Stochastic Flips on Dimer Tilings

Thomas Fernique & Damien Regnault

Moscow, June 21, 2013

Quasicrystal: non-periodic ordered material modeled by tilings.

How to model the quasicrystal growth?

How to model the quasicrystal growth?

Natural idea: add tiles one at a time (self-assembly). However, non-periodicity yields "frequent" deadlocks.

How to model the quasicrystal growth?

Natural idea: add tiles one at a time (self-assembly). However, non-periodicity yields "frequent" deadlocks.

Alternative: first allow mismatches to facilitate self-assembly, then perform random locally-defined corrections. Convergence?.

Tilings and flips	Cooling process	An upper bound	A second upper bound

Tilings and flips

- 2 Cooling process
- 3 An upper bound

4 A second upper bound

Tilings and flips ●○○○ Cooling process

An upper bound

A second upper bound

Dimer tilings

Bounded (simply) connected subset of the triangular grid.

Tilings and flips ●○○○	Cooling process	An upper bound 0000	A second upper bound
Dimer tilings			

Dimer tiling: perfect matching of adjacent triangles.

Tilings and flips ●○○○	Cooling process	An upper bound 0000	A second upper bound
Dimer tilings			

Shading dimers \rightsquigarrow 3D-viewpoint.

Tilings and flips ●○○○	Cooling process	An upper bound 0000	A second upper bound
Dimer tilings			

3D-viewpoint \rightsquigarrow distance to the plane x + y + z = 0 (height).

Tilings and flips	Cooling process	An upper bound	A second upper bo
○●○○		0000	0000
Errors			

Error: edge between two dimers equal up to a translation.

Tilings	and	flips
0000		

Cooling process

An upper bound

A second upper bound

Errors

Errors form contours lines between dimers of different heights.

Tilings	and	flips
0000		

Cooling process

An upper bound

A second upper bound 0000

Errors

Error-free tiling plays the quasicrystal role.

Tilings and flips $\circ \circ \bullet \circ$

Cooling process

An upper bound

A second upper bound

Islands and holes

An island with height 1, area 5 and perimeter 16.

Tilings and flips	Cooling process	An upper bound 0000	A second upper bound

A larger island of height 1.

Tilings and flips ○○●○	Cooling process	An upper bound	A second upper bound
lelande and	holes		

Another one, of height 2 this time.

Tilings and flips ○○●○	Cooling process	An upper bound 0000	A second upper bound
Islands and hole	S		

A hole in the largest island.

Tilings	and	flips	
0000			

Cooling process

An upper bound

A second upper bound

Flips

Flip: exchange of thee dimers \simeq add/remove a cube.

Tilings	and	flips	
0000			

Cooling process

An upper bound

A second upper bound 0000

Flips

Flip: exchange of thee dimers \simeq add/remove a cube.

Tilings and flips ○○○●	Cooling process	An upper bound

A second upper bound $_{\rm OOOO}$

Flips

Flip change the area of an island or its perimeter (error number).

Tilings and flips ○○○●

Cooling process

An upper bound

A second upper bound 0000

Flips

Topologically, flip can merge or split islands...

Tilings	and	flips
0000		

Cooling process

An upper bound

A second upper bound

... and destroy or create holes.

Tilings and flips	Cooling process	An upper bound	A second upper bound

1 Tilings and flips

3 An upper bound

Tilings and flips	Cooling process ●○○○	An upper bound	A second upper bound
Cooling			

Cooling: Markov chain $(\omega_t)_{t\geq 0}$ defined by

• an initial tiling ω_0 ;

- $\omega_t \rightarrow \omega_{t+1}$: perform unif. at random a flip s.t. $\Delta E \leq 0$;
- stop if no flip s.t. $\Delta E \leq 0$.

The cooling stops only on error-free tilings (our "quasicrystals").

Tilings	and	flips

Cooling process ○●○○ An upper bound

A second upper bound 0000

Example

Flips such that $\Delta E \leq 0$: around blue points.

