
Substitutions on Multidimensional SequenesThomas FerniqueLIRMM CNRS-UMR 5506 and Université Montpellier II,161 rue Ada 34392 Montpellier Cedex 5 - Frane,PONCELET Lab. CNRS-UMI 2615 and Independent University of Mosow,Bol'shoj Vlas'evskij per. 11. 119002 Mosow - Russia,thomas.fernique�ens-lyon.orgAbstrat. We provide in this paper a multidimensional generalizationof substitutions on words, whih is de�ned as the ation on multidimen-sional sequenes of a non-pointed substitution endowed with loal rules.The non-pointed substitutions and the loal rules have in the multidi-mensional ase respetively the roles played by the substitutions de�nedon letters and by the onatenation on words. This de�nition then al-lows us to provide a (yet partial) multidimensional generalization of analgebrai haraterization of Sturmian words whih are �xed-point ormorphi image of a �xed-point of a non-trivial substitution on words.IntrodutionA substitution ats on a word in this way: the image of eah letter is a word, andthe image of the whole word is then just the onatenation of the images of itsletters. Substitutions are powerful ombinatorial tools, and have natural inter-ations with language theory, geometry of tilings, automata theory, and manyothers (see e.g. [14℄ and the referenes inside). It thus would be useful to de�nea similar tool in the more general framework of multidimensonal sequenes, thatare sequenes of letters indexed by Zn (whereas words are sequenes of lettersindexed by N). It is however a di�ult problem, mainly for lak of a natural�multidimensional onatenation�.Suh a generalization has already been introdued in [15℄: for p1; : : : ; pn �xedin N, a letter u indexed by (i1; : : : ; in) is mapped to a set �(u) of letters indexedby f(j1; : : : ; jn) j 8k; pkik � jk < pk(ik +1)g (that is, a p1� : : :� pn-retangle).But it generalizes in fat only onstant-length substitutions on words (whihmap letters to words all of the same length). An algebrai haraterization ofall the multidimensional sequenes whih are �xed point of suh substitutionsis also proved (see again [15℄), what generalizes a similar result for words whihare �xed-point of a onstant-length substitution (see e.g. [1℄).A �rst aim of this paper is to introdue a notion of multidimensional sub-stitution whih generalizes any type of substitutions on words, and not only theonstant-length ones (or any other partiular type). Seond, we would like to



2give an algebrai haraterization of the multidimensional sequenes whih are�xed-point of suh a multidimensional substitution. More preisely, Theorem 2generalizes the following result (see e.g. [6, 9℄):Let � be an irrational number in [0; 1℄. One de�nes the Sturmian sequeneu� = (un) over the alphabet f1; 2g by:8n � 1; un = 1 , (n�) mod 1 2 I�;where I� = (0; 1 � �℄ or I� = [0; 1 � �). Then u� is a �xed point (resp. themorphi image of a �xed point) of a substitution on words if and only if � has apurely periodi (resp. eventually periodi) ontinued fration expansion.Notie that this haraterization onerns only Sturmian sequenes, that is, asubset of the set of all the sequenes. Thus, generalizing this result also requiresto de�ne a notion of �multidimensional Sturmian sequene�.The paper is organized as follows. In the �rst setion, we de�ne non-pointedsubstitutions and loal rules, that are our multidimensional equivalents of the�lassi� substitutions de�ned on letters, and of the onatenation produt usedto make suh substitutions at on sequenes. It allows us, under onditions onthe loal rules, to de�ne our notion of multidimensional substitution. In Setion2, we desribe a type of loal rules whih satisfy the onditions required to de-�ne a multidimensional substitution: the loal rules derived from a global rule.In Setion 3, we resume the notion of generalized substitutions, de�ne Sturmianhyperplane sequenes and then we show that these generalized substitutions pro-vide global rules from whih we an derive loal rules as desribed in Setion 2.It yields multidimensional substitutions on Sturmian hyperplane sequenes, andallows us to give (Theorem 2) a partial generalization of the algebrai hara-terization of �xed-points stated above.1 Non-pointed substitutions and loal rulesLet A be a �nite alphabet. A pointed letter is an element L = (x; l) of Zn�A,where x is the loation of the letter l. We denote by L the set of pointed letters.A pointed pattern is a set of pointed letters with distint loations. The sup-port of a pointed pattern is de�ned as the set of the loations of its letters. Twopointed patterns are said onsistent if two letters with the same loation areidential. The notions of union, intersetion and inlusion are then de�ned foronsistent patterns as for usual sets. We denote by P the set of pointed patterns.The lattie Zn ats on pointed letters (resp. pointed patterns) by transla-tion on the loations (resp. supports): the lasses of equivalene of this ationare alled non-pointed letters and denoted by L (resp. non-pointed patterns, de-noted by P).



