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Abstract. The ComBack method is a memory reduction technique for
explicit state space search algorithms. It enhances hash compaction with
state reconstruction to resolve hash conflicts on-the-fly thereby ensuring
full coverage of the state space. In this paper we provide two means
to lower the run-time penalty induced by state reconstructions: a set
of strategies to implement the caching method proposed in [20], and
an extension through delayed duplicate detection that allows to group
reconstructions together to save redundant work.
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1 Introduction

Model checking is a formal method used to detect defects in system designs.
It consists of a systematic exploration of the reachable states of the system
whose behavior can be formally represented as a directed graph. Its nodes are
system states and its arcs are possible transitions from one state to another. This
principle is simple, can be easily automated, and, in case of errors, a counter-
example is provided to the user.

However, even simple systems may have an astronomical or even infinite num-
ber of states. This state explosion problem is a severe obstacle for the application
of model checking to industrial size systems. Numerous possibilities are available
to alleviate, or at least delay, this phenomenon. One can for example exploit the
redundancies in the system description that often induce symmetries [4], exploit
the independence of some transitions to reduce the exploration of redundant
interleavings [8], or encode the state graph using compact data structures such
as binary decision diagrams [2].

Hash compaction [16,21] is a graph storage technique that reduces the amount
of memory used to store states. It uses a hash function h to map each encoun-
tered state s into a fixed-size bit-vector h(s) called the compressed state descrip-
tor which is stored in memory as a representation of the state. The full state
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descriptor is not stored in memory. Thus, each discovered state is represented
compactly using typically 32 or 64 bits. The disadvantage of hash compaction
is that two different states may be mapped to the same compressed state de-
scriptor which implies that the hash compaction method may not explore all
reachable states. The probability of hash collisions can be reduced in several
ways, e.g., by using multiple hash functions [12,16], but the method still cannot
guarantee full coverage of the state space. Partial coverage of the state space is
acceptable if the intent is to find errors, but not sufficient if the goal is to prove
the correctness of a system specification.

The ComBack method [20] extends hash compaction with a backtracking
mechanism that allows reconstruction of full state descriptors from compressed
ones and thus resolves conflicts on-the-fly to guarantee full coverage of the state
space. Its underlying principle is to store for each state a sequence of events
whose execution can generate this state. Thus, when the search algorithm checks
if it already visited a state s, it can reconstruct full state descriptors for states
mapped to the same hash value as s and compare them to s. Only if none of the
states reconstructed is equal to s does the algorithm consider it as a new state.

The ComBack method stores a small amount of information per state, typi-
cally between 16 and 24 bytes depending on the system being analyzed. Thus it
is especially suited to industrial case studies for which the full state descriptor
stored by a classical search algorithm can be very large (from 100 bytes to 10
kilo-bytes). This important reduction, however, has a cost in time: a ComBack
based algorithm will explore many more arcs in order to reconstruct states. As
the graph is given implicitly, visiting an arc consists of applying a successor func-
tion that can be arbitrarily complex, especially for high-level languages such as
Promela [10] or Coloured Petri nets [11]. Experiments made in [20] report an
increase in run-time up to more than 600% for real-life protocols.

The goal of the work presented in this paper is to propose solutions to tackle
this problem. Firstly, starting from the proposal of [20] to use a cache of full state
descriptors to shorten sequences, we first propose different caching strategies.
Secondly, we extend the ComBack method with delayed duplicate detection, a
technique widely used by disk-based model checkers [17]. The principle is to
delay the instant we check if a state has already been visited from the instant
of its generation. Any state reached is put into a set of candidates and only
occasionally is this set compared to the set of already visited states in order to
identify new ones. The underlying idea of this operation is that comparing these
two sets may be much cheaper than checking separately if each candidate has
already been visited. Applied to the ComBack method, this results in saving the
exploration of transitions that are shared by different sequences. For instance if
sequences a.b.c and a.b.d reconstruct respectively states s and s′, we may group
the reconstructions of s and s′ in order to execute sequence a.b only once instead
of twice. This will result in the execution of 4 events instead of 6 events.

This article has the following structure. The basic elements of labeled transi-
tion systems and the ComBack method are recalled in Section 2. In Section 3,
different caching strategies are proposed. An algorithm that combines the
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ComBack method with delayed duplicate detection is presented in Section 4.
Section 5 reports on experiments made with the ASAP tool [19] which imple-
ments the techniques proposed in this paper. Finally, Section 6 concludes this
paper.

2 Background

In this section we give the basic ingredients required for understanding the rest
of this paper and provide a brief overview of the ComBack method [20].

2.1 Transition Systems

As the methods proposed in this paper are not linked to a specific formalism
they will be developed in the framework of labeled transition systems, the most
low-level representation of concurrent systems.

Definition 1 (Labeled Transition System). A labeled transition system is
a tuple S = (S, E, T, s0), where S is a set of states, E is a set of events,
T ⊆ S × E × S is the transition relation, and s0 ∈ S is the initial state.

In the rest of this paper we assume that we are given a labeled transition system
S = (S, E, T, s0). Let s, s′ ∈ S be two states and e ∈ E an event. If (s, e, s′) ∈ T ,
then e is said to be enabled in s and the occurrence (execution) of e in s leads to
the state s′. This is also written s

e−→ s′. An occurrence sequence is an alternating
sequence of states si and events ei written s1

e1−→ s2 · · · sn−1
en−1−−−→ sn and

satisfying si
ei−→ si+1 for 1 ≤ i ≤ n − 1. For the sake of simplicity, we assume

that events are deterministic1, i.e., if s
e−→ s′ and s

e−→ s′′ then s′ = s′′.
We use →∗ to denote the transitive and reflexive closure of T , i.e., s →∗ s′

if and only if there exists an occurrence sequence s1
e1−→ s2 · · · sn−1

en−1−−−→ sn,
n ≥ 1, with s = s1 and s′ = sn. A state s′ is reachable from s if and only
if s →∗ s′. The state space of a system is the directed graph (V, E) where
V = { s′ ∈ S | s0 →∗ s′ } is the set of nodes and E = {(s, e, s′) ∈ T | s, s′ ∈ V } is
the set of edges.

2.2 The ComBack Method

A classical state space search algorithm (Algorithm 1) operates on a set of visited
states V and a queue of states to visit Q. An iteration of the algorithm (lines
4–7) consists of removing a state from the queue, generating its successors and
inserting the successor states that have not been visited so far into both the
visited set and the queue for later exploration. We use the term of state expansion
to refer to this process.

1 The ComBack method can be extended to support non-deterministic transition sys-
tems. The interested reader may consult Section 5 of [20] that describes such an
extension.



192 S. Evangelista, M. Westergaard, and L.M. Kristensen

Algorithm 1. A classical search algorithm.
1: V ← empty ; V.insert (s0)
2: Q ← empty ; Q.enqueue (s0)
3: while Q �= empty do
4: s ← Q.dequeue ()
5: for e, s′ | (s, e, s′) ∈ T do
6: if s′ /∈ V then
7: V.insert (s′) ; Q.insert (s′)

Algorithm 2. A search algorithm based on hash compaction.
1: V ← empty ; V.insert (h(s0))
2: Q ← empty ; Q.enqueue (s0)
3: while Q �= empty do
4: s ← Q.dequeue ()
5: for e, s′ | (s, e, s′) ∈ T do
6: if h(s′) /∈ V then

7: V.insert (h(s′)) ; Q.insert (s′)

Using hash compaction [21], items stored in the visited set are not actual
state descriptors but compressed descriptors, typically 32-bit integers, obtained
through a hash function h. Algorithm 2 uses this technique. The few differences
with Algorithm 1 have been underlined. This storage scheme is motivated by the
observation that full state descriptors are often large for realistic systems, i.e.,
typically between 100 bytes and 10 kilo-bytes, which drastically limits the size of
state spaces that can be explored. Though hash compaction considerably reduces
memory requirements, it comes at the cost of possibly missing some parts of the
state space (and therefore potentially some errors). Indeed, as h may not be
injective, two different states may erroneously be considered the same if they
are mapped to the same hash value. Hence, hash compaction is preferably used
at the early stages of the development process for its ability to quickly discover
errors rather than proving the correctness of the system.