Tilings and flips 0000	Cooling process	An upper bound 0000	A second upper bound
Example			

Tilings and flips	Cooling process	An upper bound	A second upper bound
0000	○●○○	0000	
Example			

Tilings and flips 0000	Cooling process	An upper bound 0000	A second upper bound
Example			

Tilings and flips 0000	Cooling process	An upper bound 0000	A second upper bound
Example			

Tilings and flips 0000	Cooling process	An upper bound 0000	A second upper bound
Example			

Tilings and flips 0000	Cooling process	An upper bound 0000	A second upper bound
Example			

Tilings and flips 0000	Cooling process	An upper bound 0000	A second upper bound
Example			

Tilings and flips	Cooling process	An upper bound	A second upper bound
0000	○●○○	0000	
Example			

Tilings and flips	Cooling process	An upper bound	A second upper bound
0000	○●○○	0000	
Example			

Tilings and flips	Cooling process	An upper bound	A second upper bound
0000	○●○○	0000	
Example			

Tilings and flips	Cooling process	An upper bound	A second upper bound
0000	○●○○	0000	
Example			

Tilings and flips	Cooling process	An upper bound	A second upper bound
0000	○●○○	0000	
Example			

Tilings and flips	Cooling process	An upper bound	A second upper bound
0000	○●○○	0000	
Example			

Tilings and flips	Cooling process	An upper bound	A second upper bound
0000	○●○○	0000	
Example			

Tilings and flips	Cooling process	An upper bound	A second upper bound
0000	○●○○	0000	
Example			

Tilings and flips	Cooling process	An upper bound	A second upper bound
0000	○●○○	0000	
Example			

Tilings and flips	Cooling process	An upper bound	A second upper bound
0000	○●○○	0000	
Example			

Tilings and flips	Cooling process	An upper bound	A second upper bound
0000	○●○○	0000	
Example			

Tilings and flips	Cooling process	An upper bound 0000	A second upper bound
Example			

Tilings and flips	Cooling process ○●○○	An upper bound 0000	A second upper bound
Example			

Tilings and flips	Cooling process	An upper bound 0000	A second upper bound
Example			

Tilings and flips	Cooling process	An upper bound 0000	A second upper bound
Example			

Tilings and flips	Cooling process	An upper bound 0000	A second upper bound
Example			

Tilings and flips	Cooling process	An upper bound 0000	A second upper bound
Example			

Tilings and flips	Cooling process	An upper bound 0000	A second upper bound
Example			

Cooling process

An upper bound

A second upper bound

Example

Until no more flips are allowed (169 flips perfomed).

Tilings and flips	Cooling process	An upper bound 0000	A second upper bound
Convergence	time		

random variable T: number of performed flips.

Worst average convergence time on a given region D:

$$\widehat{T} = \max_{\omega_0 \in \mathcal{P}(D)} \mathbb{E}(T \mid \omega = \omega_0).$$

Asymptotic behavior of \widehat{T} when $n := |D| \to \infty$?

Numerical	simulations		
Tilings and flips	Cooling process ○○○●	An upper bound 0000	A second upper bound

Worst case = maximal volume tiling? (colors: height modulo 3).

Cooling process

An upper bound

A second upper bound

Numerical simulations

Cooling process

An upper bound

A second upper bound

Numerical simulations

Cooling process

An upper bound

A second upper bound

Numerical simulations

Cooling process

An upper bound

A second upper bound

Numerical simulations

Cooling process

An upper bound

A second upper bound

Numerical simulations

Cooling process

An upper bound

A second upper bound

Numerical simulations

Cooling process

An upper bound

A second upper bound

Numerical simulations

Numerical simulation	nne		
Tilings and flips Coolin	g process	An upper bound 0000	A second upper bound

Numerical simulations \rightsquigarrow conjecture: $\widehat{T} = \Theta(n^2)$.