3Thus, to eah pointed pattern P orresponds a unique non-pointed pattern,alled its underlying non-pointed pattern and denoted P . Conversely, to eahnon-pointed pattern P orresponds all the ongruent pointed patterns, alledrealizations of P , that have P as underlying non-pointed pattern. If P and P 0are ongruent pointed patterns, one denotes v(P; P 0) 2 Zn the vetor that mapsP onto P 0 by translation.We are now in a position to give our multidimensional generalization of thede�nition on letters of a substitution on words:De�nition 1. A non-pointed substitution is a map from L to P.In what follows, � denote a non-pointed substitution. We now de�ne loalrules, whih are the main ingredient of our �multidimensional onatenation�.De�nition 2. We de�ne two types of loal rules for �:� an initial rule �� is de�ned on a set I(��) = fLg of one pointed letter, andmaps L to a realization of �(L);� an extension rule � is de�ned on a set E(�) = fL;L0g of two pointed let-ters with distint loations, and maps L and L0 to disjoint realizations ofrespetively �(L) and �(L0).Roughly speaking, an initial rule tells us how to position �(L) for a partiularpointed letter L, while an extension rule � suh that E(�) = fL;L0g is used, fora pointed pattern fA;A0g ongruent to fL;L0g, to position �(A0) relatively to�(A) in the same way �(L0) is positioned relatively to �(L). We �rst de�ne theation of � on �-paths :De�nition 3. Let U be a pointed pattern and � be a set of loal rules for �. A�-path of U is a sequene R = (R1; : : : ; Rk) of pointed letters of U suh that:� there exists an initial rule �� 2 � suh that I(��) = fR1g;� for i = 1 : : : k � 1, there exist an extension rule �i 2 � and xi 2 Zn suhthat E(�i) = fLi; L0ig with Ri = Li + xi and Ri+1 = L0i + xi.One then de�nes by indution a map denoted by (�; �;R) on the letters of R(see Fig. 1):� (�; �;R)(R1) = ��(R1);� for i = 1 : : : k � 1, (�; �;R)(Ri+1) = �i(L0i) + v(�i(Li); (�; �;R)(Ri)).Notie that, when omputing the ation of a substitution � on a word, weproeed in the same way: the image by � of the �rst letter of the word (hereseen as a path) has a spei�ed position (here given by an initial rule), while theposition of the image of a letter follows, by indution, from the position of theonatenation of the images of the previous letters (here, we use extension rulesto do that). We then de�ne the ation of � on pointed patterns:



4
Fig. 1. Top: from left to right, an initial rule and two extension rules; bottom: ompu-tation of the image of a path using suessively the three previous loal rules.De�nition 4. Let � be a set of loal rules for � and U be a pointed pattern.The set � is said to over U if any pointed letter of U belongs to a �-path of Uand is said to be onsistent on U if for any two �-paths R and R0 of U whihboth ontain a pointed letter L, (�; �;R)(L) = (�; �;R0)(L).If � overs U and is onsistent on U , one then de�nes the ation of � endowedwith the set of loal rules �, denoted by (�; �), as follows:(�; �)(U) =[ f(�; �;R)(L) j R is a �-path of U and L 2 Rg :Thus, (�; �) is our notion of multidimensional substitution on pointed pat-terns. It an be shown that it generalizes the substitutions on words as well asthe multidimensional substitutions desribed in [15℄. The possibilities are muhlarger, but it is in general not easy to obtain sets of loal rules that are onsistenton a set of pointed patterns and over this set: the next setion presents a wayto obtain suh sets of loal rules.2 Loal rules derived from a global ruleLet � be a non-pointed substitution and H be a set of pointed patterns. We arehere interested in a generi way to obtain sets of loal rules for � that over Hand are onsistent on it (that is, that over any pointed pattern of H and areonsistent on any of them). We derive suh sets of loal rules from global rules :De�nition 5. A global rule on H for � is a map � de�ned on the set of pointedletters fL 2 U j U 2 Hg suh that:� a pointed letter L is mapped to a realization of �(L);� pointed letters with distint loations are mapped to disjoint pointed patterns.Let us denote by d(L;L0) the distaneP jxi�x0ij between the loations (xi)and (x0i) of L and L0. We introdue a notion of weak onnexity:



5De�nition 6. The span between two pointed letters L and L0 of U 2 H, denotedby sp(L;L0), is the smallest integer D suh that there exists a sequene (L1 =L;L2; : : : ; Lk = L0) of pointed letters of U whih veri�es: 8j, d(Lj ; Lj+1) � D.The spans of U and H are then de�ned by:sp(U) = supL;L02U sp(L;L0) and sp(H) = supU2H sp(U):For example, sp(U) = 1 if and only if U is 4-onneted. Let us now derive aset of loal rules from a global rule:De�nition 7. Let H0 be a pointed pattern and � a global rule on H for �. Aset � of loal rules for � is said to be derived from (H; H0; � ) if it veri�es:1. if �� is an initial rule of � with I(��) = fLg, then L 2 H0 and ��(L) = � (L);2. if � is an extension rule of � with E(�) = fL;L0g, then d(L;L0) � sp(H),�(L) = � (L) and �(L0) = � (L0);3. if � and �0 are extension rules of �, then E(�) and E(�0) are not ongruent.Suh derived sets of loals rules have interesting properties:Proposition 1. If H0 is �nite and sp(H) is bounded, then any set of loal rulesderived from (H; H0; � ) is �nite.Proof. Let � be derived from (H; H0; � ). There is no more than jH0j initial rulesin �. There are jAjj(sp(H)+1)n=Znj non-ongruent pointed patterns fL;L0g thatverify d(L;L0) � sp(H): it follows that there is a �nite number of extension rulesin �. Thus, � is �nite. utDe�nition 8. A global rule � on H is said ontext-free if, for U 2 H, L;L0 2 Uand x 2 Zn suh that L+ x; L0 + x 2 U , one has:v(� (L); � (L+ x)) = v(� (L0); � (L0 + x)):We present examples of suh global rules in Setion 3.Proposition 2. If � is a ontext-free global rule on H, then any set of loalrules derived from (H; H0; � ) is onsistent on H.Proof. Suppose that � is ontext-free, and let � be a set of loal rules de-rived from (H; H0; � ). Let R = (R1; : : : ; Rk) be a �-path of U 2 H. Let usprove by indution that for all i, (�; �;R)(Ri) = � (Ri). Sine R is a �-path,there exists an initial rule �� 2 � suh that I(��) = fR1g, and sine � is de-rived from (H; H0; � ), (�; �k; R)(R1) = ��(R1) = � (R1). Suppose now that(�; �k; R)(Ri) = � (Ri). Aording to De�nition 3, there exists an extensionrule �i 2 � and xi 2 Zn suh that E(�i) = fLi; L0ig with Ri = Li + xiand Ri+1 = L0i + xi, and (�; �k; R)(Ri+1) = �(L0i) + v(�(Li); (�; �k; R)(Ri)).But � is derived from (H; H0; � ), hene �(Li) = � (Li) and �(L0i) = � (L0i).Moreover, (�; �k; R)(Ri) = � (Ri) = � (Li + xi). Thus, (�; �k; R)(Ri+1) =� (L0i) + v(� (Li); � (Li +xi). Finally, sine � is ontext-free, (�; �k; R)(Ri+1) =� (L0i) + v(� (L0i); � (L0i + xi)) = � (L0i + xi) = � (Ri+1). It yields that � is on-sistent on H. ut



6Proposition 3. If H0 intersets any pointed pattern of H, then there exist setsof loal rules derived from (H; H0; � ) that over H.Proof. Let us de�ne E = ffL;L0g j L;L0 2 U; U 2 H and d(L;L0) � sp(H)g,and let E 0 be a maximal subset of E that does not ontain ongruent pointedpatterns. Let � be the set of the following loal rules:� for eah L 2 H0, the initial rule �� de�ned on I(��) = fLg by ��(L) = � (L);� for eah fL;L0g 2 E 0, the extension rule � de�ned on E(�) = fL;L0g by�(L) = � (L) and �(L0) = � (L0).One easily heks that � is derived from (H; H0; � ). Let us prove that � oversH. Let U 2 H and L0 2 U . Sine H0 intersets any pointed pattern of H, thereexists L 2 U [H0. By de�nition, there also exists a