The ComBack method extends hash compaction with a backtracking mecha-
nism that allows it to retrieve actual states from compressed descriptors in order
to resolve hash collisions on-the-fly and guarantee full coverage of the state space.
This is achieved by modifying the hash compaction algorithm as follows:

– A state number , or identifier, is assigned to each visited state s.
– A state table stores for each compressed state descriptor a collision list of

state numbers for visited states mapped to this compressed state descriptor.
– A backedge table is maintained which for each state number of a visited state

s stores a backedge consisting of an event e and a state number of a visited
predecessor s′ such that s′ e−→ s.

The key algorithm of the ComBack method is the insertion procedure that checks
whether a state s is already in the visited set and inserts it into the visited set if
needed. The insertion procedure can be illustrated with the help of Fig. 1, which
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Fig. 1. A state space and the state and backedge tables at two stages

depicts a simple state space. Each ellipse represents a state. The hash value of
each state is written in the right part of the ellipse. The state and backedge tables
used to resolve hash conflicts have been depicted to the right of the figure for
two different steps of the search. For the sake of clarity, we have also depicted
on the state space the identifier of each state (the square next to the ellipse)
and highlighted (using thick arcs) the transitions that are used to backtrack to
the initial state, i.e., the edges constituting the backedge table. Note that these
identifiers also coincide with the expansion order of states.

After the expansion of s0 and s1, the set of visited states is {s0, s1, s2, s3}. As
no hash conflict is detected, a single state is associated with each hash value in
the state table (the left table of the first rounded box). In the backedge table (the
right table of the first rounded box) a nil value is associated with state 0 (the
initial state) as any backtracking will stop here. The table also indicates that
the actual value of state 1 (s1) is retrieved by executing event e on state 0 and
so on for the other entries of the table. After the execution of event b on state
s2 we reach s4. Algorithm 2 would claim that s4 has already been visited—as
h(s3) = h(s4)—and stop the search at this point, missing states s5 and s6. Using
the two tables the hash conflict between s3 and s4 can be handled as follows. The
insertion procedure first looks in the state table if any state has already been
mapped to h(s4) = h3 and finds value 3. The comparison of state 3 (of which
we no longer have the actual state descriptor) to s4 is first done by recursively
following the pointers of the backedge table until the initial state is reached, i.e.,
3 then 1 and then 0. Then the sequence of events associated with the entries of
the table that have been met during backtracking, i.e., e.c, is executed on the
initial state. Finally, a comparison between s3 and s4 indicates that s4 is new.
We therefore assign a new identifier (4) to s4, insert it in the collision list of hash
value h3 and insert the entry 4 → (2, b) in the backedge table.

Throughout this article the term state reconstruction (or simply reconstruc-
tion) is used to refer to the process of backtracking to the initial state and then
executing a sequence of events to retrieve a full state descriptor. The sequence
executed will be called the reconstructing sequence.
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This storage scheme is especially suited to systems exhibiting large state vec-
tors as it represents each state in the visited set with only a few bytes. The only
elements of the state and backedge tables that are still dependent on the under-
lying model are the events stored to reconstruct states. In the case of Coloured
Petri Nets, this comprises a transition identifier and some instantiation values
for its variables while for some modeling languages it may be sufficient to iden-
tify an event with a process identifier and the line of the executed statement.
Still, a state rarely exceeds 16–24 bytes.

However, the ComBack method incurs an (important) run-time penalty due
to the reconstruction mechanism. After a state s has been reached it will be
reconstructed once for each additional incoming arc of the state, hence in(s)− 1
times where in(s) denotes the in-degree of s. If we denote by d(s) the length
of the shortest path from s0 to s, the number of event executions due to state
reconstructions is lower bounded by:

∑

s∈S

(in(s) − 1) · d(s)

Note that in Breadth-First Search (BFS) each sequence executed to reconstruct
a state s is exactly of length d(s) while it may be much longer in Depth-First
Search (DFS). Evidence of this is shown in Table 1 of [20] showing that the
ComBack method combined with DFS is in some cases much slower than with
BFS while the converse is not true.

In addition, the time spent on reconstructing states depends, to a large ex-
tent, on the complexity of executing an event that ranges from trivial (e.g., for
Place/Transition Nets) to high, e.g., for Promela or Coloured Petri Nets for
which executing an event may include the execution of embedded code.

3 Caching Strategies

A cache that maps state identifiers to full descriptors is a good way to reduce
the cost of state reconstructions. The purpose of such a cache is twofold. Firstly,
the reconstruction of a state identified by i may be avoided if i is cached. Sec-
ondly, if a state has to be reconstructed we may stop backtracking as soon as we
encounter a state belonging to the cache and thus execute a shorter reconstruc-
tion sequence from this state. As an example, consider again the configuration
of Fig. 1. Caching the mapping 2 → s2 may be useful in two ways:

– To avoid the reconstruction of state 2. A lookup in the cache directly returns
state s2, which saves the backtrack to s0 and the execution of event a.

– For the reconstruction of state 4. During the backtrack to s0 the algorithm
finds out that state 2 is cached, retrieves its descriptor and only executes
event b from s2 to obtain s4, once again saving the execution of event a.

We now propose four strategies to implement such a cache. We focus on strategies
based on BFS as the traversal order it induces enables to take advantage of some
typical characteristics of state spaces [14].
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Random cache. The simplest way is to implement a randomized cache. This
gives us the first following strategy.

Strategy R: When a new state is put in the visited set, it is inserted in
the cache with probability p (1 if the cache is not full) and the state to
replace (if needed) is chosen randomly.

Fifo cache. A common characteristic of state spaces is the high proportion of
forward transitions2, typically around 80%. This has a significant consequence
in BFS in which levels are processed one by one: most of the transitions outgoing
from a state will lead to a new state or to a state that has been recently generated
from the same level. Hence, a good strategy in BFS seems to be to use a fifo
cache, since when a new state at level l + 1 is reached from level l it is likely
that one of the following states of level l will also reach it. If the cache is large
enough to contain any level of the graph, only backward transitions will generate
reconstructions as forward transitions will always result in a cache hit. This
strategy can be implemented as follows.

Strategy F: When a new state is put in the visited set, insert it un-
conditionally into the cache. If needed, remove the oldest state from the
cache.

Heuristic based cache. Obviously, the benefit we can obtain from caching a
state may largely differ from one state to another. For instance, it is pointless
to cache a state s that does not have any successor state pointing to it in the
backedge table as it will not shorten any reconstruction sequence, but only avoid
the reconstruction of s.

To evaluate the interest of caching some state s we propose to use the following
caching heuristic H .