Tilings and flips	Cooling process	An upper bound	A second upper bound

Tilings and flips 0000	Cooling process	An upper bound ●○○○	A second upper bound
Tool			

To bound \widehat{T} :

Proposition

Let $(\omega_t)_{t\geq 0}$ be a Markov chain over Ω . If there are $\varepsilon > 0$ and a "potential function" $\phi : \Omega \to \mathbb{R}_+$ s. t.

$$\phi(\omega_t) > 0 \quad \Rightarrow \quad \mathbb{E}[\phi(\omega_{t+1}) - \phi(\omega_t) | \omega_t] \leq - arepsilon \phi(\omega_t),$$

then

$$\mathbb{E}(\min\{t \mid \phi(\omega_t) = 0\}) \leq \frac{\log \phi(\omega_0)}{\varepsilon}.$$

How to find ϕ which satisfies such a "differential equation"?

Tilings and flips 0000	Cooling process	An upper bound ○●○○	A second upper bound
One island			

Consider the border of a hole-free islande with F possible flips.

Tilings and flips 0000	Cooling process	An upper bound ○●○○	A second upper bound
One island			

There is always 6 more salient than reflex angles (induction).

One island			
Tilings and flips	Cooling process	An upper bound	A second upper bound 0000

 $i \ge 2$ salient angles in a row \rightsquigarrow flip s.t. $\Delta(4V + E) = -2i$.

Tilings and flips 0000	Cooling process	An upper bound ○●○○	A second upper bound
One island			

$i \ge 2$ reflex angles in a row \rightsquigarrow flip s.t. $\Delta(4V + E) = +2i$.

Tilings and flips	Cooling process	An upper bound	A second upper bound
0000	0000	○●○○	
One island			

Let $\phi = 4V + E$. We thus have $\mathbb{E}(\Delta \phi) \leq -6 \times 2/F$.

Tilings and flips 0000	Cooling process	An upper bound ○○●○	A second upper bound
More islands			

$$\mathbb{E}(\Delta\phi) \leq -\frac{12k}{F}.$$

Tilings and flips 0000	Cooling process	An upper bound ○○●○	A second upper bound
More islands			

$$\mathbb{E}(\Delta\phi) \leq -\frac{12k}{F}.$$

Since $\phi = 4V + E \le 4kn + 2n \le 6kn$ and $F \le n$, this yields

$$\mathbb{E}(\Delta\phi) \leq -\frac{2}{n^2}\phi.$$

Tilings and flips 0000	Cooling process	An upper bound ○○●○	A second upper bound
More islands			

$$\mathbb{E}(\Delta\phi) \leq -\frac{12k}{F}.$$

Since $\phi = 4V + E \le 4kn + 2n \le 6kn$ and $F \le n$, this yields

$$\mathbb{E}(\Delta \phi) \leq -\frac{2}{n^2} \phi.$$

With $\varepsilon = \frac{n^2}{2}$ and $\phi(\omega_0) = O(n\sqrt{n})$, our tool yields $\widehat{T} = O(n^2 \log n)$.

Tilings and flips 0000	Cooling process	An upper bound ○○●○	A second upper bound
More islands			

$$\mathbb{E}(\Delta\phi) \leq -\frac{12k}{F}.$$

Since $\phi = 4V + E \le 4kn + 2n \le 6kn$ and $F \le n$, this yields

$$\mathbb{E}(\Delta\phi) \leq -\frac{2}{n^2}\phi.$$

With $\varepsilon = \frac{n^2}{2}$ and $\phi(\omega_0) = O(n\sqrt{n})$, our tool yields $\widehat{T} = O(n^2 \log n)$. Triple scam!
Tilings and flips	Cooling process	An upper bound	A second upper bound
0000	0000	○○○●	
Triple scam			

- Holes have an adverse effect on the volume, hence on $\phi.$

Tilings and flips 0000	Cooling process	An upper bound ○○○●	A second upper bound
Triple scom			

2 - Islands merging may increase ϕ .

Tilings and flips 0000	Cooling process	An upper bound ○○○●	A second upper bound
Triple scam			

3 - Obstructions between stacked island can prevent ϕ to decrease.

