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Abstract Partial order reduction limits the state explosion
problem that arises in model checking by limiting the
exploration of redundant interleavings. A state space search
algorithm based on this principle may ignore some inter-
leavings by delaying the execution of some actions provided
that an equivalent interleaving is explored. However, if one
does not choose postponed actions carefully, some of these
may be infinitely delayed. This pathological situation is com-
monly referred to as the ignoring problem. The prevention
of this phenomenon is not mandatory if one wants to verify
if the system halts but it must be resolved for more elaborate
properties like, for example, safety or liveness properties.
We present in this work some solutions to this problem. In
order to assess the quality of our propositions, we included
them in our model checker Helena. We report the result of
some experiments which show that our algorithms yield bet-
ter reductions than state of the art algorithms like those imple-
mented in the Spin tool.
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1 Introduction

Model checking [7], or state space analysis, is a formal
method to prove that finite state systems match their specifi-
cation. Given a model of the system and a property, usually
expressed in a temporal logic such as LTL, it explores all the
possible configurations, i.e., the state space, of the system to
check the validity of the property. Despite its simplicity, its
practical application is limited due to the well-known state
explosion problem [32]: the state space can be far too large
to be explored in a reasonable time or to fit within the avail-
able memory. Consequently, the design of methods able to
cope with this problem has gained a lot of interest in the
verification community.

In the context of explicit state model checking, several
approaches can be considered to counteract this phenome-
non. One can for example exploit the structure of the system
that often induces some symmetries [6,19]; compress state
representation to virtually reduce the problem size [13,17];
distribute the search to benefit from the aggregate computa-
tional power and memory of a cluster of machines [15,28]; or
make use of external memory [1,9]. The literature is replete
with such examples.

In this article we focus on another technique, partial order
reduction (POR) [16,26,31]. This approach tackles one of the
main source of state explosion: the concurrent execution of
several components. It is based on the following observation:
due to the interleaving semantic of concurrent systems, a set
of different executions can have exactly the same effect on
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the system and be only a permutation of the same sequence.
Thus, an efficient way to reduce the state explosion would
be to explore only a single or some representative executions
and ignore all the others permutations that are equivalent to
the chosen ones.

On the basis of this principle, several authors proposed
the idea of a selective search algorithm: at each state visited
by the algorithm, a set of transitions is computed and only
the transitions of this set are used to generate the immediate
successors of the state. The execution of the other transitions
is postponed and delegated to a future state. Consequently
some states may never be explored. In the best case, the state
space is reduced in an exponential way.

The ignoring problem, first identified in [30], is a patho-
logical situation that may arise if one does not choose sets
carefully: a transition may be infinitely delayed. This means
that the transition selection function can be totally unfair
with respect to some process of the system. Though the pre-
vention of this phenomenon is not mandatory if one wants to
check if the system deadlocks, it must be resolved for “higher
level” properties, e.g., safety or liveness properties. The idea
is to enforce an additional condition, called proviso, which
ensures that the selection function will never forget a tran-
sition. By strengthening the acceptance conditions of a set,
the proviso may cause new states to be generated, thereby
limiting the effect of partial order reduction. It is thus crucial
to have an efficient proviso that introduce the least number
of states while still ensuring the correctness of the reduc-
tion.

In this paper, we propose two new versions of this pro-
viso which show good results as illustrated by accompany-
ing experiments. Their aim is to relax the condition of the
in-stack check based proviso by allowing some transitions
outgoing from reduced states to reach the stack. For safety
properties our proviso improves the in-stack check based pro-
viso [16] and is strictly better in the sense that from a given
state s it will always compute smaller sets of executable tran-
sitions. This is however not the case for our liveness proviso
that is in general incomparable with the in-stack check based
proviso.

The paper is structured as follows. Section 2 contains some
basic elements on model checking and partial order reduction
that are needed for the understanding of this paper. Section 3
introduces different approaches proposed to deal with the
ignoring problem. In Sect. 4 we explain our motivations and
show why, in our view, there is still a need for other algo-
rithms. Our contribution are the new versions of the proviso
presented in Sects. 5 and 6. We then report in Sect. 7 the
results of some experiments done with our model checker
that implements the proposed algorithms as well as state of
the art algorithms. At last, Sect. 8 summarizes our contribu-
tion.

2 Formal background

2.1 State transition graphs

We will develop our ideas in the frame of state transition
graphs (STG). An STG is a directed graph that describes all
the possible evolutions of a system.

Definition 1 (State transition graph (STG)) An STG is a
4-tuple (S, s0,A, T ) where S is a finite set of states; s0 ∈ S
is the initial state of the system; A is a set of actions;
T ⊆ S × A × S is the transition relation, which is such
that {(s, a, s′), (s, a, s′′)} ⊆ T ⇒ s′ = s′′.

Let (S, s0,A, T ) be an STG. If (s, a, s′) ∈ T then we note
s

a→ s′ and we say that s′ is a successor of s. An action a ∈ A
is enabled for s ∈ S, denoted s

a→, iff there exists s′ ∈ S such
that s

a→ s′. We can also note s → s′ if there exists a ∈ A
such that s

a→ s′. The set of enabled actions at a state s ∈ S,
denoted en(s), is defined by en(s) = {a ∈ A | s

a→}. A state
s is a dead state iff en(s) = ∅. If n ∈ N, s1, . . . , sn ∈ S,
a1, . . . , an−1 ∈ A and si

ai→ si+1 for all i ∈ {1, . . . , n −
1} then s1

a1→ · · · an−1→ sn is called an execution sequence
(or more simply sequence). States s2, . . . , sn are said to be
reachable from s1. We may also write s1 →∗ sn . A state is
reachable iff it is reachable from s0.

Since our approach deals with deterministic transition sys-
tems there is no ambiguity between actions and transitions
when mentioning a single state s. Hence, in many places
thereafter we will use both terms indifferently, e.g., execute
an action or execute a transition.

2.2 Partial order reduction

Partial order reduction [16,26,31] restricts the part of the state
space that needs to be explored during verification in such a
way that all properties of interest are preserved. The reduction
is achieved on-the-fly, i.e., during the state space exploration
to avoid the construction of the full state space. The underly-
ing principle is to select for each state some enabled actions
that will be executed while the others are postponed to a
future state. This selection mechanism is formalized through
the notion of reduction function.

Definition 2 (Reduction function) A reduction function r
for an STG (S, s0,A, T ) is a mapping from S to 2A such
that ∀s ∈ S : r(s) ⊆ en(s).

When en(s) = r(s) for some state s the function does not
provide any reduction. We say that s is fully expanded. Oth-
erwise, it is partially expanded. An action a is postponed in
s iff a ∈ en(s) \ r(s).

