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Context

Context

Quasicrystal: non-periodic ordered material modeled by tilings.
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How to model the quasicrystal growth?

Natural idea: add tiles one at a time (self-assembly).
However, non-periodicity yields “frequent” deadlocks.

Alternative: first allow mismatches to facilitate self-assembly,
then perform random locally-defined corrections. Convergence?.
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Dimer tilings

Bounded (simply) connected subset of the triangular grid.
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Dimer tilings

Dimer tiling: perfect matching of adjacent triangles.
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Dimer tilings

Shading dimers  3D-viewpoint.
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Dimer tilings

3D-viewpoint  distance to the plane x + y + z = 0 (height).



Tilings and flips Cooling process An upper bound A second upper bound

Errors

Error: edge between two dimers equal up to a translation.
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Errors

Errors form contours lines between dimers of different heights.
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Errors

Error-free tiling plays the quasicrystal role.
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Islands and holes

An island with height 1, area 5 and perimeter 16.
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Islands and holes

A larger island of height 1.
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Islands and holes

Another one, of height 2 this time.
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Islands and holes

A hole in the largest island.
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Flips

Flip: exchange of thee dimers ' add/remove a cube.
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Flips

Flip: exchange of thee dimers ' add/remove a cube.
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Flips

Flip change the area of an island or its perimeter (error number).
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Flips

Topologically, flip can merge or split islands. . .
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Flips

. . . and destroy or create holes.
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Cooling

Cooling: Markov chain (ωt)t≥0 defined by

an initial tiling ω0;

ωt → ωt+1: perform unif. at random a flip s.t. ∆E ≤ 0;

stop if no flip s.t. ∆E ≤ 0.

The cooling stops only on error-free tilings (our “quasicrystals”).
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Example

Flips such that ∆E ≤ 0: around blue points.
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Example

Cooling: random flips such that ∆E ≤ 0 (10 at a time).
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Example

Cooling: random flips such that ∆E ≤ 0 (10 at a time).
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Example

Until no more flips are allowed (169 flips perfomed).
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Convergence time

random variable T : number of performed flips.

Worst average convergence time on a given region D:

T̂ = max
ω0∈P(D)

E(T | ω = ω0).

Asymptotic behavior of T̂ when n := |D| → ∞?
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Numerical simulations

Worst case = maximal volume tiling? (colors: height modulo 3).
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Numerical simulations

Θ(
√

n) stacked islands of area Θ(n) to clear (100 flips at a time).
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√

n) stacked islands of area Θ(n) to clear (100 flips at a time).
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Numerical simulations

Numerical simulations  conjecture: T̂ = Θ(n2).
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Tool

To bound T̂ :

Proposition

Let (ωt)t≥0 be a Markov chain over Ω.
If there are ε > 0 and a “potential function” φ : Ω→ R+ s. t.

φ(ωt) > 0 ⇒ E[φ(ωt+1)− φ(ωt)|ωt ] ≤ −εφ(ωt),

then

E(min{t | φ(ωt) = 0}) ≤ log φ(ω0)

ε
.

How to find φ which satisfies such a “differential equation”?
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One island

Consider the border of a hole-free islande with F possible flips.
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One island

There is always 6 more salient than reflex angles (induction).
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One island

i ≥ 2 salient angles in a row  flip s.t. ∆(4V + E ) = −2i .
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One island

i ≥ 2 reflex angles in a row  flip s.t. ∆(4V + E ) = +2i .
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One island

Let φ = 4V + E . We thus have E(∆φ) ≤ −6× 2/F .
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More islands

Applied to each of the k island of a tiling:

E(∆φ) ≤ −12k

F
.

Since φ = 4V + E ≤ 4kn + 2n ≤ 6kn and F ≤ n, this yields

E(∆φ) ≤ − 2

n2
φ.

With ε = n2

2 and φ(ω0) = O(n
√

n), our tool yields

T̂ = O(n2 log n).

Triple scam!
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Triple scam

1 - Holes have an adverse effect on the volume, hence on φ.
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Triple scam

2 - Islands merging may increase φ.



Tilings and flips Cooling process An upper bound A second upper bound

Triple scam

3 - Obstructions between stacked island can prevent φ to decrease.
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Second tool

To bound T̂ :

Proposition

Let (ωt)t≥0 be a Markov chain over Ω.
If there are ε > 0 and a “potential function” φ : Ω→ R+ s. t.

φ(ωt) > 0 ⇒ E[φ(ωt+1)− φ(ωt)|ωt ] ≤ −ε,

then

E(min{t | φ(ωt) = 0}) ≤ φ(ω0)

ε
.
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Trick: triconvex hull

Triconvex hull ω of ω: convexity in three directions.
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Trick: triconvex hull

If ω has height 1, the hull brings us back to the one island case

E[∆φ(ω)] ≤ − 12

F (ω)
.

With φ(ω) := φ(ω), on can link ω and ω (technical):

E[∆φ(ω)] ≤ − 12

F (ω)
.

And since φ ≤ 6n and F ≤ n, our second tool yields

E(min{t | φ(ωt) = 0}) ≤ 6n2.

For height k ≤
√

n, the highest islands disappear in O(n2). Thus

T̂ = O(n2√n).
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Where comes the
√
n factor from?

No more scam here, but we somewhere lost a
√

n factor.

Top-down argument forgets lower flips that can decrease φ.
However, similuations suggest T̂ = Θ(n2) even for height 1.

Triconvex hull forgets inner flips that can decrease φ.
However, the cooling naturally “triconvexifies” the tiling.

Can we get a tight bound?

And what about the average average convergence time?
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