H(s) = d(s) · p(s), with p(s) =
r(s)

L(d(s))

where

– d(s) is the distance of s to the initial state in the backedge table
– r(s) is the number of states that reference s in the backedge table
– L(n) is the number of states at level n, i.e., with a distance of n from the

initial state

A cache hit is more interesting if it occurs early during the backtrack as it will
shorten the sequence executed. Thus the benefit of caching a state s increases
with its distance d(s). Through rate p(s) we estimate the probability that s
belongs to some reconstructing sequence. This increases if many states point to
2 If we define level l as the set of states that are reachable from s0 in l steps (and not

less), a transition that has its source in level l and its target in level l + 1 is called a
forward transition. Any other transition is called a backward transition.
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s in the backedge table and decreases with the number of states on the same
level as s. The distance of s could also be considered in the computation of p(s)
as s cannot appear in a reconstructing sequence of a length less than d(s). Our
choice is based on another typical characteristic of state spaces [18]: backward
transitions are usually short in the sense that the levels of its destination and
source are often close. Thus, in BFS, if a state has to be reconstructed, it is likely
that the length of its reconstructing sequence is close to the current depth which
is an upper bound of the length of a reconstructing sequence. Hence, assuming
that the state space has this characteristic, the distance will only have a small
impact on p(s).

Our third strategy is based on this heuristic.

Strategy H: After all outgoing transitions of state s have been visited
compute H(s). Let s′ be the state that minimizes H in the cache. If
H(s′) < H(s) replace s′ by s in the cache.

Note that after the visit of s, all necessary information to compute H(s) is
available since all its successors have been generated and the BFS search order
implies that L(d(s)) is known.

Distance based cache. Heuristic H does not take into account the presence
of already cached states. Yet it may be useless to cache a state with a high value
of H if, for example, the state it points to in the backedge table is itself in the
cache. The last strategy we propose is a slight variation of strategy H. It is also
based on heuristic H but it is parameterized by an integer k that specifies the
shortest possible sequence between two cached states.

Strategy D: Apply strategy H. Do not cache a state if, in the backedge
table, one of its ancestors of degree k or less is already cached.

Other possibilities are available. In [6] a reduction technique also based on state
reconstruction is proposed. The algorithm is parameterized by an integer k and
only caches states at levels 0, k, 2 · k, 3 · k . . . . The motivation of this strategy
is to bound the length of reconstructing sequences to k − 1. As presented, the
strategy in [6] does not bound the size of the cache but k could be dynamically
increased to solve this problem.

Different strategies may also be combined. We can for example cache recently
inserted states following strategy F and when a state leaves this cache it can be
inserted into a second level cache maintained with strategy H. Thus we will keep
some recently visited states in the cache and some old strategic states.

4 Combination with Delayed Duplicate Detection

Duplicate detection consists of checking the presence of a newly generated state
in the set of visited states. If the state has not been visited so far, it must be
included in the visited set and later expanded. With delayed duplicate detection
(DDD), this check is delayed from the instant of state generation by putting the
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state reached in a candidate set that contains potentially new states, i.e., states
reached via event executions but not checked to be in the visited set. In this
scheme, duplicate detection consists of comparing the visited and candidate sets
to identify new states. This is motivated by the fact that this comparison may
be much cheaper than checking individually for the presence of each candidate
in the visited set.

Algorithm 3 is a generic algorithm based on DDD. Besides the usual data
structures, we find a candidate set candidates filled with states reached through
event execution (lines 7–8). An iteration of the algorithm (lines 4–9) consists of
expanding all queued states and inserting their successors in the candidate set.
Once the queue is empty duplicate detection starts. We identify new states by
removing visited states from candidate states (line 11). States remaining after
this procedure are put in the visited set and in the queue (lines 12–14).

The key point of this algorithm is the way the comparison at line 11 is con-
ducted. In the disk-based algorithm of [17], the candidate set is kept in a memory
hash table and visited states are stored sequentially in a file. New states are de-
tected by reading states one by one from the file and deleting them from the
table implementing the candidate set. States remaining in the table at the end
of this process are therefore new. Hence, in this context, DDD replaces a large
number of individual disk look-ups — that each would likely require reading a
disk block — by a single file scan. It should be noted that duplicate detection
may also be performed if the candidate set fills up, i.e., before an iteration (lines
4–9) of the algorithm has been completed.

4.1 Principle of the Combination

The underlying idea of using DDD in the ComBack method is to group state
reconstructions to save the redundant execution of events shared by different re-
construction sequences. This is illustrated by Fig. 2. The search algorithm first
visits states s0, s1, s2, s3 and s4 each mapped to a different compressed state de-
scriptor. Later, state s is processed. It has two successors: s4 (already met) and
s5 mapped to h3 which is also the compressed state descriptor of s3. With the
basic reconstruction mechanism we would have to first backtrack to s0, execute
sequence a.b.d to reconstruct state 4 and find out that e does not, from s, generate

Algorithm 3. A generic search algorithm using delayed duplicate detection
1: V ← empty ; V.insert (s0)
2: Q ← empty ; Q.enqueue (s0)
3: while Q �= empty do
4: candidates ← empty
5: while Q �= empty do
6: s ← Q.dequeue ()
7: for e, s′ | (s, e, s′) ∈ T do
8: candidates.insert (s′)
9: duplicateDetection ()

10: proc duplicateDetection () is
11: new ← candidates \ V
12: for s ∈ new do
13: V.insert (s)
14: Q.enqueue (s)
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a new state, and then execute a.b.c from s0 to discover a conflict between s5 and
s3 and hence that f generates a new state. Nevertheless, we observe some redun-
dancy in these two reconstructions: as sequences a.b.c and a.b.d share a common
prefix a.b, we could group the two reconstructions together so that a.b is executed
once for both s3 and s4. This is where DDD can help us. As we visit s, we notice
that its successors s4 and s5 are mapped to hash values already met. Hence, we
put those in a candidate set and mark the identifiers of states that we have to
reconstruct in order to check whether s4 and s5 are new or not, i.e., 3 and 4.

0
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Fig. 2. The prefix a.b of the reconstructing
sequences of s3 and s4 can be shared

Duplicate detection then consists of
reconstructing marked states and to
delete them from the candidate set.
This can be done by conducting a
DFS starting from the initial state
in search of marked states. However,
as we do not want to reconstruct
the whole search tree, we have to
keep track of the sub-tree that we
are interested in. Thus, we addition-
ally store for each identifier the list
of its successors in the backedge table
that have to be visited. The DFS then
prunes the tree by only visiting suc-
cessors included in this list. On our
example this will result in the follow-
ing traversal order: s0, s1, s2, s3 and
finally s4.

4.2 The Combined Algorithm

We now propose Algorithm 4 that combines the ComBack method with DDD.
As it is straightforward to extend the algorithm with a full state descriptor cache
(discussed in Section 3) we only focus on the basic combination here.

The two main data structures in the algorithm are the queue Q containing
full descriptors of states to visit together with their identifiers and the visited
set V . The latter comprises three structures: a stateTable as in the basic Com-
Back method, a backedgeTable mapping state numbers to predecessors and some
auxiliary information used by the algorithm, and a candidates set consisting of
states that may or may not be new states.