sequene of pointed letters(L1 = L;L2; : : : ; Lk = L0) suh that 8i, d(Li; Li+1) � sp(H). Then, for all ithere exists xi 2 Zn suh that fLi; Li+1g + xi 2 E 0, and there exists an initialrule of � de�ned on fL1g. It yields that (L1; : : : ; Lk) is a �-path whih ontainsL0. Thus, � overs H. utWe an resume the previous propositions in the following theorem:Theorem 1. Let � be a ontext-free global rule on H for �. If sp(H) is boundedand if H0 2 P is a �nite pointed pattern interseting any pointed pattern of H,then one an derive from (H; H0; � ) a �nite set of loal rules that is onsistenton H and overs it.We thus have a way to derive, from a ontext-free global rule, loal rulesonsistent on a given set of pointed pattern and overing this set. This result isapplied in the next setion to a partiular type of ontext-free global rule.3 Sturmian hyperplane sequenes and algebraiityWe �rst brie�y resume the notion of generalized substitution (see e.g. [4, 5, 14℄).Let e1; : : : ; en denote the anonial basis of Rn and let h:; :i denote the anonialsalar produt on Rn .A fae (x; i�), for x 2 Zn and i 2 f1; : : : ; ng is de�ned by:(x; i�) = fx+Xj 6=i rjej j 0 � rj � 1g:Suh faes generate the Z-module of the formal sums of weighted faes G =fPmx;i(x; i�) j mx;i 2 Zg, on whih the lattie Zn ats by translation: y +(x; i�) = (y + x; i�). Faes are used to approximate hyperplanes of Rn :De�nition 9. Let � 2 Rn+ , � 6= 0. The hyperplane P� of Rn is de�ned by:P� = fx 2 Rn j hx;�i = 0g:



7The stepped hyperplane S� assoiated to P� is de�ned by:S� = f(x; i�) j hx;�i > 0 and hx � ei;�i � 0g ;and a path of S� is a �nite subset of the set of faes of S�.Notie that a path of S� belongs to the Z-module G, but is geometri,that is, without multiple faes. Let us reall that the inidene matrix M� of asubstitution on words � gives at position (i; j) the number of ourenes of theletter i in the word �(j). If detM� = �1, then � is said unimodular.De�nition 10. The generalized substitution assoiated to the unimodular sub-stitution � is the endomorphism �� of G de�ned by:8>>>><>>>>:8i 2 A; ��(0; i�) =P3j=1Ps:�(j)=p�i�s �M�1� (f(s)); j�� ;8x 2 Z3; 8i 2 A; ��(x; i�) = M�1� x+��(0; i�);8Pmx;i(x; i�) 2 G; �� (Pmx;i(x; i�)) =Pmx;i��(x; i�);where f(w) = (jwj1; jwj2; jwj3) and jwji is the number of ourenes of the letteri in w.The following type of substitution is partiularly interesting:De�nition 11. A substitution � is of Pisot type if its inidene matrix M�has eigenvalues �; �1; : : : ; �n�1 satisfying 0 < j�ij < 1 < �. The generalizedsubstitution �� is then also said of Pisot type.Indeed, the following result is proved in [4, 5℄:Proposition 4 ([4, 5℄). If � is of Pisot type and if � is a left eigenvetor ofM� for the dominant eigenvalue �, then ��(S�) � S� and �� maps distintfaes of the stepped hyperplane S� to disjoint pathes of S�.The stepped hyperplane S� is alled the invariant hyperplane of �� . It isalso proved in [11℄:Proposition 5 ([11℄). If the modi�ed Jaobi-Perron algorithm ([8℄) yields apurely periodi (resp. eventually periodi) ontinued fration expansion for � 2Rn , then the stepped hyperplane S� is a �xed point (resp. the image by a gener-alized substitution of a �xed point) of a generalized substitution of Pisot type.We then de�ne hyperplane sequenes, mapping stepped hyperplanes of Rnto (n � 1)-dimensional sequenes over the alphabet f1; : : : ; ng. The followingproposition (proved in Appendix) resumes a result given in [2, 3℄:Proposition 6. Let V� � Zn be the set of the verties that belong to the faesof S�. Let v� and �� be the maps de�ned respetively on S� and V� by:v�(x; i�) = x+e1+ : : :+ei�1 and ��(x1; : : : ; xn) = (x1�xn; : : : ; xn�1�xn):Then, v� (resp. ��) is a bijetion from S� onto V� (resp. from V� onto Zn�1).