By applying such a reduction function, one can build a
reduced graph.
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Solving the ignoring problem for partial order reduction 157

Fig. 1 A basic depth-first search algorithm (dfs) and a depth-first search algorithm based on partial order reduction (dfs- por)

Definition 3 (Reduced STG) Let G = (S, s0,A, T ) be an
STG and r be a reduction function for G. The reduced STG
(Sr , s0r ,Ar , Tr ) of G by r is defined by:

– s0r = s0, Ar = A.
– s ∈ Sr iff there is a finite execution sequence

s0
a0→ . . .

an−1→ sn such that s = sn and ai ∈ r(si ), ∀si ∈
{s0, . . . , sn−1}.

– (s, a, s′) ∈ Tr iff s ∈ Sr , (s, a, s′) ∈ T and a ∈ r(s).

Thereafter we shall also used the notations s →r s′, s
a→r ,

s
a→r s′ and s →∗

r s′ for the reduced graph.
This definition implicitly assumes that a reduction of an

STG is also an STG, i.e., it is finite. This trivially follows
from the fact that transitions of the reduced graph form a
subset of the initial graph’s transitions.

Figure 1 presents two exploration algorithms, dfs and
dfs- por that explores the state space in a depth-first man-
ner. Both keep track of visited states by maintaining a set
V . The first one visits all states while the second one may
miss some. The only difference between the two is at line
visit.2.1 For a state s dfs- por only executes the actions of
r(s) ⊆ en(s) and ignores the actions in en(s) \ r(s) whereas
dfs systematically executes all enabled actions.

2.2.1 Partial order reduction for deadlock detection

It is clear that a selection function has to respect some
rules to preserve properties of interest. This led to several
variations of the reduction according to the kind of property
specified. However, since the general principle of the par-
tial order reduction theory is to exploit the commutativity
of concurrent actions to limit useless interleavings, the key
idea of independence of actions is a common point of many
algorithms. Intuitively, two actions a and b are independent

1 Thereafter, we shall denote by proc.n the nth line of procedure proc.

if they cannot disable each other and if they commute in any
state of the system.2

Definition 4 (Independence) An independence relation is a
symmetric and anti-reflexive relation I ⊆ A × A satisfying
the two following conditions for each state s ∈ S and for
each (a, b) ∈ I .

Enabledness if a, b ∈ en(s) and s
b→ s′ then a ∈ en(s′).

Commutativity if a, b ∈ en(s) then

∃s′, s′′, s′′′ : s
a→ s′′ b→ s′ and s

b→ s′′′ a→ s′.

Two actions a and b are independent iff (a, b) ∈ I . Other-
wise, they are dependent and (a, b) belongs to the relation
(A × A) \ I .

This independence relation is usually computed before the
exploration of the state space on the basis of a static analy-
sis of the model. An action that only manipulate local vari-
ables, e.g., an assignment to a local variable will be typically
considered as independent from any other action. Commu-
nication primitives may also be considered, under some
circumstances, as independent from other actions. For
instance, if we can prove that a process is the only one to
receive data on a specific channel, any reception on this chan-
nel can be considered as independent from any other action.

We are now able to enumerate the two following con-
ditions which allow us to compute a persistent set (PS) of
actions for a state s [16].

C0 r(s) = ∅ iff en(s) = ∅.

C1 For any execution sequence s1
a1→ · · · an−1→ sn with

n > 1 and such that s = s1 and ai /∈ r(s) for all i with
1 ≤ i < n: action an−1 is independent in sn−1 with all
actions in r(s).

2 For some algorithms it is sufficient that a sequence a.b can be replaced
by b.a while the opposite direction is not required. Algorithms based
on weak stubborn sets [30,33] fall in that category.

123



158 S. Evangelista, C. Pajault

v

t2t1 u1u2

(a)

t2

t1

t2 u1 t1 u2

u1

u1 t2 u2 t1

v

u2

(b)

u1t1

t2 u1 t1 u2

u1 t2 u2 t1

v

u2 t2

(c)

Fig. 2 A Petri net (a), its state space (b) and a possible reduction with
conditions C0 and C1 (c)

A reduction function that compute persistent sets preserves
all the dead states of the system [16] and can thus be used
for the detection of such states. The only purpose of C0 is to
guarantee that the search algorithm with reduction progresses
if the normal one does. The intuition behind condition C1 is
that after the execution of any sequence that only includes
actions outside r(s) all the actions of r(s) will still be exe-
cutable. Thus we can execute them immediately and delay
the execution of the others.

Figure 2a gives a graphical representation of a simple Petri
net. This one models the behavior of two processes that per-
form two internal actions and then synchronize through tran-
sition v. The state space of this Petri net has been drawn in
Fig. 2b. Using partial order reduction we exploit the fact that
for any (t, u) ∈ {t1, t2} × {u1, u2} transitions t and u are
independent as they do not share any place. Thus if transition
t1 or t2 is executable we can ignore transitions u1 and u2
and reciprocally. Therefore, partial order reduction saves us
the visit of the dashed arcs and nodes of the graph depicted
in Fig. 2c.

2.2.2 The ignoring problem

A search algorithm that computing persistent sets may infi-
nitely delay the execution of some actions and miss states of
interest. This dangerous situation, first identified by Valmari
in [30], is commonly called action ignoring problem. This
phenomenon can be illustrated with the help of the net system
depicted in Fig. 3. Using conditions C0 and C1 we can build
a reduced state space that only contains a single state with

t

t t

Reduced graphFull graph

t

t

Fig. 3 The ignoring problem. All transitions but t are systematically
ignored during on-the-fly reduction

an arc that loops on this state. This results from the fact that
transition t is independent from any other transition and does
not change the state of the system. Thus the executions of
all transitions but t are systematically postponed to a future
state that will never be visited. It is clear that the reduction
obtained is of limited use besides the one of proving that the
system cannot halt.

2.2.3 Partial order reduction for safety properties

The following additional constraint, called proviso, can pre-
vent action ignoring.

C2S For any state s ∈ Sr , if a ∈ en(s) then there is s′ reach-
able from s in the reduced graph such that a ∈ r(s′).

This condition ensures that any enabled action will be exe-
cuted in a state reachable from s. If the reduction function
satisfies this condition, it can be shown that the reduced graph
is, what Godefroid called, a trace automaton [16]. Trace auto-
mata have the nice property to preserve the reachability of
local states: if a process can reach a given state in the ini-
tial graph, then it will also be able to reach this state in the
reduced graph. Trace automata can therefore be used to ver-
ify a large range of safety properties that include, for exam-
ple, assertions on local variables. Properties involving global
variables can also be checked using this condition by insert-
ing an additional process and making all global variables
observed, i.e., which appear in the property analyzed, local
to this process as explained in [16]. Some synchronizations
are then required to update and read these variables.

Condition C2S is usually replaced by the following one
that, although it is strictly stronger, can be more easily imple-
mented.