First, consider again the LTS from Fig. 2. In Fig. 3, we see the example
annotated using the same notation used in Fig. 1 at the left. That is, each
ellipse represents a state and the hash value of the state is written in the right
part of the ellipse. The state number is shown in a square next to the ellipse. The
search has investigated states s0, s1, s2, s3 and s4, and is about to investigate s.
We have not shown the state table, which simply maps hi to i for i = 0 . . . 4. We
have just picked s from the queue, which is now empty. At the right of Fig. 3,
we show the backedge table before executing any event from s, after executing
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Fig. 3. Evolution of the backedge table after the execution of e and f from s

the event e, and after executing the event f . The first two components of the
tuples in the backedge table are the state number of the predecessor and the
event executed to reach the state as in Fig. 1. The third component is a boolean
telling whether the state should be compared to the states in the candidate set.
Before executing any events, this boolean is set to False for all states as we have
just performed duplicate detection. When executing event e, we reach state s4,
which has hash value h4 corresponding to state 4. We therefore add s4 to the
candidate set and set the boolean value to True for state 4 in the backedge table
(the middle one in Fig. 3). The last component of the tuple in the backedge is
a list of interesting successors, i.e., successor states that should be investigated
when performing duplicate detection. We backtrack from state 4 to the initial
state. For state number 2 we add the successor 4 as interesting, for state 1 we
add state 2, and for the initial state 0 we add state 1 as can be seen in the middle
backedge table in Fig. 3. After executing f from s, we obtain s5, which has hash
value h3 corresponding to state 3. We add s5 to the candidate set (which now
consists of s4 and s5), and flags that state 3 should be compared against the
candidate set. We also update the lists of interesting successors, adding 3 at
state 2. As state number 2 is already marked as interesting successor of state 1,
we stop backtracking at this point.

We can now perform duplicate detection by starting in the initial state. We
see that we need to expand state 1, so we execute the event a. In state 1, we
execute b to reach 2. In state 2, we must execute events to reach states 3 and
4. Executing c to reach state number 3, we obtain state s3. As we have set the
boolean to True, we attempt to remove s3 from the candidate set. The candidate
set did not contain s3, so it still contains states s4 and s5. The successor list of
state 3 is empty, so we execute d from state 2 to reach state 4. This also has
the boolean set to True, so we remove s4 from the candidate set, which now
only contains the state s5. Duplicate detection is then done, and we continue
the search from s5.

To sum up, the stateTable of the visited set V maps hash values to state
numbers exactly like in the basic ComBack method, the backedgeTable maps a
state number id to a tuple (idpred, e, check, succs) where
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Algorithm 4. The ComBack method extended with delayed duplicate detection
1: V ← empty ; Q ← empty
2: n ← 0 ; id ← newState (s0, nil, nil) ; Q.enqueue (s0, id)
3: while Q �= empty do
4: V.candidates ← empty
5: while Q �= empty do
6: (s, sid) ← Q.dequeue ()
7: for e, s′ | (s, e, s′) ∈ T do
8: if insert (s′, sid, e)= NEW(s′id) then Q.enqueue (s′, s′id)
9: if V.candidates.isFull () then duplicateDetection ()

10: duplicateDetection ()

11: proc newState (s, idpred, e) is
12: id ← n ; n ← n + 1
13: V.stateTable.insert (id, h(s))
14: V.backedgeTable.insert (id→ (idpred, e, false, []))
15: return id

16: proc insert (s, idpred, e) is
17: ids ← {id | (h(s), id) ∈ V.stateTable}
18: if ids = ∅ then
19: id ← newState (s, idpred, e)
20: return NEW(id)
21: else
22: V.candidates.insert (s, idpred, e)
23: for id in ids do
24: V.backedgeTable.setCheckBit (id)
25: backtrack (id)
26: return MAYBE

27: proc backtrack (id) is
28: idpred ← V.backedgeTable.getPredecessorId (id)
29: if idpred �= nil then
30: if id /∈ V.backedgeTable.getSuccessorList (idpred) then
31: V.backedgeTable.addSuccessor (idpred, id)
32: backtrack (idpred)

33: proc duplicateDetection () is
34: dfs (s0, 0)
35: for (s, idpred, e) in V.candidates do
36: id ← newState (s, idpred, e)
37: Q.enqueue (s, id)
38: V.candidates ← empty

39: proc dfs (s, id) is
40: check ← V.backedgeTable.getCheckBit (id)
41: if check then V.candidates.delete (s)
42: for succ in V.backedgeTable.getSuccessorList (id) do
43: e ← V.backedgeTable.getReconstructingEvent (succ)
44: dfs (s.exec (e), succ)
45: V.backedgeTable.unsetCheckBit (id)
46: V.backedgeTable.clearSuccessorList (id)
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– idpred and e are the identifier of the predecessor and the reconstructing event
as in the basic ComBack method;

– check is a boolean specifying if the duplicate detection procedure must verify
whether or not the state is in the candidate set;

– succs is the identifier list of its successors which must be generated during
the next duplicate detection as previously explained.

The candidates set is a set of triples (s, idpred, e) where s is the full descriptor
of a candidate state. In case duplicate detection reveals that s does not belong
to the visited set, idpred and e comprise the reconstruction information that will
be associated with the state in backedgeTable.

Consider again Algorithm 4 which shows the ComBack method extended with
delayed duplicate detection. The main procedure (lines 1–10) works basically as
Algorithm 3. A notable difference is that procedure insert (see below) may return
a two-valued answer:

NEW - if the state is surely new. In this case, the identifier assigned to the
inserted state is also returned by the procedure. The state can be uncondi-
tionally inserted in the queue for a later expansion.
MAYBE - if we cannot answer without performing duplicate detection.

Procedure newState inserts a new state in the visited set together with its re-
construction information. It computes a new identifier for s, a state to insert,
and update the stateTable and backedgeTable.

Procedure insert receives a state s, the identifier idpred of one of its prede-
cessors s′ and the event used to generate s from s′. It first performs a lookup in
the stateTable for identifiers of states mapped to the same hash value as s (line
17). If this search is unsuccessful (lines 18–20), this means that s has definitely
not been visited before. It is unconditionally inserted in V , and its identifier is
returned by the procedure. Otherwise (lines 21–26), the answer requires the re-
construction of states whose identifiers belong to set ids. We thus save s in the
candidate set for a later duplicate detection, set the check bit of all identifiers
in ids to true so that the corresponding states will be checked against candidate
states during the next duplicate detection, and backtrack from these states.

The purpose of the backtrack procedure is, for a given state s with identifier
id, to update the successor list of all the states on the path from s0 to s in the
backedge table so that s will be visited by the DFS performed during the next
duplicate detection. The procedure stops as soon as a state with no predecessor
is found, i.e., s0, or if id is already in the successor list of its predecessor, in
which case this also holds for all its ancestors.

Duplicate detection (lines 33–38) is conducted each time the candidate set is
full (line 9), i.e., it reaches a certain peak size, or the queue is empty (line 10).
Using the successor lists constructed by the backtrack procedure, we initiate a
depth-first search from s0 (see procedure dfs). Each time a state with its check
bit set to true is found (line 41) we delete it from the candidate set if needed.
When a state leaves the stack we set its check bit to false and clear its successor
list (lines 45–46). Once the search finishes (lines 35–37) any state remaining in
the candidate set is new and can be inserted into the queue and the visited set.
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4.3 Additional Comments

We discuss below several issues regarding the proposed algorithm.

Memory issues. Our algorithm requires the storage of additional information
used to keep track of states that must be checked against the candidate set during
duplicate detection. This comprises, for each state, a boolean value (the check
bit) and a list of successors that must be visited. As any state may belong to
the successor list of its predecessor in the backedge table, the memory overhead
is theoretically one bit plus one integer per state. However, our experiments
reveal (see Section 5) that even very small candidate sets show good memory
performance. Therefore, successor lists are usually short and the extra memory
consumption low. We did not find any model for which our algorithm aborted
due to a lack of memory, but where the one of [20] did terminate.