8 Let �� be de�ned on S� by ��(x; i�) = (��(v�(x; i�)); i): it maps bijetivelythe faes of S� to the letters of a (n� 1)-dimensional sequene over f1; : : : ; ng.Notie that not all these (n � 1)-dimensional sequenes over f1; : : : ; ng orre-spond to a stepped hyperplane. We thus introdue the following de�nition:De�nition 12. An hyperplane sequene is an (n � 1)-dimensional sequeneover f1; : : : ; ng de�ned, for � 2 Rn , by ��(S�). One denotes by H� suh anhyperplane sequene. Moreover, if � = (�1; : : : ; �n) is suh that 1; �1; : : : ; �n arelinearly independent over Q, then H� is alled a Sturmian hyperplane sequene.For n = 2, Sturmian hyperplane sequenes are nothing but Sturmian se-quenes over f1; 2g (see [12℄), and for n = 3, one retrieves the notion of two-dimensional Sturmian sequene of [7℄. Notie that an hyperplane sequene H�is de�ned on the whole Zn�1: it yields sp(H�) = 1. Let us now derive, fromgeneralized substitution, ontext-free global rules on hyperplane sequenes:Proposition 7. Let � be a Pisot unimodular substitution on words over f1; : : : ; ng.Let �� be the assoiated generalized substitution, and S� its invariant steppedhyperplane. Let H� = ��(S�). We set L = Zn�1� f1; : : : ; ng and de�ne:�� = �� Æ�� Æ ��1� and �� : (0; i) 2 L 7! ��(0; i) 2 P :Then, �� is a ontext-free global rule on H� for the non-pointed substitution ��.Proof. For (x; i) 2 H� and y 2 Zn�1, one omputes:��((x; i) + y) = ��(x; i) + ��(M�1� ��1� (y)):It follows that ��(x; i) = ��(0; i) = �� �(0; i)�. Moreover, sine �� maps distintfaes of S� to disjoint pathes of S� (see Proposition 4) and sine �� mapsbijetively the faes of S� to the letters of H�, �� = �� Æ�� Æ��1� maps letterswith distint loations to disjoint pointed patterns. Thus, �� is a global rule onH� for ��.Then, if (x; i) 2 H�, (x0; i) 2 H� and y 2 Zn�1, one has:v(��(x; i); ��((x; i) + y)) = ��(M�1� ��1� (y)) = v(��(x0; i); ��((x0; i) + y)):Hene �� is ontext-free, aording to De�nition 8. utFinally, ombining Theorem 1 and Proposition 5 and 7, we obtain:Theorem 2. If the modi�ed Jaobi-Perron algorithm ([8℄) yields a purely peri-odi (resp. eventually periodi) ontinued fration expansion for � 2 Rn , thenthe Sturmian hyperplane sequene H� is a �xed point (resp. the image by a mul-tidimensional substitution of a �xed point) of a multidimensional substitution.This result an thus be seen as a multidimensional generalization of thealgebrai haraterization resumed in the introdution, though it provides onlya su�ient ondition for a Sturmian hyperplane sequene to be a �xed point of a



