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Quasicrystal: non-periodic ordered material modeled by tilings.
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Context

How to model the quasicrystal growth?

Natural idea: add tiles one at a time (self-assembly).
However, non-periodicity yields “frequent” deadlocks.

Alternative: first allow mismatches to facilitate self-assembly,
then perform random locally-defined corrections. Convergence?.
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Tilings and flips
°

Dimer tilings

Bounded (simply) connected subset of the triangular grid.
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Shading dimers ~~ 3D-viewpoint.
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form contours lines between dimers of different heights.

Errors
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Errors

Error-free tiling plays the quasicrystal role.
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Islands and holes

An island with height 1, area 5 and perimeter 16.
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A larger island of height 1.
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A hole in the largest island.
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Cooling process
°

Cooling

Cooling: Markov chain (w¢)¢>o defined by
@ an initial tiling wp;
@ wi —> w1t perform unif. at random a flip s.t. AE <0;
@ stop if no flip s.t. AE <0.

The cooling stops only on error-free tilings (our “quasicrystals”).
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Cooling: random flips such that AE < 0 (10 at a time).

AAANANESININNANAN NS AN




Cooling: random flips such that AE < 0 (10 at a time).










Example

Cooling: random flips such that AE <0 (10 at a time).
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Example

Cooling: random flips such that AE < 0 (10 at a time).
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Cooling process bound upper bound

Example

Until no more flips are allowed (169 flips perfomed).




Cooling process
°

Convergence time

random variable T: number of performed flips.

Worst average convergence time on a given region D:

7': max E(T | w = wp).
wo€P(D) ( | 0)

Asymptotic behavior of T when n := |D| — o0?
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n) to clear (100 flips at a time).
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Cooling process
°

Numerical simulations

©(+/n) stacked islands of area ©(n) to clear (100 flips at a time).
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Numerical simulations

~

Numerical simulations ~~ conjecture: T = ©(n?).
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°
Tool

To bound T

Proposition

Let (wt)e>0 be a Markov chain over Q.
If there are ¢ > 0 and a “potential function” ¢ : Q2 — R, s. t.

Pwe) >0 = E[p(wrr1) — ¢(wr)|we] < —ed(wr),

then
log 9(c0)

B(mint | o(wr) = 0}) < 52

How to find ¢ which satisfies such a "differential equation”?
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4V + E. We thus have E(A¢) < —6 x 2/F.

Let ¢ =
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More islands

Applied to each of the k island of a tiling:

12k
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Since ¢ =4V + E < 4kn+ 2n < 6kn and F < n, this yields
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An upper bound
°

More islands

Applied to each of the k island of a tiling:

12k
E(A¢) < T

Since ¢ =4V + E < 4kn+ 2n < 6kn and F < n, this yields
2
E(A¢) < - 0.
With € = ”72 and ¢(wg) = O(ny/n), our tool yields

T = 0(n?log n).



An upper bound
°

More islands

Applied to each of the k island of a tiling:

12k
Ap) < ——
B(Ag) <~
Since ¢ =4V 4+ E < 4kn+ 2n < 6kn and F < n, this yields
E(A9) < — 0
Q) = 2?
With ¢ = "72 and ¢(wp) = O(n+/n), our tool yields

T = O(n?log n).

Triple scam!
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3 - Obstructions between stacked island can
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Second tool

To bound T

Proposition

Let (wt)e>0 be a Markov chain over Q.
If there are ¢ > 0 and a “potential function” ¢ : Q2 — R, s. t.
dwt) >0 =  E[p(wri1) — dwt)|ws] < —¢,

then
(wo)

€

E(min{t | ¢(w:) =0}) <
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Trick: triconvex hull

Triconvex hull & of w: convexity in three directions.
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Trick: triconvex hull

If w has height 1, the hull brings us back to the one island case

E[Ae(@)] < _Fl(i).
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Trick: triconvex hull

If w has height 1, the hull brings us back to the one island case
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E[Ad(@)] < —
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Trick: triconvex hull

If w has height 1, the hull brings us back to the one island case

E[Ae(@)] < _Fl(i).

With ¢(w) := ¢(w), on can link @ and w (technical):

12

E[Ag(w)] < TF@)

And since ¢ < 6n and F < n, our second tool yields

E(min{t | ¢(w:) = 0}) < 6n°.
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Trick: triconvex hull

If w has height 1, the hull brings us back to the one island case

E[Ae(@)] < _Fl(i).

With ¢(w) := ¢(w), on can link @ and w (technical):

12

E[Ag(w)] < TF@)

And since ¢ < 6n and F < n, our second tool yields
E(min{t | ¢(w;) = 0}) < 6n°.
For height k < \/n, the highest islands disappear in O(n?). Thus

T = 0(n?V/n).



A second upper bound
°

Where comes the /n factor from?

No more scam here, but we somewhere lost a y/n factor.

Top-down argument forgets lower flips that can decrease ¢.
However, similuations suggest T = ©(n?) even for height 1.

Triconvex hull forgets inner flips that can decrease ¢.
However, the cooling naturally “triconvexifies” the tiling.

Can we get a tight bound?



A second upper bound
°

Where comes the /n factor from?

No more scam here, but we somewhere lost a y/n factor.

Top-down argument forgets lower flips that can decrease ¢.
However, similuations suggest T = ©(n?) even for height 1.

Triconvex hull forgets inner flips that can decrease ¢.
However, the cooling naturally “triconvexifies” the tiling.
Can we get a tight bound?

And what about the average average convergence time?
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