C2S’ For any state s ∈ Sr , if a ∈ en(s) then there is s′ reach-
able from s in the reduced graph such that s′ is fully
expanded.
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2.2.4 Partial Order reduction for liveness properties

Liveness properties are expressed over infinite traces. To pre-
serve these we must ensure that any cycle of the graph does
not contain an enabled action that is never executed (in the
states of the cycle). This leads to a strengthened version of
the proviso, denoted C2L.

C2L A cycle is not allowed if it contains a state in which
some action a is enabled, but never included in r(s)
for any state s on the cycle.

As for safety properties we can define a stronger condition
that is simpler to verify.

C2L’ Along each cycle of the reduced graph, there is some
state s that is fully expanded.

Coupled with another condition (see [7,26]) that preserves
the interleavings of some interesting actions (the visible
actions) that may change the truth value of the atomic prop-
ositions of the formula, the C2L proviso can be used to com-
pute ample sets [26]. The reduced graph is then equivalent
to the initial one with respect to LTL-X formulae.

In this paper we are exclusively interested in conditions
C2S and C2L preventing the ignoring problem. We assume
to be given a reduction function that respects conditions C0
and C1, i.e., that computes persistent sets, and we propose
two depth-first search algorithms that ensure conditions C2S

and C2L. We also put aside the condition regarding the pres-
ervation of visible actions (e.g., condition C2 in the ample set
theory [7]). Hence, our algorithms are persistent sets based
algorithms augmented with a mechanism to resolve the ignor-
ing problem on-the-fly. Therefore we will only used the term
of “persistent set” in this article rather the ones of stubborn
[30,31] or ample set [7,26]. Our approach is closely related
to other works on the resolution of the ignoring problem, e.g.,
[3–5,21]. Some of these algorithms will be experimentally
compared to our two solutions in Sect. 7. In the next section,
we give an overview of the different algorithms proposed in
the literature to resolve the ignoring problem.

3 Related work

The safety and liveness provisos are stated as properties of the
reduced STG whereas we may want to perform the reduction
on-the-fly. Therefore they are usually reformulated as con-
ditions that can be efficiently checked during the construc-
tion of the reduced STG and, hence, are tightly linked to the
way the search algorithm proceeds and the data structures it
handles.

For depth first search (DFS), we can use the fact that every
cycle contains a transition that reached the search stack at
some point during the search. It is then sufficient to forbid
to partially expanded states to reach the stack. This gives
a first version of the liveness proviso, denoted C2L

s [27].
This proviso is the one implemented by the Spin model
checker [18].

C2L
s If r(s) �= en(s) then no action in r(s) may reach a

state of the stack.

For safety properties a weaker condition can be defined.
We may indeed let a transition reach a state on the stack,
provided that another transition leads to a state outside this
stack [16].

For breadth first search (BFS), a similar version has been
recently introduced in [3].

C2L
q If r(s) �= en(s) then all the actions of r(s) reach a new

state or a state of the queue.

The intuition behind this condition is that any cycle con-
tains at least one transition that went back during the search
to a state of the past. In BFS, such a state is characterized by
the fact that it has already been expanded by the algorithm
and left the queue. Once again, the weaker version of this
proviso for safety proviso denoted C2S

q requires that at least
one action leads to a new state or a state of the queue.

This idea has been generalized in [4] to general state
exploring algorithms, that is, any explicit algorithm that parti-
tions the state space into three mutually disjoint sets: the open
states that have been met but not expanded yet, the closed
states that have been met and expanded (and can potentiality
be reopened), and the unmet states. This new proviso can, for
example, be used in directed model checking [10]. An open
(or unmet) state is safe in the sense that it can be reached
by a partially expanded state without risking to introduce
some ignoring phenomenon: the resolution of this problem
is delegated to this state that will be explored later. On the
other hand, closed states are dangerous destinations since
they have already been explored and can potentially lead to
the state currently explored.

In [21], a technique is proposed which aim is to set up
the entire reduction mechanism before the exploration of
the graph. The method is then independent from the search
algorithm and can be used, for example, in symbolic model
checking. Considering a concurrent system, which is a com-
position of sequential processes, the authors exploit the fact
that a cycle in the state space results from some cycle(s) in
the sequential processes of the model. The idea is to stati-
cally choose an action in each of these cycles and to mark it
as sticky. The proviso can then be reduced to the following
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condition: a persistent set that does not include all the enabled
actions may not contain a sticky action.

The two-phase algorithm presented in [24] uses an alter-
native to the in-stack check to verify both safety and live-
ness properties. It alternates phases in which it fully expand
states and phases of expansion of deterministic states, i.e.,
states in which singleton persistent sets can be computed.
For some models the two-phase algorithm can achieve signif-
icantly better results than a depth first search that uses the C2L

s
proviso.

For safety properties, Valmari [30] solves the ignoring
problem by detecting terminal maximal strongly connected
components (TMSCC) using the well-known algorithm of
Tarjan [29]. The resolution is conducted during the back-
track phase, when the root s of a TMSCC is popped from
the DFS stack. The problem is detected when some action a
enabled at s is never executed from any state of the TMSCC.
The algorithm then computes another persistent set includ-
ing a and reexpands s using this new set. This algorithm is
optimal in the sense that it will only visit new arcs of the state
space if there actually is some action ignored but the use of
Tarjan’s algorithm requires some extra memory (two integers
per state). For liveness properties the algorithm Valmari pro-
posed in [31] is also optimal in the same sense but uses a dif-
ferent order than the depth-first order used in Büchi automata
based model checking. Therefore it seems hard to combine
with traditional algorithms used by LTL model checkers, e.g.,
nested depth-first search [8].

In the context of LTL model checking, the reduction must
be such that, in the reduced graph, the language of visible
actions is preserved: for each executable sequence σ there
is in the reduced graph an executable sequence σr such that
�v(σ) = �v(σr ) (where�v(σ) is the projection of sequence
σ on visible actions, i.e., the sequence σ from which we
removed invisible actions) and reciprocally. In other words,
the language of invisible actions is irrelevant for the veri-
fication of the formula. This can serve to somewhat relax
the resolution of the ignoring problem: an invisible action
may be ignored if it cannot (directly or indirectly through an
action sequence) trigger a visible action. For instance, if a
process is blocked into a part where it can no longer inter-
act with the rest of the system, its actions may be totally
ignored by the selection function in subsequent states. The
algorithm has however to take care that loops containing only
invisible actions are still present in the reduced graph. Some
algorithms based on stubborn sets exploit this idea: [31,34].