9multidimensional substitution or the image by a multidimensional substitution ofsuh a �xed point. In fat, the proof of the algebrai haraterization resumed inthe introdution uses the notion of return words of [10℄. This notion has alreadybeen generalized, in terms of tilings, in [13℄: it thus gives us a possible way toahieve the haraterization of Theorem 2.Example 1. Let � be the lassi substitution de�ned on f1; 2; 3g by �(1) = 13,�(2) = 1 and �(3) = 2. One omputes:M�1� = 0�0 0 11 0 �10 1 0 1A ; and �� : (0; 1�) 7! ((1;�1; 0); 1�) + (0; 2�)(0; 2�) 7! (0; 1�)(0; 3�) 7! (0; 2�) ;whih yields the non-pointed substitution:�� : 10;0 7! f10;0; 20;1g; 20;0 7! f30;0g; 30;0 7! f10;0g;whih one an also represent as follows:�� : 1 7! 21 ; 2 7! 3; 3 7! 1:Let us de�ne H = f�n� ((0; 0); 1); n � 1g. One an prove in this partiular asethat sp(H) = 1. Thus, one an ompute (Theorem 1) a �nite set of loal rulesthat overs H and is onsistent on it. One obtains for example the initial rulede�ned by: �� : ((0; 0); 1) 7! f((0; 0); 1); ((0; 1); 2)g;and �ve extension rules, represented as follows (the bolded letters are mapped tothe bolded letters, so the information about relative loations is still onserved):�1 : 21 7! 23 1 ; �2 : 3 1 7! 211 ; �3 : 11 7! 22 11 ;�4 : 2 1 7! 213 ; �5 13 7! 1 12 :For example, omputing the sequene (��; f��; �1; : : : ; �5g)n((0; 0); 1) for n =1; : : : ; 7 gives (the letter with loation (0; 0) is bolded):1 7! 21 7! 23 1 7! 23 11 7! 22 13 11 7! 2 23 1 2 13 11 7! 2 23 1 2 13 12 13 11 7! : : :
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11AppendixProof of Proposition 6:Let (x; i�) and (y; j�) be two faes of S� suh that v�(x; i�) = v�(y; j�). If i < j,then x = y + ei + : : : + ej�1, and hx � ei;�i = h(y + ei+1 + : : : + ej�1;�i =hy;�i + hei+1 + : : : + ej�1;�i. Sine (y; j�) 2 S�, hy;�i > 0. Moreover,hei+1 + : : : + ej�1;�i � 0. Thus, i < j would yield hx � ei;�i > 0, whatwould ontradit (x; i�) 2 S�. Similarly, i > j is impossible. Hene i = j, andx = y follows. It proves that v� is one-to-one from S� to V�.If y 2 V�, then there exist (x; i�) 2 S� and I � f1; : : : ; ng, i =2 I , suh thaty = x+Pj2I ej . Let us denote f : k 7! hx +Pj2I ej � e1 � : : :� ek;�i. Onehas:f(0) = hx;�i+Xj2I hej ;�i > 0; f(n) = hx� ei;�i � Xj =2I;j 6=ihej ;�i � 0;and f is dereasing. Let k0 suh that f(k0 � 1) > 0 and f(k0) � 0. Let y0 =y�e1�: : :�ek0�1. Then, hy0;�i = f(k0�1) > 0, and hy0�ek0 ;�i = f(k0) � 0.Thus, (y0; k�0) 2 S�. Sine v�(y0; k�0) = y, it proves that v� is onto from S� onV�.Let us denote � by (�1; : : : ; �n). Reall that the �i are positive and not allequal to zero. Let then x = (x1; : : : ; xn) 2 V� and (x0; i�) = v�1� (x). One has0 < hx0;�i � hei;�i = �i. Thus:0 < nXj=1 xj�j � i�1Xj=1 �j � �i:Suppose now ��(x) = (y1; : : : ; yn�1). The previous formula yields:0 < n�1Xj=1 yj�j + xn nXj=1 �j � i�1Xj=1 �j + �i � nXj=1 �j ;and performing the division by Pnj=1 �j > 0, it then gives:0 < Pn�1j=1 yj�jPnj=1 �j + xn � 1;that is, sine xn 2 Z: xn = 1� &Pn�1j=1 yj�jPnj=1 �j ' :Conversely, given (y1; : : : ; yn�1) 2 Zn�1, setting xn 2 Z as above and then, fori = 1 : : : n�1, xi = yi+xn yields ��(x1; : : : ; xn) = (y1; : : : ; yn�1). Thus, �� is abijetion from V� to Zn�1 (and the proof provides an expliit formula for ��1� ).


