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Arrowed tiles (Beenker, 1982)

Square and rhombus tiles form so-called octagonal tilings.
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Arrowed tiles (Beenker, 1982)

Which tilings do form arrowed square and rhombus tiles?
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Arrowed tilings

Theorem
The arrowed tilings digitize the planes (1, t, 1, 1, 2/t, 1), t ∈ R̃.

Corollary

The Ammann-Beenker tilings maximize the ratio rhombi/squares.

Underlying idea

I rhombi = aluminium and squares = manganese (for example);

I Ammann-Beenker tiling = quasicrystal Al√2Mn1;

I Al7Mn5, Al41Mn29, Al239Mn169 = quasicrystal approximants.
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Alternating rhombi

Consider an octagonal tiling. Assume it can be arrowed.
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Alternating rhombi

Consider a “stripe” of tiles (also called Conway worms).
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Alternating rhombi

If rhombi do not alternate orientation, then tiles cannot be arrowed.
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Alternating rhombi

Conversely, consider an octagonal tiling where rhombi alternate.
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Alternating rhombi

Endow rhombi with arrows pointing towards the acute angles.
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Alternating rhombi

Endow squares with parallel arrows being equally oriented.
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Alternating rhombi

Gluing each arrow with the tile on its left yields arrowed tiles.
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Planar octagonal tilings

Lift: homeomorphism which maps rhombi on 2-faces of unit 4-cubes.
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Planar octagonal tilings

Planar: lift in E + [0, t]4, where E is the slope and t the thickness.
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Shadows and subperiods

Shadow: orthogonal projection of the lift along a basis vector.
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Shadows and subperiods

Subperiod: shadow period. Rhombus alternation forces simple ones.
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Plücker coordinates

Definition (Plücker, 1865)

E = R~u + R~v ⊂ R4 has coord. (Gij)ij = (uivj − ujvi )ij ∈ P5(R).

Proposition

The tile proportions of planar tilings are given by the Plücker coord.

Example

The Ammann-Beenker tilings are the planar tilings of thickness 1
and slope (1,

√
2, 1, 1,

√
2, 1); they have

√
2 rhombi for 1 square.
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Linear and quadratic relations

Proposition

Subperiods of planar tilings yield linear relations on Plücker coord.

Example

Subperiods forced by arrowed tiles yield: G12 = G14 = G23 = G34.

Proposition (Plücker, 1865)

(Gij)ij ∈ P5(R) describes a plane iff G12G34 = G13G24 − G14G23.

Lemma
The planar arrowed tilings have slope (1, t, 1, 1, 2/t, 1), t ∈ R̃.
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Planarity

Lemma
Arrowed tilings are planar with a uniformly bounded thickness.

Theorem
The arrowed tilings digitize the planes (1, t, 1, 1, 2/t, 1), t ∈ R̃.

Corollary

The Ammann-Beenker tilings maximize the ratio rhombi/squares.
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Remark

Arrowing tiles amouts to forbidding arbitrarily big patterns.

Forbidding finite patterns forces closed rational intervals of slopes.

Thus not {
√

2}, i.e., Ammann-Benker tilings (cf. Burkov, 1988).

Thus not G13 = G24, i.e., equiprobable orientations of squares.
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Beyond Ammann-Beenker tilings

Here, subperiods characterize a family of slopes and the planarity.

When they characterize finitely many slopes, the planarity follows.

All this extends to general canonical projection tilings!
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Thank you for your attention
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