When the verification task is performed in a distributed
memory environment the problem is harder. Since each node
of the network is responsible of the storage and the expansion
of a subset of the state space, there is no global data structure,
such as the stack in sequential DFS, we can rely on to prevent
action ignoring. In [22] a defensive approach is adopted: any
state owned by another node is assumed to be on the local

search stack. As an unfortunate consequence, the reduced
state space grows as more workstations get involved in the
verification process. Indeed, the proportion of cross-transi-
tions (transitions in the state graph linking two states owned
by different nodes) is a direct function of the network size.
Another algorithm is proposed in [5]. It relaxes the condition
of [22] by fragmenting a local depth first search into several
searches.

The authors of [23] do not work at the implementation
level but rather relax the cycle conditions C2S and C2L as
stated in the previous section. They define a hierarchy of
alternatives to these conditions that could be the basis of
more efficient implementations.

4 Motivations

Partial order methods can drastically reduce the verification
requirements by eliminating redundant interleavings. In the
best case the reduction factor is exponential. However, in
many cases they are not as efficient as one would expect.
This is mainly due to two factors.

First of all, the computation of persistent sets relies on a
static analysis of the model that sometimes produces coarse
approximations. Dynamic partial order reduction, a propo-
sition to cope with this problem, has been introduced in 2005
by Flanagan and Godefroid [14].

Another source of inefficiencies can come from the reso-
lution of the ignoring problem. Indeed, we can identify mod-
els for which the use of the “historical” proviso based on
an in-stack check yields poor results. We will illustrate this
problem with the help of the Petri net depicted in Fig. 4a. This
net models a solution to the dining philosophers problem in
which a philosopher takes two forks atomically. Some places
have been duplicated for the sake of clarity. They are drawn
as dashed circles. Places i1, i2, i3 and i4 model the idle state
of the 4 philosophers while the eating state is modeled by
e1, e2, e3 and e4. Place fi models the state of the fork of phi-
losopher i . To seat at the table (transition ti ), the philosopher
i must take his fork fi and the fork of its neighbor, i.e., f j

with j = i mod n + 1. Once is meal finished he goes back
to the idle state and puts back his forks (transition ri ).

We have drawn in Fig. 4b the state space of this net built
with proviso C2L

s . Fully expanded states are double circled3

and states are numbered according to the order they are vis-
ited by the algorithm. It appears that this combination does
not reduce the number of states but can only save the exe-
cution of two transitions. The in-stack check often succeeds
and this leads to a full expansion of most states. However, it
is clear that an optimal proviso (see Fig. 4c) would not intro-
duce any state since all the cycles of the state space reduced

3 We will adopt this graphical convention throughout the paper.
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Fig. 4 An example that illustrates our motivations. a A Petri net model
of the dining philosophers, b PS + C2L

s and c PS + an optimal proviso

with PS contains the initial state which is fully expanded.
With four philosophers this optimal proviso only saves two
states but if we generalize the problem to n philosophers the
reduction is much more impressive: the full state space and
the state space reduced with proviso C2L

s both have an expo-
nential size while the state space reduced with an optimal
proviso has n + 1 states.

Our intuition is that the ignoring problem seldom occurs
in practice. By taking a too defensive approach traditional
implementations of the cycle proviso such as those based an
in-stack check can introduce much more states than neces-
sary. Though our example is not representative as it corre-
sponds to the worst case we can think of, it still illustrates the
fact that the C2L

s proviso is not applicable to some classes of
models.

The static proviso [21] may overcome this problem if the
sticky transitions are chosen appropriately, e.g., transitions
t1, t2, t3 and t4 in our example, but since it is based on a static
analysis of the model its performances may vary according
to the input formalism of the model checker. For example,
since there is no clear notion of process or loop in high-level
Petri nets, the language of our model checker Helena [11], a
detection of sticky transitions may produce a coarse approx-
imation containing many useless transitions.

The two-phase algorithm [24] also achieves an optimal
reduction on this example, but it is based on a principle
- always selecting singletons—that can, for some models,
be too much strong. For instance, it does not behave very
well when processes can act in a non deterministic way.

Moreover, it prevents the use of some elaborated techniques
that refine the dependency relation, e.g., [2].

Our objective is therefore to devise a proviso that (1) can
be an interesting alternative when others fail to efficiently
reduce the state space and (2) is not linked to a particular
formalism and can be implemented by any model checker.

5 A proviso for safety properties

We propose in this section a new version of the safety proviso
that is based on a depth-first search algorithm. This one also
performs checks in the stack to avoid an infinite postpone-
ment of actions but it considerably relaxes the conditions
under which a transition is acceptable. The principle of this
new proviso C2S

e (see Fig. 5) is simply to associate with each
state s a boolean flag safe that specifies if the state may be
reached by a transition without any risk of action ignoring.
Intuitively, a state s is safe if it is fully expanded or else if a
path leads from s to a fully expanded state. Hence, an enabled
action of s is allowed to reach a state s′ on the DFS stack S
if s′ is safe.

The safe flag is set as follows. A state s entering the stack
is, by default, set as unsafe before the computation of an
appropriate persistent set for s. Then, if it is fully expanded,
we mark it as safe as well as all the states of the DFS stack
since they lead to s (visit.6–visit.8). Similarly, if the execu-
tion of some action leads from the currently expanded state
to a safe state we mark all stacked states as safe (visit.13–
visit.14). The markAllSafe procedure scans all the states
of the DFS stack and set their safe bit to true. Note that it
may finish as soon as it meets a safe state. Indeed, if a state s
of the stack is safe then all the states below it are necessarily
safe since they were already in the stack when s was marked
as safe. So in the worst case, each state is scanned exactly
once.

Proposition 1 Let (S, s0,A, T ) be an STG and (Sr , s0r ,

Ar , Tr ) be its reduction obtained with the algorithm of Fig. 5.
Then, reduction function r satisfies the safety cycle proviso
C2S.

Proof We prove that the weaker proviso C2S’ is verified. We
first prove the following invariant property.

∀s ∈ V : s.safe ⇒ ∃s′ ∈ V : s →∗
r s′ ∧ r(s′) = en(s′) (1)

Let us suppose that at some point the assertion holds for all
the states stored in V . For some state s, s.safe can be set to
true in two situations:

– at line visit.7, in which case s is in the stack and leads to
the state on top of the stack that is fully expanded accord-
ing to the test at line visit.6;
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Fig. 5 A depth first search algorithm based on proviso C2S
e

– at line visit.14, in which case s is in the stack and leads to
s′ ∈ V with s′.safe = true. From our initial assumption,
∃s′′ ∈ V : s′ →∗

r s′′ ∧ r(s′′) = en(s′′).

Thus, after s.safe is set to true, the assertion is still valid.
Since, initially, V = ∅, assertion 1 holds.

