external memory priority queue. A nice property of the combined approach is its compatibility with all existing

sweep-line based algorithms as none of these rely on a particular implementation of the progress priority queue. In particular, it can therefore be used in the context of safety model checking [23]. We discuss below three areas of future work originating from the results presented in this paper.

LTL Model Checking. Checking LTL properties is, in an automata-based approach [29], reduced to a cycle detection problem and classical in-memory algorithms uses a depth-first search (DFS) for this purpose. Unfortunately DFS is not compatible with delayed duplicate detection in that the next state being processed is always the last generated. Hence, a variety of algorithms, that often come from the world of distributed memory model checking, have been designed for external-memory LTL model checking: [4,5,11,13]. The sweep-line LTL algorithm of [16] also follows the automata-theoretic approach. It searches for accepting cycles by using a variation of the MAP algorithm [8] that is compatible with our progress-first search order, and also combines well with any type of priority queue. A direct research perspective is thus to experimentally evaluate how well the sweep-line LTL algorithm of [16] equipped with an external memory priority queue competes with other external-memory algorithms for LTL model checking.

Quality of Progress Measures. With the use of an external memory priority queue our experiments demonstrate that we are able to unleash more of the potential of the sweep-line method and that reduction in peak memory usage can be significant. A follow-up research question is therefore whether the sweep-line method has more potential memory reduction that can be leveraged, i.e., how close are the provided/computed progress measures in terms of being optimal? For progress measures that are monotonic, the size of the largest strongly connected component is a lower bound on the reduction that can be obtained since all states belonging to a strongly connected component must have the same progress measure. For non-monotonic progress measures it is less obvious how to compute a good lower bound since the presence of regress edges must also be taken into account, and since optimality now needs to take into account both space (peak memory usage) and time (due to re-exploration caused by regress edges). Computing optimal progress measure hence remains an open and relevant aspect to explore as part of future work.

External-Memory Queues. In this paper we made the choice of external array-heaps [7] adapted from [2] to implement our algorithm. This was motivated by the simplicity of this data structure and its nearly optimal IO complexity. It is clearly of relevance to investigate the use of other forms of external priority queues. In that perspective, a first option is to combine our algorithm with the sequence heaps data structure [26] that according to [26] is a re-engineering of external array-heaps that is more efficient with respect to both I/Os and memory usage thanks to the explicit use of the different levels of memory. Second, external radix-heaps [7] seem to achieve better performance in practice than external array-heaps by relaxing the pre-requisites of the priority queue specification. Its

design indeed makes the assumption that the priority queue is monotonic in the sense that the successive calls to *deleteMin* return a sorted sequence of items. Since a sweep explores states with increasing progress measures this assumption holds in our case and this structure thus seems to be an interesting alternative. Finally, we also observe that for preserving termination, it is only required that persistent states are identified during a sweep, put in a separate set, and ignored by the current sweep. The sweep-line can hence move backward and forward during a sweep. As long as regress edges are taken care of, the sweep-line will eventually converge and the sweep will terminate. This means that any form of queue can theoretically be used although a "strict" priority queue ensures that a sweep cannot revisit states (although states can then be visited multiple times during different sweeps). Starting from this observation, another research direction is to evaluate whether relaxing the priority queue requirements can further help reduce disk accesses. This can naturally come at the cost of state revisits meaning that a trade-off would have to be made.

References

- 1. Aggarwal, A., Vitter, J.S.: The Input/Output Complexity of Sorting and Related Problems. Commun. ACM 31(9), 1116–1127 (1988)
- 2. Ahuja, R.K., Mehlhorn, K., Orlin, J.B., Tarjan, R.E.: Faster Algorithms for the Shortest Path Problem. J. ACM 37(2), 213–223 (1990)
- Bao, T., Jones, M.: Time-Efficient Model Checking with Magnetic Disk. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 526–540. Springer, Heidelberg (2005)
- Barnat, J., Brim, L., Šimeček, P.: I/O Efficient Accepting Cycle Detection. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 281–293. Springer, Heidelberg (2007)
- Barnat, J., Brim, L., Šimeček, P., Weber, M.: Revisiting Resistance Speeds Up I/O-Efficient LTL Model Checking. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 48–62. Springer, Heidelberg (2008)
- Behrmann, G., Larsen, K.G., Pelánek, R.: To Store or Not to Store. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 433–445. Springer, Heidelberg (2003)
- Brengel, K., Crauser, A., Ferragina, P., Meyer, U.: An Experimental Study of Priority Queues in External Memory. In: Vitter, J.S., Zaroliagis, C.D. (eds.) WAE 1999. LNCS, vol. 1668, pp. 346–360. Springer, Heidelberg (1999)
- 8. Brim, L., Cerná, I., Moravec, P., Simša, J.: Accepting Predecessors Are Better than Back Edges in Distributed LTL Model-Checking. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 352–366. Springer, Heidelberg (2004)
- Christensen, S., Kristensen, L.M., Mailund, T.: A Sweep-Line Method for State Space Exploration. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 450–464. Springer, Heidelberg (2001)
- 10. Dill, D.L., Stern, U.: Using Magnetic Disk Instead of Main Memory in the Mur ϕ Verifier. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 172–183. Springer, Heidelberg (1998)
- Edelkamp, S., Jabbar, S.: Large-Scale Directed Model Checking LTL. In: Valmari,
 A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 1–18. Springer, Heidelberg (2006)
- 12. Edelkamp, S., Leue, S., Lluch-Lafuente, A.: Directed Explicit-state Model Checking in the Validation of Communication Protocols. STTT 5(2-3), 247–267 (2004)