Grouping reconstructions of queued states. In [20] the possibility to reduce
memory usage by storing identifiers instead of full state descriptors in the queue
(Variant 4 in Section 5) was mentioned. This comes at the cost of an additional
reconstruction per state required to get a full descriptor for the state that can be
used to generate its successors. The principle of grouping state reconstructions
can also be applied to the states waiting in the queue. The idea is to dequeue
blocks of identifiers from the queue instead of individual ones and reconstruct
those in a single step using a procedure similar to dfs given in Algorithm 4.

Compatibility with depth-first search. A nice characteristic of the ba-
sic ComBack method is its total decoupling from the search algorithm thereby
making it fully compatible with, e.g., LTL model checking [3,9]. Delaying detec-
tion from state generation makes an algorithm implicitly incompatible with a
depth-first traversal in which the state processed is always the most recent state
generated. At first glance, the algorithm proposed in this section also belongs
to that category. However, we can exploit the fact that the insertion procedure
can decide if a state is new without actually putting it in the candidate set (if
the hash value of the state has never been met before). The idea is that the
search can progress as long as new states are met. If some state is then put in
the candidate set, the algorithm puts a marker on the stack to remember that a
potentially new state lies here. Finally, when a state is popped from the stack,
duplicate detection is performed if markers are present on top of the stack. If we
find out that some of the candidate states are new, the search can continue from
these ones. This makes delayed detection compatible with depth-first search at
the cost of performing additional detections, during the backtrack phase of the
depth-first search algorithm.

5 Experimental Results

We report in this section the data we collected during several experiments with
the proposed techniques3. We used the ASAP verification tool [19] where we
3 Additional data on these experiments may be found in [7].
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have implemented the algorithms described in this article. A nice characteristic
of ASAP is its independence from the description language of the model. This
allows us to perform experiments on CPN (Coloured Petri net) and DVE (the
input language of the DiVinE verification tool [1]) models. All CPN models come
from our own collection. DVE models were taken from the BEEM database [15]
though we did not consider models belonging to the families “Planning and
scheduling” and “Puzzles” as these are mostly very simple models, e.g., the
towers of Hanoi, that have nothing to do with real life examples.

For CPN models, the hash function used is defined inductively on the state
of the model. In CPNs, a state is a marking of a set of places . Each marking is
a multi-set over a given type. We use a standard hash function for each type.
We extend this hash function to multi-sets by using a combinator function,
which takes two hash values and returns a new hash value. We extend the hash
functions on markings of places to a hash function of the entire model by using
the combinator function on the place hash functions. We proceed exactly the
same way for DVE instances, except that the components of the system are now
variables, channels, and process states rather than places. The performance of
these functions in term of conflicts is usually very good. Typically with a 32 bit
hash signature there is generally no collision for small instances (100,000 states
or less) and for larger instances (e.g., up to 106–107 states), we can reasonably
expect to cover more than 95% of the state space using a hash compaction
based algorithm. The quality of this function is evidenced by Table 1 in [20] that
reports the number of collisions for several CPN instances.

This section uses several abbreviations. Table 1 lists all abbreviations used
in this section and it provides a short description of all selected models. Each
instance name consists of the concatenation of a model name followed by an
instance number (i.e., an instantiation of the model parameters). For instance
firewire tree.5 is the 5th instance (in the BEEM database) of the model
named firewire tree. The instantiation values of parameters are not relevant
for this study.

5.1 Experiment 1: Evaluation of Caching Strategies

In this first experiment we evaluated the different strategies proposed in Section
3. We selected 143 DVE instances having from 10,000 to 10,000,000 states and
ran the ComBack algorithm of [20] using BFS with 10 caching strategies and 4
sizes of cache expressed as a fraction of the state space size: { 10-4, 10-3, 10-2,
10-1 }. Of these 10 strategies 4 are simple: R (with a replacement probability
p = 0.5), F, H, D (with a minimal distance k = 5 between cached states); and 6
are combinations of the first ones: F20-H80, F50-H50, F80-H20, F20-D80, F50-D50

and F80-D20. We measured after each run the number of event executions that
were due to state reconstructions. The results are summarized in Table 2. On
the top four rows we give, for each strategy, the average over all instances of
the number of event executions due to state reconstruction with this strategy
divided by the same number obtained with strategy R. The bottom four rows
report for each strategy the number of instances for which it performed best.



204 S. Evangelista, M. Westergaard, and L.M. Kristensen

Table 1. List of abbreviations and short description of models used in Section 5

Abbreviations

BFS Breadth-First Search
CPN Colored Petri Net
DDD Delayed Duplicate Detection
DVE Input language of the DiVinE toolset

Caching strategies

D Distance based caching strategy
F Fifo caching strategy
H Heuristic based caching strategy
R Random caching strategy

FX-DY Combination of caching strategies F and D where X% (resp. Y%) of the
cache is allocated to a Fifo sub-cache (resp. Distance based sub-cache)

FX-HY Combination of caching strategies F and H where X% (resp. Y%) of the
cache is allocated to a Fifo sub-cache (resp. Heuristic based sub-cache)

Introduced in Experiment 2

Std. Execution time using a standard storage method, i.e., without any
reduction technique, or using hash compaction if the classical search
ran out of memory

DDD(X) Characterize a search using the ComBack method with delayed
duplicate detection. X denotes the size of the candidate set as a
fraction of the cache size.

T↑ Denote, for a search using the ComBack method, the increase of the
execution time as the ratio execution time of this run

execution time with a standard search
.

E↑ Denote, for a search using the ComBack method, the increase of the

number of event executions as the ratio event executions during this run
transitions of the graph

.

Introduced in Experiment 3

S Caching strategy used
FC Proportion of full state descriptors allocated to the cache
FCS Proportion of full state descriptors allocated to the candidate set
FQ Proportion of full state descriptors allocated to the queue

Models

CPN models

dymo Dynamic MANET on-demand routing protocol (from [5])
erdp Edge router discovery protocol (from [13])

protocol Simplified stop and wait protocol
telephones Telecommunication service

DVE models

brp Bounded retransmission protocol
brp2 Timed version of the bounded retransmission protocol

cambridge Cambridge ring protocol
firewire link Layer link protocol of the firewire protocol (IEEE 1394)
firewire tree Tree identification protocol of the firewire protocol (IEEE 1394)

needham Needham-Schroeder public key authentication protocol
synapse Synapse cache coherence protocol
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These latter are only given for information and our interpretations will be based
on the values of the top rows.

Strategy F performs well compared to strategy R but its performance degrades
as we allocate more states to the cache. This is also confirmed by the fact that
combinations F-H and F-D seem to perform better for a large cache when the
proportion of states allocated to the fifo sub-cache is low. Apparently with this
strategy, we quickly reach a limit where all (or most of) forward transitions lead
to a cached (or new) state and most backward transitions lead to a non cached
state. Such a cache failure always implies backtracking to the initial state (the
fifo strategy implies that if a state is not cached, none of its ancestors in the
backedge table is cached) which can be quite costly. Beyond this point, allocating
more states to the cache is almost useless. We even see that strategy F is largely
outperformed by strategy R for the largest cache size we experimented with.