Next we prove that any state popped from the stack at line
visit.17 is necessarily safe:

∀s ∈ V : s /∈ S ⇒ s.safe = true (2)

Let s′ be the first state popped after s has entered the stack.
From the computation of r(s′) there may be two possibilities:

r(s′) = en(s′) - s.safe is set to true at line visit.7.
r(s′) �= en(s′) - ∀a ∈ r(s′) with s′ a→ s′′, s′′ ∈ V by our

initial assumption (otherwise, if s′′ /∈ V ,
it is put in V and S and popped before

s′) and ∃a′ ∈ r(s′) with s′ a′→ s′′′ and
s′′′.safe = true (otherwise r(s′) = en(s′)).
Hence, s.safe is set to true at line visit.14.

Once the search finished, all states have left the stack and
thus, from assertions 1 and 2, our claim is proved. ��

Proviso C2S
e is clearly better than C2S

s , in the sense that it
will always compute smaller persistent sets (but not necessar-
ily smaller graphs). Indeed it can be viewed as an optimiza-

tion of C2S
s . The set of unsafe destinations with proviso C2S

e
(some of the states of the stack) is always a subset of unsafe
destinations with proviso C2S

s (all the states of the stack). In
addition, this optimization comes almost for free: both need
an additional boolean per state to identify safe states.

6 A proviso for liveness properties

The conditions that ensure a sound reduction are stronger
when one wants to analyze liveness properties, e.g., LTL-X
formulae. The reduction must indeed ensure that for any
cycle, an action enabled at one of its states will be executed at
some state of the cycle. We have seen that a sufficient way to
proceed is to fully expand a state on each cycle of the graph.

We would like to adapt the idea of the C2S
e proviso, pre-

sented in the previous section, to the verification of liveness
property. Unfortunately, a direct adaptation does not guaran-
tee the desired behavior. We illustrate this problem with the
simple graph depicted in Fig. 6.

Let us assume that the algorithm first processes state s0,
then pushes s1 that is fully expanded and finally reaches s2.
The full expansion of s1 leads us to label s0 as safe. Con-
sequently, at s2, the persistent set consisting of the single
action leading to s0 is valid, which is correct since the cycle
hence closed contains a fully expanded state. Now let us
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Fig. 6 C2S
e is incorrect if applied as such to liveness properties

suppose that later the algorithm backtracks to s0 and exe-
cutes a sequence s0 → · · · → s such that none of the states
of this sequence is fully expanded. According to the C2S

e
proviso, the singleton {s → s2} is a valid set. After the visit
of transition s → s2, the reduced graph contains a cycle
of partially expanded states: s0 → · · · → s → s2 → s0.
Although, this does not necessarily mean that an action is
ignored in this cycle, the condition C2L’, sufficient to ensure
the correctness of the reduction, does not hold. In order to
prevent such situations we will have to perform some addi-
tional checks possibly leading to less reductions. We will
in particular forbid state s to reach s2 without being fully
expanded.

6.1 The color proviso

The pseudo-code of our algorithm is given in Fig. 7. The
new proviso C2L

c , the color proviso, associates some extra
information with each state. First, for states of the stack, an
expanded attribute specifies the number of fully expanded
states that are below the state in the search stack, i.e.,
between s0 and the state. The global variable expanded

keeps track of this number. This attribute allows us to relax the
condition of proviso C2L

s : a partially expanded state s may
reach a state s′ of the stack provided that s′.expanded <

s.expanded. This indeed means that there is on the search
stack between s′ and s a fully expanded state lying on the
closed cycle.

Unfortunately, this expanded attribute is not sufficient as
it does not prevent the situation depicted in Fig. 6. In addi-
tion, we also associate a color with each state. A state will
thus be marked as green, orange or red. This color gives us
crucial informations when we want to determine whether a
transition is allowed or not (see function C2L

c ).

green states are safe states. These states may be reached by
any other state without risking of closing an invalid cycle,
i.e., only composed of partially expanded states. Intui-
tively, if a state is green then either it is fully expanded or
all its successors are green.

orange states are potentially dangerous states. An orange
state s′ is a state of the stack that can be reached by a
partially expanded state s under the condition previously
stated: a fully expanded state is on the stack between s and
s′, i.e., s′.expanded < s.expanded. A state is orange if
and only if it is partially expanded and on the stack.

red states are dangerous states. A state may not reach a red
state without being fully expanded. This could indeed
close a “bad” cycle as in our example. A state is red if
it has been partially expanded, has left the stack, and had
an orange successor when popped, i.e., one of its succes-
sors was a partially expanded state of the stack.

Fig. 7 A depth first search
algorithm based on proviso C2L

c
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Colors are then attributed as follows.
When a new state is generated and pushed onto the stack

we mark it as green if it is fully expanded or orange otherwise.
The orange color is attributed in function push before the
computation of the persistent set to resolve the case where
it contains a self-loop transition. Orange states are therefore
all the partially expanded states which are in the stack.

An orange state leaving the stack is colored green if all
its successors are green; red otherwise. Hence, while red and
green are final states, orange is a transitory color: once the
search terminated, the stack is empty and all states are marked
as red or green.

The purpose of lines visit.14–visit.19 is to deal with the
situation where the state s is partially expanded and reaches
a red state s′ that was not in V when the persistent set of s
was computed. We must then fully expand s, assign it the
green color and restart its expansion. In practice we found
out that this situation is very unusual.

Let us examine how our algorithm works on our previous
example. The transition leading from s2 to s0 is a valid sin-
gleton set for s2 since s0 is orange (partially expanded and
on the stack) and 0 = s0.expanded < s2.expanded = 1.
As state s2 is popped from the stack we color it in red since
its only successor, state s0, is orange. We then backtrack to
state s0 and later reach s. Since s2 is a red state, the transition
leading from s to s2 is not allowed if s is not fully expanded.
Consequently, we will have to select another set or to fully
expand s.

In order to prove the correctness of our proviso we pro-
ceed in two steps. We first show that the reduced STG cannot
contain a cycle of red states.

Proposition 2 Let (S, s0,A, T ) be an STG and (Sr , s0r ,

Ar , Tr ) be its reduction obtained using the algorithm of
Fig. 7. Then, there is no cycle of red states in Sr , i.e.,
∀s1, . . . , sn ∈ Sr :
s1 →r · · · →r sn →r s1 ⇒
∃i ∈ {1, . . . , n} : si .color = green

Proof Let us suppose that there is a cycle s1 →r s2 →r

· · · →r sn →r s1 with si .color = red,∀i ∈ {1, . . . , n}
and such that s1 is the first state visited by the algorithm,
i.e., pushed onto the stack. Necessarily during the search we
reached a configuration in which:

1. States s1, . . . , si are on top of the stack, with si being
topmost followed by si−1, si−2, . . ..

2. There is a ∈ r(si ) such that si
a→ s j with 1 ≤ j ≤ n

and s j ∈ V .