- Edelkamp, S., Sanders, P., Šimeček, P.: Semi-external LTL Model Checking. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 530–542. Springer, Heidelberg (2008)
- 14. Evangelista, S.: Dynamic Delayed Duplicate Detection for External Memory Model Checking. In: Havelund, K., Majumdar, R. (eds.) SPIN 2008. LNCS, vol. 5156, pp. 77–94. Springer, Heidelberg (2008)
- 15. Evangelista, S., Kristensen, L.M.: Dynamic State Space Partitioning for External Memory State Space Exploration. Science of Computer Programming (in press, 2012)
- Evangelista, S., Kristensen, L.M.: Hybrid On-the-Fly LTL Model Checking with the Sweep-Line Method. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol. 7347, pp. 248–267. Springer, Heidelberg (2012)
- 17. Gallasch, G.E., Billington, J., Vanit-Anunchai, S., Kristensen, L.M.: Checking Safety Properties On-the-fly with the Sweep-Line Method. STTT 9(3-4), 371–392 (2007)
- 18. Gallasch, G.E., Han, B., Billington, J.: Sweep-Line Analysis of TCP Connection Management. In: Lau, K.-K., Banach, R. (eds.) ICFEM 2005. LNCS, vol. 3785, pp. 156–172. Springer, Heidelberg (2005)
- 19. Gallasch, G.E., Ouyang, C., Billington, J., Kristensen, L.M.: Experimenting with Progress Mappings for the Sweep-Line Analysis of the Internet Open Trading Protocol. In: CPN, pp. 19–38 (2004)
- Godefroid, P., Holzmann, G.J., Pirottin, D.: State-Space Caching Revisited. In: Probst, D.K., von Bochmann, G. (eds.) CAV 1992. LNCS, vol. 663, pp. 178–191. Springer, Heidelberg (1993)
- Gordon, S., Kristensen, L.M., Billington, J.: Verification of a Revised WAP Wireless Transaction Protocol. In: Esparza, J., Lakos, C.A. (eds.) ICATPN 2002. LNCS, vol. 2360, pp. 182–202. Springer, Heidelberg (2002)
- 22. Jabbar, S., Edelkamp, S.: Parallel External Directed Model Checking with Linear I/O. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 237–251. Springer, Heidelberg (2005)
- 23. Kristensen, L.M., Mailund, T.: A Generalised Sweep-Line Method for Safety Properties. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS, vol. 2391, pp. 549–567. Springer, Heidelberg (2002)
- Lamborn, P., Hansen, E.A.: Layered Duplicate Detection in External-Memory Model Checking. In: Havelund, K., Majumdar, R. (eds.) SPIN 2008. LNCS, vol. 5156, pp. 160–175. Springer, Heidelberg (2008)
- 25. Pelánek, R.: BEEM: Benchmarks for Explicit Model Checkers. In: Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg (2007), http://anna.fi.muni.cz/models/
- 26. Sanders, P.: Fast Priority Queues for Cached Memory. ACM Journal of Experimental Algorithmics 5, 312–327 (1999)
- 27. Schmidt, K.: LoLA A Low Level Analyser. In: Nielsen, M., Simpson, D. (eds.) ICATPN 2000. LNCS, vol. 1825, pp. 465–474. Springer, Heidelberg (2000)
- Vanit-Anunchai, S., Billington, J., Gallasch, G.E.: Analysis of the Datagram Congestion Control Protocols Connection Management Procedures using the Sweep-line Method. STTT 10(1), 29–56 (2008)
- 29. Vardi, M.Y., Wolper, P.: An Automata-Theoretic Approach to Automatic Program Verification. In: LICS 1986, pp. 332–344 (1986)
- 30. Westergaard, M., Evangelista, S., Kristensen, L.M.: ASAP: An Extensible Platform for State Space Analysis. In: Franceschinis, G., Wolf, K. (eds.) PETRI NETS 2009. LNCS, vol. 5606, pp. 303–312. Springer, Heidelberg (2009)