The performance of strategy H is poor for small caches but progresses well
compared to strategy F. With this strategy, most transitions will be followed by
a state reconstruction. However, our heuristic works rather well and reconstruct-
ing sequences are usually much shorter than with strategy F. Still, strategy H
is usually outperformed by strategy F for small cache sizes due to a high pres-
ence of forward transitions in state spaces [14]. To sum up, strategy F implies
few reconstructions but long reconstructing sequences and strategy H has the
opposite characteristics.

As expected, strategy D improves strategy H although only slightly. It pre-
vents the algorithm from caching two states that are linked by too short a path
in the backedge table. However, for the largest cache size we experimented with,
the algorithm could not use all the memory allocated to the cache due to this
restriction. This is the only case where strategy D performed worse than H.

From all these observations it is not surprising to see that the best strategy is
to always keep a small fifo cache and allocate remaining memory to a second level
cache maintained with strategy D, that is, to keep a small number of recently
visited states to limit the number of reconstructions and many strategic states
from previous levels that will help us shorten reconstructing sequences.

Note that for a large cache holding 10% of the state space, the strategy used
impacts less than for small caches. This is evidenced by the fact that the values
observed for strategy H and D approach 1 and more generally that all values of
line 10-2 are smaller than those of line 10-1.

Out of these 143 instances we selected 4 instances that have some specific
characteristics (brp2.6, cambridge.6, firewire tree.4 and synapse.6) and
evaluated strategies F, D and F20-D80 with different sizes of cache ranging from
1,000 to 10,000. The collected data is plotted in Fig. 4. On the x-axis is the
different cache sizes used. For each run we recorded the number of event execu-
tions due to reconstructions and compared it to the same number obtained with
strategy F. For instance, with brp2.6 and a cache of 2,000 states, reconstruc-
tions generated approximately three times more event executions with strategy
D than with strategy F. We also provide the characteristics of these graphs in
terms of number of states and transitions, average degree, i.e., average number
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Table 2. Evaluation of caching strategies on 143 DVE instances

Cache Strategy

size R F H F20 F50 F80 D F20 F50 F80

H80 H50 H20 D80 D50 D20

10-4 1.000 0.397 1.123 0.365 0.339 0.339 1.057 0.356 0.332 0.337
10-3 1.000 0.452 0.940 0.292 0.293 0.317 0.763 0.272 0.278 0.308
10-2 1.000 0.587 0.479 0.187 0.208 0.261 0.385 0.162 0.188 0.247
10-1 1.000 2.090 0.670 0.258 0.348 0.538 0.771 0.229 0.280 0.472

10-4 3 55 3 9 18 28 2 18 21 15
10-3 0 12 3 25 26 19 2 50 22 13
10-2 0 4 2 42 12 6 4 85 9 8
10-1 0 0 4 53 10 6 0 66 19 14

of transitions per state, number of levels and number of forward transitions as
a proportion of the overwhole number of transitions.

The graph of firewire tree.4 only has forward transitions, which is common
for leader election protocols. Therefore, a sufficiently large fifo cache is the best
solution. This is one of the few instances where increasing the cache size benefits
strategy F more than D. Moreover, its average degree is rather high, which leads
to a huge number of reconstructions with strategy D. On the contrary the graph
of cambridge.6 has a relatively large number of backward transitions. Increas-
ing the fifo cache did not bring any substantial improvement: from 262,260,647
executions with a cache size of 1,000 it went down to 260,459,235 executions
with a cache size of 10,000. Strategy D is especially interesting for synapse.6 as
its graph has a rather unusual property: a low fraction of its states have a high
number of successors (from 13 to 18). These states are thus shared by many re-
constructing sequences and, using our heuristic, they are systematically kept in
the cache. Thus, strategy D always outperforms strategy F even for small caches.
The out-degree distribution of the graph of brp2.6 has the opposite character-
istics: 49% of its states have 1 successor, 44% have 2 successors and other states
have 0 or 3 successors. Therefore, there is no state that is really interesting to
keep in the cache. This is evidenced by the fact that the progressions of distance
based strategies (relative to strategy F) are not so good. It goes from 3.157 to
2.200 for strategy D and from 0.725 to 0.537 for strategy F20-D80.

5.2 Experiment 2: Evaluation of Delayed Duplicate Detection

To experiment with delayed detection we picked out 63 DVE instances having
from 1,000,000 to 60,000,000 states and 12 CPN instances having from 100,000 to
5,000,000 states. The ComBack method was especially helpful for the dymo and
erdp models which are models of two industrial protocols—a routing protocol [5]
and an edge router discovery protocol [13]—and have large descriptors (1,000–
5,000 bytes).
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Instance States Transitions Deg. Levels Forward tr.

brp2.6 5,742,313 9,058,624 1.57 571 92.6%
cambridge.6 3,354,295 9,483,191 2.83 259 66.8%

firewire tree.4 169,992 630,811 3.71 118 100%
synapse.6 625,175 1,190,486 1.90 70 74.9%

Fig. 4. Evolution of strategies F, D and F20-D80 on some selected instances

Table 3 summarizes our observations. We only report data for 6 instances
of each family but still provide the average increases on all instances (see Ta-
ble 4(a)). We used caching strategies F and F20-D80 with a cache size correspond-
ing to 1% of the state space for DVE instances and 0.1% for CPN instances. This
choice is motivated by the observation that state vectors of Coloured Petri Nets
(100–10,000 bytes) are usually much larger than those of DVE models (10–500
bytes). For each instance we performed 6 tests: one with a standard storage
method, i.e., full state descriptors are kept in the visited set, (column Std.), one
with the ComBack method without delaying detection (column No DDD) and
four with delayed detection enabled with different candidate set sizes expressed
as a fraction as the memory given to the cache (columns DDD(0.1), DDD(0.2),
DDD(0.5) and DDD(1)). For CPN instances, we kept identifiers in the queue
rather than full state descriptors—as described in [20], Variant 4 of Section 5.
Most of the instances studied have rather large levels (typically more than 10%
of the state space) which prevented us from keeping full state descriptors. The
optimization described in Section 4.3 that consists of grouping the reconstruc-
tion of queued identifiers was turned on and each block of states reconstructed
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Table 3. Evaluation of DDD on some DVE and CPN instances