From point 1 and our initial assumption that, upon termi-
nation, ∀i ∈ {1, . . . , n} : si .color = red it holds that
s1.color = · · · = si .color = orange.

From now on, we observe this configuration. By assumption,
s j .color �= green, hence, s j .color ∈ {orange, red}. Let us
look at these two possibilities.

s j .color = red (⇒ s j has left the stack)
We again consider two different cases.

s j ∈ V when r(si ) is computed
Necessarily, s j .color = red
when r(si ) is computed. Oth-
erwise, s j is on top of si

in the stack and s j .color =
orange when we reach s j

from si . It trivially follows
from function C2L

c that s j ∈
V ∧ s j .color = red ⇒
r(si ) = en(si ), and hence
si .color = green after the
assignment at line
visit.7.

s j /∈ V when r(si ) is computed
Then, when s j is reached
at line visit.11 it holds, by
assumption, that s j ∈ V ,
s j .color = red and si .color
= orange. So, si is colored
in green at line visit.16.

s j .color = orange (⇒ s j is on the stack)
State s j was pushed on the stack before
si . Thus we had s j .color = orange
when r(si ) was computed. From func-
tion C2L

c , s j ∈ V ∧s j .color = orange
⇒ s j .expanded < si .expanded.
Otherwise, we would have r(si ) =
en(si ) and si would be colored in green
at line visit.7. Since s j .expanded <

si .expanded then there exists sk with
j < k < i such that r(sk) = en(sk).
Consequently, sk .color = green from
line visit.7.

In both cases there is a green state in the cycle. ��
We now prove that if a cycle of the reduced STG contains

a green state then it contains a fully expanded state.

Proposition 3 Let (S, s0,A, T ) be an STG and (Sr , s0r ,

Ar , Tr ) be its reduction obtained using the algorithm of
Fig. 7. In any cycle s1 →r s2 →r · · · →r sn →r s1, if
there is si such that si .color = green then there is s j such
that r(s j ) = en(s j ).

Proof We consider in this proof a cycle s1 →r s2 →r

· · · →r sn →r s1 such that si .color = green for some
i ∈ {1, . . . , n}.
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Let us first suppose that there is a red state in the cycle. If
there exists si with si .color = red then, necessarily, there
are s j and sk such that s j .color = green, sk .color = red
and s j →r sk (otherwise, the cycle would only contain red
states). Since it trivially holds that a green state with a red
successor is fully expanded our claim is proved for this first
case.

Now let us suppose that ∀i ∈ {1, . . . , n} : si .color =
green. Necessarily, during the search a state si reached a
state s j on the stack. Since s j is on the stack, s j .color ∈
{orange, green}. Let us look at these two possibilities.

s j .color = green - It holds for any green state s of the
stack that r(s) = en(s).

s j .color = orange - When si leaves the stack (before s j )
it becomes red as it has a non green
successor. This goes against our ini-
tial assumption that all the states of
the cycle are green.

In both cases there is a fully expanded state in the cycle. ��
It is then straightforward to prove the correctness of our

liveness proviso.

Theorem 1 Proviso C2L
c implies the liveness proviso C2L.

Proof The weaker proviso C2L’ is verified as a direct conse-
quence of Propositions 2 and 3. ��

6.2 Anticipation of the backtrack phase

The red color appears in the graph when some partially
expanded state s reaches an orange state. Indeed, once s is
popped from the stack it becomes red and this color will be
propagated to its parents in the stack. This way to proceed is
very careful since we assume that the orange states reached
by s will be later colored in red. However, there are situations
in which we can directly color orange states with green by
anticipating the backtrack phase.

We will illustrate the principle of this optimization with the
help of Fig. 8. The letters correspond to the colors of states.
Without optimization when state s is processed it reaches the
orange state s′ and thus becomes red when popped. However,
since all the outgoing arcs of s′ have been visited and its only
successor is green, we know that it will become green when

s’ O
No optimization With anticipation

O

Rs

G

s’

G

G

G

s

s’

s

G

Fig. 8 Illustration of the optimization

leaving the stack. We can therefore immediately color s′ in
green. As a direct consequence, state s only reaches green
states and can be marked as green.

The implementation of this optimization requires one
extra boolean variable per state of the stack to track if all the
outgoing arcs of the state have been visited. We also intro-
duce an additional color: purple. States colored in purple are
states of the stack that will be marked as red when popped.
The only purpose of this new color is to ease the implemen-
tation of this optimization: purple states are treated as orange
states when checking the proviso.

With the optimized proviso, denoted C2L
c�, the algorithm

proceeds as follows.
When it assigns the green color to the current state or when

it executes an action that leads to a green state, the stack is
scanned from top to bottom until it meets a green or purple
state or an orange state of which some outgoing arcs have
not been visited. The green color is assigned to all the states
scanned.

Alternatively, when a transition leads to a purple or an
orange state, the algorithm scans the stack until it meets
a green or purple state and colors all the states scanned in
purple.

We believe that this optimization has a strong potential
insofar as the persistency condition C1 often leads to compute
singletons, e.g., with a single transition that only operates on
local variables, or to fully expand states. In such situations
our optimization is very useful since it allows to assign the
green color to most of the states of the stack: as soon as a
fully expanded state is met, the green color propagates from
top to bottom to all the states of the stack.

While it is clear that our safety proviso outperforms the
in-stack check based proviso with regards to the size of per-
sistent sets computed, we cannot draw a similar conclusion
for the color proviso. Proviso C2L

s and C2L
c are both based

on the notion of dangerous and safe states. With the C2L
s

proviso, dangerous states are all the states of the stack (or
more generally, all the closed states [4]) while, on the con-
trary, with the color proviso, dangerous states do not belong
to the stack anymore. It is therefore crucial to experiment
these provisos in order to determine which one achieves the
best reduction in practice. Moreover, C2L

c consumes more
memory as it associates one integer (32 bits) plus a color
(2 bits) with each state whereas C2L

s only needs one addi-
tional bit per state to identify stacked states. However, some
savings could be made since it is clear that the expanded
attribute is not required for states that have left the stack.

7 Experiments

We implemented the algorithms proposed in our model
checker Helena [11]. The tool takes as input a high-level Petri
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Fig. 9 Size of the unreduced graph (No POR) and the graph reduced with different provisos (PS + C2S
q , PS + C2S

s , PS + C2S
e , PS + C2L

q, PS

+ C2L
s , PS + C2L

c and PS + C2L
c�) in comparison to the size of the graph reduced without ignoring problem prevention (PS)

net and can verify reachability properties or the presence of
dead states. In order to assess the quality of our provisos
we also implemented the in-stack and in-queue check based
provisos for DFS and BFS which are part of the Spin model
checker.