Tilings and flips	Cooling process	An upper bound	A second upper bound

1 Tilings and flips

- 2 Cooling process
- 3 An upper bound

Tilings and flips	Cooling process	An upper bound	A second upper bound
0000		0000	●○○○
Second tool			

To bound \widehat{T} :

Proposition

Let $(\omega_t)_{t\geq 0}$ be a Markov chain over Ω . If there are $\varepsilon > 0$ and a "potential function" $\phi : \Omega \to \mathbb{R}_+$ s. t.

$$\phi(\omega_t) > 0 \quad \Rightarrow \quad \mathbb{E}[\phi(\omega_{t+1}) - \phi(\omega_t) | \omega_t] \leq -arepsilon_t$$

then

$$\mathbb{E}(\min\{t \mid \phi(\omega_t) = 0\}) \leq rac{\phi(\omega_0)}{arepsilon}.$$

Trick: triconvex hull

Trick: triconvex hull

Trick: triconvex hull

Trick: triconvex hull

Trick: triconvex hull

Trick: triconvex hull

Tilings and flips	Cooling process	An upper bound	A second upper bound
0000		0000	○○●○
Trick: triconvex	hull		

If ω has height 1, the hull brings us back to the one island case

$$\mathbb{E}[\Delta \phi(\overline{\omega})] \leq -rac{12}{F(\overline{\omega})}.$$

If ω has height 1, the hull brings us back to the one island case

$$\mathbb{E}[\Delta \phi(\overline{\omega})] \leq -rac{12}{F(\overline{\omega})}.$$

With $\overline{\phi}(\omega) := \phi(\overline{\omega})$, on can link $\overline{\omega}$ and ω (technical):

$$\mathbb{E}[\Delta\overline{\phi}(\omega)] \leq -rac{12}{F(\omega)}.$$

If ω has height 1, the hull brings us back to the one island case

$$\mathbb{E}[\Delta \phi(\overline{\omega})] \leq -rac{12}{F(\overline{\omega})}.$$

With $\overline{\phi}(\omega) := \phi(\overline{\omega})$, on can link $\overline{\omega}$ and ω (technical):

$$\mathbb{E}[\Delta\overline{\phi}(\omega)] \leq -rac{12}{F(\omega)}$$

And since $\overline{\phi} \leq 6n$ and $F \leq n$, our second tool yields

$$\mathbb{E}(\min\{t \mid \overline{\phi}(\omega_t) = 0\}) \leq 6n^2.$$

 Tilings and flips
 Cooling process
 An upper bound
 A second upper bound

 0000
 Trick: triconvex hull
 An upper bound
 A second upper bound

If ω has height 1, the hull brings us back to the one island case

$$\mathbb{E}[\Delta \phi(\overline{\omega})] \leq -rac{12}{F(\overline{\omega})}.$$

With $\overline{\phi}(\omega) := \phi(\overline{\omega})$, on can link $\overline{\omega}$ and ω (technical):

$$\mathbb{E}[\Delta\overline{\phi}(\omega)] \leq -rac{12}{F(\omega)}.$$

And since $\overline{\phi} \leq 6n$ and $F \leq n$, our second tool yields

$$\mathbb{E}(\min\{t \mid \overline{\phi}(\omega_t) = 0\}) \leq 6n^2.$$

For height $k \leq \sqrt{n}$, the highest islands disappear in $O(n^2)$. Thus

$$\widehat{T}=O(n^2\sqrt{n}).$$

No more scam here, but we somewhere lost a \sqrt{n} factor.

Top-down argument forgets lower flips that can decrease ϕ . However, similuations suggest $\hat{T} = \Theta(n^2)$ even for height 1.

Triconvex hull forgets inner flips that can decrease ϕ . However, the cooling naturally "triconvexifies" the tiling.

Can we get a tight bound?

No more scam here, but we somewhere lost a \sqrt{n} factor.

Top-down argument forgets lower flips that can decrease ϕ . However, similuations suggest $\hat{T} = \Theta(n^2)$ even for height 1.

Triconvex hull forgets inner flips that can decrease ϕ . However, the cooling naturally "triconvexifies" the tiling.

Can we get a tight bound?

And what about the average average convergence time?

Th. Fernique, D. Regnault, *Stochastic flips on dimer tilings*, Disc. Math. Theor. Comput. Sci. (2010).