Std. ComBack

Strat. No DDD DDD(0.1) DDD(0.2) DDD(0.5) DDD(1)
T↑ E↑ T↑ E↑ T↑ E↑ T↑ E↑ T↑ E↑

C
P

N
in

st
a
n
ce

s

dymo.2� 4,196,714 states, 29,227,638 transitions

15,073 F 8.75 17.83 1.31 1.94 1.36 1.90 1.40 1.87 1.45 1.86
F20-D80 4.97 9.05 1.88 2.97 1.92 2.87 2.00 2.85 2.02 2.75

dymo.6 1,256,773 states, 7,377,095 transitions

1,429 F 11.64 15.17 1.91 2.00 1.84 1.91 1.80 1.85 1.79 1.82
F20-D80 8.98 10.51 2.41 2.57 2.32 2.49 2.24 2.37 2.14 2.24

erdp.2� 4,277,126 states, 30,503,876 transitions

6,324 F 10.08 26.58 1.85 3.16 1.89 2.97 1.84 2.77 1.83 2.65
F20-D80 4.84 10.80 1.75 3.16 1.79 3.01 1.90 2.82 1.89 2.71

erdp.3� 2,344,208 states, 18,739,842 transitions

3,784 F 9.99 22.13 2.07 3.17 1.98 2.97 1.89 2.78 1.83 2.66
F20-D80 5.44 10.04 2.14 3.23 2.06 3.06 1.98 2.87 1.92 2.75

protocol.3� 2,130,381 states, 11,584,421 transitions

424 F 34.17 45.85 5.32 6.95 4.71 6.08 4.16 5.25 3.80 4.77
F20-D80 18.20 25.89 5.12 6.73 4.61 6.02 4.13 5.29 3.82 4.82

telephones.2 1,004,967 states, 11,474,892 transitions

894 F 3.90 8.06 1.76 2.78 1.64 2.54 1.53 2.30 1.45 2.13
F20-D80 2.90 5.32 1.85 2.93 1.77 2.76 1.68 2.58 1.60 2.39

D
V

E
in

st
a
n
ce

s

brp.4 12,068,447 states, 25,085,950 transitions

16.4 F 9.37 23.02 4.42 3.39 3.76 2.74 2.89 1.87 2.51 1.48
F20-D80 7.27 10.80 5.14 3.04 4.57 2.55 3.65 1.85 3.22 1.53

brp2.6 5,742,313 states, 9,058,624 transitions

6.5 F 8.20 16.79 7.86 5.64 6.68 5.16 6.62 5.26 6.41 5.27
F20-D80 5.59 7.06 8.55 5.31 6.03 3.88 7.16 4.85 7.07 4.91

cambridge.7 11,465,015 states, 54,850,496 transitions

197 F 23.12 65.43 1.92 3.12 1.90 3.05 1.88 2.97 1.83 2.83
F20-D80 2.83 5.63 1.79 2.40 1.79 2.38 1.78 2.36 1.75 2.30

firewire link.5� 18,553,032 states, 59,782,059 transitions

358 F 3.34 3.54 1.30 1.18 1.26 1.14 1.23 1.11 1.22 1.10
F20-D80 1.45 1.32 1.32 1.15 1.29 1.12 1.26 1.10 1.26 1.09

needham.4 6,525,019 states, 22,203,081 transitions

20.2 F 2.29 2.41 1.73 1.29 1.74 1.29 1.75 1.28 1.75 1.27
F20-D80 2.08 1.72 1.98 1.33 2.00 1.33 2.01 1.33 2.01 1.32

synapse.7 10,198,141 states, 19,893,297 transitions

24.4 F 9.11 13.53 2.02 1.42 2.02 1.41 2.01 1.39 2.00 1.36
F20-D80 2.43 1.94 2.21 1.31 2.21 1.31 2.22 1.31 2.23 1.30

Parameters for CPN instances
cache size 0.1% of the state space

items in the queue state identifiers

Parameters for DVE instances
cache size 1% of the state space

items in the queue full state descriptors
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from the queue had the same size as the candidate set. Hence, when DDD was
not used this optimization was turned off. In column Std. we provide the ex-
ecution time in seconds using a standard search algorithm. In columns T↑ we
measure the run-time increase (compared to the standard search) as the ratio
execution time of this run
T (with standard search) and in column E↑ the increase of the number of event exe-

cutions as the ratio event executions during this run
transitions of the graph . Hence, a value of 1 for E↑ means

that we executed exactly the same number of events as the basic algorithm and
that no state reconstruction occurred. Some runs using standard storage ran of
out memory. This is indicated by a � following the instance name. For these, we
provide the time obtained with hash compaction as a lower approximation.

We notice that DDD is indeed useful to save the redundant exploration of
transitions during reconstruction, and this, even with small candidate sets. Typ-
ically, the number of executions is reduced by a factor of 3–5 or even more if we
keep identifiers in the queue and group their reconstruction. It seems that, using
BFS, states generated successively are “not so distant” in the graph so their
reconstructing sequences are quite similar, which allows many sharings. This
especially holds during the reconstruction of queued states. Two states recon-
structed this way often have the same predecessor in the backedge table (since
they have been generated from that state) or at least a common ancestor of low
degree. Hence, the average decrease of executions is more sensible for CPNs.

However, although DDD saves many redundant operations in state recon-
structions, this does not always impact on the time saved as we would have
expected. Indeed DDD is much more interesting when analyzing CPN instances
rather than DVE instances. If we consider for example the average increase in
the number of events and in the run-time of the 63 DVE instances with caching
strategy F20-D80 (see Table 4(a)) we could reduce the number of events executed
by more than a factor of 2 (4.00 → 1.63) whereas the average time (3.45 → 2.65)
did not decrease in a comparable way. The reason is that executing an event is
much faster for DVE models than for CPN models. Events are typically simple
in the DVE language, e.g., a variable incrementation, whereas they can be quite
complex with CPNs and include the execution of code embedded in the transi-
tion. Therefore, the fact of maintaining the candidate set or successors lists has
a non negligible impact for DVE models which means that DDD reduces time
only if the number of executions decreases in a significant way, e.g., for instance
brp.4.

We saw in the previous experiment that model characteristics largely impact
on the performance of caching strategies and, hence, that a significant increase
in the size of the cache did not necessarily lead to the expected decrease of
event executions. This assertion is less valid when duplicate detection is used
as we can see from Table 4(b). This one gives, for each configuration (caching
strategy and candidate set size), the distribution of values in column E↑ for all
63 DVE instances (rather than the 6 selected). We notice that, by using a very
small candidate set (0.1% of the state space), the number of instances in the
last range, i.e., with E↑ > 4, is drastically reduced and, more generally, that
allocating more states to the candidate set always brings some improvement.
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Table 4. Summary of data for Experiment 2

(a) Average on all instances of time and event executions increase

Strat. No DDD DDD(0.1) DDD(0.2) DDD(0.5) DDD(1)
T↑ E↑ T↑ E↑ T↑ E↑ T↑ E↑ T↑ E↑

Average on 63 DVE instances

F 7.15 13.40 2.70 2.12 2.59 1.99 2.43 1.81 2.36 1.66
F20-D80 3.45 4.00 2.92 1.96 2.81 1.86 2.71 1.74 2.65 1.63

Average on 12 CPN instances

F 16.25 24.03 4.05 4.98 3.45 4.18 2.97 3.52 2.71 3.20
F20-D80 9.59 13.61 3.77 4.81 3.36 4.24 3.01 3.72 2.83 3.44

(b) Distribution of the values in column E↑ for the 63 DVE instances

Strat. F Strat. F20-D80

Candidate set size Candidate set size
Range of E↑ 0 0.1 0.2 0.5 1 0 0.1 0.2 0.5 1

1 – 1.25 3 9 9 13 14 3 8 8 11 14
1.25 – 1.50 2 8 8 7 15 6 9 10 12 17
1.50 – 1.75 0 0 1 6 9 6 5 7 9 9
1.75 – 2 1 11 15 18 15 2 15 15 18 13

2 – 4 5 33 28 18 9 24 24 22 12 9
> 4 52 2 2 1 1 22 2 1 1 1

With the largest candidate set size (1% of the state space), duplicate detection
generated less event executions than the exploration algorithm, i.e., E↑ < 2, for
53 instances out of the 63 selected, regardless the caching strategy. Instances
cambridge.7 and brp2.6 (see Table 3) belong to the 10 instances that do not
have this property. To sum up, increasing the candidate set size is (almost) always
useful; and the benefit of DDD is hence more predictable than the benefit of state
caching (which depends to a large extent on the characteristics of model).