We considered models of several types and complexities
ranging from simple “toy” models to complex real-life pro-
tocols. We also translated some concurrent Ada software to
high-level nets with the help of the Quasar tool [12]. Some
of these models can be found in Helena distribution or on the
BEEM web portal [25].4

The reader may found in Appendix a short description
of the models used during our experiments along with their
type (e.g., communication protocol, mutual exclusion algo-
rithm) and complexity (toy, medium, or complex). All the
data collected during our experiments may also be found in
this appendix, e.g., statistics on memory consumption.

4 Quasar and Helena are freely available online at http://quasar.cnam.fr
and http://helena.cnam.fr. The BEEM web portal is accessible at http://
anna.fi.muni.cz/models/index.html.

The results of our experiments have been plotted in Fig. 9.
For each model we performed nine runs: without partial order
reduction at all (No POR); without action ignoring resolu-
tion (PS); with a safety proviso (PS + C2S

q , PS + C2S
s and

PS + C2S
e ); and with a liveness proviso (PS + C2L

q, PS +

C2L
s , PS + C2L

c and PS + C2L
c�). Each bar indicates the size

of the reduced (or unreduced) graph for a specific run, i.e.,
a combination of a model and a reduction strategy. Models
have been sorted according to the values specified by bars No
POR. We took the run PS, i.e., without action ignoring res-
olution, as a reference. Hence, all other values are expressed
relatively to this one. For example, for model slotted, the
unreduced graph is approximately 1.5 larger than the graph
reduced with our persistent set function. For the bars that
could not fit in the plots the reader may consult Table 2 of
Appendix that contains absolute values.

Reduction of BFS-based provisos. We first observe that
BFS based provisos tend to be less efficient that those
based on a DFS. We only found three models (slotted,
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lamport_nonatomic and anderson) out of the 15 we
experimented with for which they performed a better reduc-
tion. On other models there were sometimes huge differ-
ences. This observation is in line with a conclusion of [3]. It
is highly likely that, as Bosnacki and Holzmann previously
mentioned it, “on average the set of states which are on the
DFS stack and which are “dangerous destination” for the
cycle proviso for the DFS case is smaller than its BFS ana-
logue—the set of all visited states minus the states in the BFS
queue”.

Reduction of safety proviso C2S
e. For safety properties,

a look at bar PS + C2S
e on the top plot shows that our pro-

viso performs an excellent reduction. On 13 models it did not
introduce states that were not visited by an algorithm without
action ignoring prevention. For model lamport, it caused
the exploration of a few thousands states which is quite low
with respect to the size of the state space of this model. It also
more than doubled the graph size of model allocation
w.r.t. PS. In this model, a process may potentially diverge
and perform an infinite sequence that does not include any
synchronization. So there actually is some risk of ignoring
problem and it is thus obvious that most provisos will cause
the visit of additional states. Nevertheless C2S

e behaves much
better than C2S

q and C2S
s on this model.

These results confirm our initial expectations: a DFS sel-
dom closes a cycle that does not contain any fully expanded
state. In any concurrent system, there are usually some points
of synchronization, e.g., an access to a global variable, the
acquisition of a lock. When the processes reach these points
it is likely that the algorithm fully expands the state. It seems
to us that a weak point of the C2S

s proviso is that it does not
exploit such information on the past of the search. Our pro-
viso should therefore be nearly optimal in the sense that it
will disallow the algorithm to close a cycle if this one does
not actually contain a fully expanded state. This condition is
necessary but not sufficient. Indeed, if a cycle closed by a
transition s

a→ s′ does not contain a fully expanded state it
may happen that the destination state s′ on the stack had been
previously marked as safe, e.g., by reaching a fully expanded
state that is not on the stack anymore. In this case the cycle
may be closed without risk of action ignoring problem. This
scenario may be illustrated with the help of Fig. 10. Let us
suppose that when s is processed it is partially expanded. If
a is executed first we reach sa and the persistent set {c} is

sub−graph with fully
expanded states

c

b
sa sbs

a

Fig. 10 Depending on the execution order of a and b, C2S
e will not

produce the same reduced graph

rejected since s is not safe. If b has priority over a we later
reach from sb some fully expanded states that cause s to be
labeled as safe. Hence, when we backtrack to s and reach sa

the persistent set {c} is accepted. This scenario is exactly the
one of allocation. In state s all processes are idle and
they can either choose to perform some internal work (action
a followed by c that is independent from any other action)
or send some request to a server (action b). Hence, in state
s the set {a, b} is a valid persistent set for any process. This
example also highlighted the fact that our algorithm is sen-
sitive on the execution order of actions. In our experiments
we were not lucky as action a was executed before b. Thus
the graph was not optimally reduced.

Comparison of provisos C2L
s and C2L

c . We also observe
that C2S

s and C2L
s —the in-stack check based provisos—

sometimes brutally increase the graph size. This is especially
true when the graph contains many cycles. This confirm our
initial intuition that these provisos are not adapted to some
systems. We can find several models for which these provi-
sos cause the algorithm to visit much more states than really
needed. For some models, e.g., slotted, they even almost
cancel the reduction.

By looking at bar PS + C2L
c� of the bottom plot we can

evaluate our proviso in term of number of states it introduces.
The results are rather convincing. For 13 models the reduc-
tions achieved are very close. For modelsp2p and alloca-
tion, the introduction of this additional condition involves
an important increase of the graph size. As we mentioned it
earlier this fact is not very surprising for model alloca-
tion. For model p2p we will see that our proviso is not
adapted to its graph structure.

Proviso C2L
c� seems, on the whole, to achieve better reduc-

tions than C2L
s and C2L

q . For some models the difference is
quite impressive. We can cite model lb or public_sub-
scribe. There also are some examples, e.g., lamport, for
which the difference is slighter. We only found two models
for which C2L

s behaves better: the cs program and the p2p
protocol. For the first one the difference is hardly perceptible.
A closer look at the graph structure of the p2p explains the
bad results obtained with proviso C2L

c� with respect to pro-
viso C2L

s . We found out that the situation depicted by Fig. 11

... ...

C2L
c C2L

s

s

s

s

s

s s1 s s1 snsn

Fig. 11 Proviso C2L
s outperforms C2L

c� on this graph
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often occurred. With the C2L
c� proviso, when s is processed

it may be partially expanded since the fully expanded s′′ is
between s and s′ in the stack. Later, when states s1, . . . , sn

are reached, the algorithm expands them fully since s has
become red. On the other hand, with the C2L

s proviso state
s may not reach s′ without being fully expanded. States
s1, . . . , sn can then be partially expanded since they lead to
s that has left the stack. This surely explains why, on this
example, C2L

c� fully expands much more states than C2L
s .

Memory consumption. Regarding the memory usage of
our provisos (see Table 2 in Appendix), we noticed that
despite the additional memory it requires per state, C2L

c�
generally outperforms C2L

s and C2L
q . We still found out a

few models for which C2L
c� achieves a better reduction but

consumes more memory: anderson, brp, lamport and
slotted. However, as already pointed out, memory usage
could be optimized by suppressing the expanded attribute of
the states that leave the stack.

8 Conclusion

The ignoring problem is a phenomenon that may arise when
using partial order reduction during automated verification.
This one prevents the verification of many interesting prop-
erties. We have reviewed in this article different algorithms
proposed to resolve this problem and showed that for some
models, the most used solutions are inadequate. This led us
to propose two new versions of the cycle proviso for both
safety and liveness properties. Our aim was to relax the con-
ditions of the in-stack check based provisos by letting some
transitions reach the stack. For safety properties our solution

is guaranteed to perform better and our experiments showed
that in many cases the new algorithm is optimal as it does not
introduce new states compared to an algorithm that does not
take care of action ignoring. This is unfortunately not true
for our liveness algorithm. By allowing a partially expanded
state to have successors in the stack, we introduce the pos-
sibility of having dangerous destinations outside the stack.
However, the new algorithm seems to provide better reduc-
tions in practice although we found a few models for which it
showed worst performances. In addition this new algorithm
requires the storage of some extra informations. Neverthe-
less, we have seen that this consumption is usually compen-
sated when our algorithm achieves a better reduction of the
state space.

We still plan to perform a more thorough experimentation
in order to identify graph structures or classes of models for
which our proviso outperforms the others or, on the contrary,
is not adapted.

It should also be instructive to compare it with the
two-phase algorithm [24] that also seems to outperform the
standard proviso on many models—mainly those in which
process act in a deterministic way.

Acknowledgments We thank the anonymous reviewers for their sug-
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Appendix

Detailed experimental data

We provide in this appendix detailed data on the experiments
reported in Sect. 7.

Table 1 Experimental data: models used during our experiments

Model Type Complexity Parameters Description

abp Protocol Toy One Alternating bit protocol

allocation Protocol Toy Four processes Resource allocation system

anderson Mutex Medium Five processes Anderson’s queue lock algorithm

brp Protocol Complex Ten frames Bounded retransmission protocol

chameneos Program Complex Four tasks Implementation of the chameneos [20]

cs Program Medium Four clients/two servers Client server program with dynamic thread creation

dining Program Toy Six tasks Implementation of the dining philosophers

lamport Mutex Medium Four processes Lamport’s fast mutual exclusion algorithm

lamport_nonatomic Mutex Medium Four processes lamport with non atomic operations

lb Protocol Toy Seven clients/three servers Load balancing system

p2p Protocol Toy Eight processes Peer-to-peer exchange protocol

peterson Mutex Medium Four processes Peterson’s mutual exclusion algorithm

production_cell Controller Medium Six plates Model of a production cell

public_subscribe Protocol Complex Two users/two files Publish/subscribe notification protocol

slotted protocol Medium Seven processes The slotted ring protocol
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Table 2 Experimental data: comparison of the different provisos implemented in Helena on selected models

No POR PS PS + safety proviso PS + liveness proviso

BFS DFS BFS DFS

C2S
q C2S

s C2S
e C2L

q C2L
s C2L

c C2L
c�

abp

S 11,286 1,421 9,768 3,799 1,421 9,944 5,399 1,467 1,467

M 0.154 0.019 0.134 0.052 0.019 0.137 0.074 0.026 0.026

allocation

S 2,550,759 72,637 1,784,106 1,449,206 151,531 1,895,341 1,783,881 754,878 607,004

M 49.9 1.5 35.3 28.7 3.0 37.4 35.2 23.2 15.6

anderson

S 689,901 242,406 242,406 426,317 242,406 242,406 426,317 242,406 242,406

M 10.5 3.7 3.7 6.6 3.7 3.7 6.6 4.7 4.7

brp

S 996,627 542,462 673,413 567,966 542,462 704,524 567,966 553,462 542,462

M 17.1 9.3 11.6 9.8 9.4 12.2 9.8 11.7 11.5

chameneos

S oom 415,361 4,984,309 899,295 415,361 5,005,311 899,295 733,654 494,123

M 4.7 57.6 10.4 4.8 57.9 10.4 10.2 6.9

cs

S oom 87,129 633,886 99,430 87,129 633,886 99,430 159,202 108,659

M 1.4 10.2 1.6 1.4 10.2 1.6 2.8 1.9

dining

S 10,888,070 109,222 2,659,982 174,354 109,222 2,659,982 174,354 115,333 110,190

M 136.0 1.3 32.0 2.1 1.3 32.0 2.1 1.7 1.6

lamport

S 1,914,784 1,052,518 1,449,856 1,282,950 1,055,985 1,729,560 1,455,606 1,304,311 1,304,310

M 41.0 22.5 31.0 27.4 22.6 37.2 31.3 31.6 31.6

lamport_nonatomic

S 1,257,304 700,524 1,018,573 1,108,705 700,524 1,018,573 1,108,705 700,524 700,524

M 28.8 16.0 23.4 25.5 16.1 23.4 25.5 18.9 18.9

lb

S 1,574,530 72,093 904,277 631,056 72,093 908,030 630,997 211,012 72,194

M 26.4 1.2 15.3 10.7 1.2 15.4 10.7 4.0 1.3

p2p

S 743,580 163 587,830 160,535 163 587,830 160,535 384,830 252,315

M 12.1 0.002 10.3 2.8 0.002 10.3 2.8 10.2 6.7

peterson

S 3,407,946 259,942 372,208 356,068 259,942 374,795 356,698 292,622 260,608

M 49.3 3.7 5.3 5.1 3.7 5.4 5.1 4.8 4.3

production_cell

S 822,612 128,550 283,180 221,821 128,550 283,180 221,821 129,597 129,597

M 17.3 2.7 6.0 4.7 2.7 6.0 4.7 3.2 3.2

public_subscribe

S 1,846,603 210,613 1,235,183 429,910 210,613 1,235,183 429,910 214,702 214,702

M 52.8 6.0 35.3 12.3 6.1 35.3 12.3 7.0 7.0

slotted

S 439,296 287,508 349,504 413,321 287,508 349,504 437,579 401,803 304,417

M 6.1 4.0 4.9 5.8 4.0 4.9 6.1 6.5 4.9
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Table 1 contains a short description of all the models we
experimented with together with their type, complexity (toy,
medium or complex) and the parameters we used for exper-
imentation.

The result of the experimentations are reported in Table 2.
For each run we report in line S the number of states of
the reduced (or unreduced) graph and in line M the amount
of memory (in Mega-bytes) used to store the state space. In
some cases, we ran out of memory and could not complete the
search. This is indicated by a oom. The best values observed
with the different provisos have been written in bold. We have
written the results of our provisos on a gray background to
distinguish them.
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