A somewhat negative observation is that the relative advantage of strategy
F20-D80 previously observed in Experiment 1 is lost when DDD is used. We
indeed observe that numbers reported in Table 4(a) are roughly the same for
both strategies: the caching strategy impacts less when delayed detection is used.
For DVE instances the algorithm executed slightly more events with strategy F
but was also faster. This is due to the time overhead induced by the distance
based strategy: each time a state is likely to enter the cache we have to verify
in the backedge table that none of its ancestors of degree k (5 in our case)
is itself cached. For CPN instances, strategy F generally lead to fewer event
executions. Since we stored identifiers instead of full state descriptors in the
queue, a fifo cache was more appropriate: by keeping states of the last BFS
levels, the probability that an unprocessed state that has to be reconstructed
is cached greatly increases. Hence, the grouped reconstruction of queued states
occurs less frequently.

These results are best explained in light of the observations made in the first
experiment. The goal of strategies F and D are indeed different. The first one
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reduces the number of reconstructions while the second one reduces the number
of events executed per reconstruction. Thus, delayed duplicate detection and
caching strategy D work at the same level and may be redundant whereas DDD
is fully complementary to strategy F. Hence, it is not surprising that DDD brings
better results when combined with a fifo caching strategy.

5.3 Experiment 3: Optimal Use of Available Memory

In this last experiment we look at a more practical problem. We basically want
to know how to tune the different parameters of the ComBack algorithm in order
to guarantee a good reduction of the execution time, whatever the input model.
This is of interest since the previous experiments stressed that huge variations
can be observed for one model when using different combinations of the various
extensions we proposed.

First, let us note that by keeping state identifiers in the queue we bound the
number of full state descriptors used by the algorithm. Each of these descriptors
may be kept in three places: in the queue (if we group the reconstruction of
states waiting to be processed), in the cache or in the candidate set. Now, let
us suppose that the user has an idea of the available memory and the full state
descriptor size4. From this user supplied information, we can roughly decide on a
maximal number of full state descriptors that may reside in memory. Since there
is an obvious conflict between the data structures used by the algorithm, i.e., a
full state descriptor may only be kept in one of these, we have to decide which
portion should be allocated to the queue, to the cache and to the candidate set.
Hence, the problem considered is the following. Given a maximal number of full
state descriptors F given to the algorithm, find the configuration that minimizes
the extra time introduced by the ComBack method. By configuration we mean
here a tuple (S, FC, FCS, FQ) where S is a caching strategy and FC, FCS and
FQ are respectively the proportion of the F states allocated to the cache, to the
candidate set and to the queue.

To try to answer this question we performed numerous runs using the different
instances and parameters listed by Table 5(a) (naturally, under the constraint
that FC + FCS + FQ= 1). We voluntarily selected small values for parameter
F and large state spaces (with respect to F) to simulate verification runs where
the state space is large, e.g., 109 states, and the state descriptor is so large
that only a small fraction of them can be kept in main memory. We did not
experiment with values greater than 0.4 for parameter FQ as beyond this bound
the performance of the algorithm quickly degraded. Table 5(b) summarizes our
results. The performance reported in column E↑ is the average over all instances
of event executions increase (see Table 1). Note that the table has been sorted
according to the values reported in that column. For the sake of clarity we only
report the performance of a few configurations including the ones that performed
the best and the worst. We can make the following observations regarding this
data.
4 Otherwise, a partial search exploring a sample of the state space can provide a rather

good approximation of this size.
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– First, for each of the three tables, the top part is occupied by configurations
using the three techniques (i.e., for which FC>0, FCS>0 and FQ>0) while
the bottom part is almost only composed of configurations for which one
of these parameters is set to 0. Hence, none of these techniques should be
disabled.

– All other things being equal, strategy F20-D80 is outperformed by strategies
F and F80-D20. It is therefore preferable to allocate more states to a fifo
cache although a small distance based cache can bring some improvements
compared to a pure fifo cache.

– It seems that the best way to proceed is, whatever the value of F, to at-
tribute the majority of the memory to the cache (50–60%), a small amount
to group the reconstruction of queued states (10–20%) and the remainder to
the candidate set for delayed duplicate detection (20–40%). Although this

Table 5. Summary of data for Experiment 3

(a) Parameters used for experimentation

Parameters

F ∈ { 100, 1,000, 10,000 }
FC ∈ { 0, 0.1, 0.2, . . . , 1 }
FCS ∈ { 0, 0.1, 0.2, . . . , 1 }
FQ ∈ { 0, 0.1, 0.2, 0.3, 0.4 }
S ∈ { F, F20-D80, F80-D20 }

Selected instances
all DVE instances with

[100 · F – 1, 000 · F] states

(b) Results

F=102 (58 instances)

Configuration E↑
S FC FCS FQ

F80-D20 0.5 0.3 0.2 6.51
F 0.4 0.3 0.3 6.64

F20-D80 0.9 0 0.1 8.91
F20-D80 0.5 0.5 0 13.7
F80-D20 0.8 0.2 0 16.5

F 1 0 0 25.9
- 0 1 0 30.9

F=103 (46 instances)

Configuration E↑
S FC FCS FQ

F80-D20 0.6 0.2 0.2 5.45
F 0.4 0.3 0.3 5.54

F20-D80 0.9 0 0.1 9.51
F20-D80 0.8 0.2 0 13.3
F80-D20 0.8 0.2 0 18.4

F 1 0 0 34.6
- 0 1 0 74.4

F=104 (41 instances)

Configuration E↑
S FC FCS FQ

F80-D20 0.6 0.3 0.1 3.59
F 0.4 0.3 0.3 3.72

F80-D20 0.8 0.2 0 6.58
F20-D80 0.9 0 0.1 7.42
F80-D20 0.1 0.9 0 13.7

- 0 1 0 20.7
F 1 0 0 29.5
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information is not provided by the table, these are also the configurations
for which the standard deviation is the lowest, meaning that the perfor-
mance of the algorithm is more predictable and depend less on the specific
characteristics of the state space.

6 Conclusion

The ComBack method has been designed to explicitly store large state spaces of
models with complex state descriptors. The important memory reduction factor
it may provide is however counterbalanced by an increase in run-time due to the
on-the-fly reconstruction of states. We proposed in this work two ways to tackle
this problem. First, strategies have been devised in order to efficiently maintain
a full state descriptor cache, used to perform less reconstructions and shorten
the length of reconstructing sequences. Second, we combined the method with
delayed duplicate detection to group reconstructions and save the execution of
events that are shared by multiple sequences. We have implemented these two
extensions in ASAP and performed extensive experimentation on both DVE
models from the BEEM database and CPN models from our own collection.
These experiments validated our proposals on many models. Compared to a
random replacement strategy, a combination of our strategies could, on an aver-
age made over a hundred of DVE instances, decrease the number of transitions
visited by a factor of five. We also observed that delayed duplicate detection is
efficient even with very small candidate sets. In the best cases, we could even
approach the execution time of a hash compaction based algorithm. Moreover,
by storing identifiers instead of full descriptors in the queue we bound the num-
ber of full state descriptors that reside in memory. Hence, our data structures
can theoretically consume less memory during the search than hash compaction
structures. We experienced this situation on several occasions.

In this work, we mainly focused on caching strategies for a breadth-first search.
BFS is helpful to find short error-traces for safety properties, but not if we are
interested in the verification of linear time properties, which is inherently based
on a depth-first search. The design of strategies for other types of searches is
thus a future research topic. In addition, the combination with delayed duplicate
detection opens the way to an efficient multi-threaded algorithm based on the
ComBack method. The underlying principle would be to have some threads
exploring the state space and visiting states while others are responsible for
performing duplicate detection. We are currently working on such an algorithm.

Acknowledgments. We thank the anonymous reviewers for their detailed com-
ments that helped us to improve this article.
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