A Characterization of Flip-accessibility for Rhombus Tilings of the Whole Plane

O. Bodini¹, T. Fernique², and E. Rémila³

 ¹ LIP6 UMR 7606 (CNRS - Université Paris 6), 4 place Jussieu 75005 Paris - France, 0livier.Bodini@ufr-info-p6.jussieu.fr
² LIRMM UMR 5506 (CNRS - Université Montpellier 2), 161 rue Ada 34392 Montpellier Cedex 5 - France, Thomas.Fernique@lirmm.fr
³ LIP UMR 5668 (CNRS - INRIA - ENS Lyon - Université Lyon 1), 46 allée d'Italie 69364 Lyon Cedex 7 - France, Eric.Remila@ens-lyon.fr

Abstract. It is known that any two rhombus tilings of a polygon are flip-accessible, *i.e.* linked by a finite sequence of local transformations called flips. This paper consider flip-accessibility for rhombus tilings of the *whole plane*, asking whether any two of them are linked by a *possibly infinite* sequence of flips. The answer turning out to depend on tilings, a *characterization* of flip-accessibility is provided. This yields, for example, that any tiling by Penrose tiles is flip-accessible from a Penrose tiling.

Introduction

A rhombus tiling of $D \subset \mathbb{R}^2$ is a set of rhombus-shaped compact sets, namely rhombus tiles, whose interiors are disjoint, which meet edge-to-edge and whose union is D. Fig. 1 depicts celebrated rhombus tilings of $D = \mathbb{R}^2$ (see also [6]).

Fig. 1. Rauzy-dual, Ammann-Beenker and Penrose rhombus tilings (from left to right).

Then, the flip is a well-known local transformation over rhombus tilings which just exchanges three rhombus tiles sharing a vertex (see *e.g.* [1,2,5,9,11,15], and also Fig. 2). Flips rise the question of flip-accessibility: can a given rhombus tiling be transformed into another one by performing a sequence of flips?

Fig. 2. A flip is an exchange of three rhombus tiles sharing a vertex.

A motivation for studying flip-accessibility for rhombus tilings comes from statistical physics. Indeed, rhombus tilings appeared to be a suitable model for the structure of recently discovered quasicrystalline alloys (see [14]). Moreover, elementary transformations of real quasicrystal, called *phasons*, seem being efficiently modeled by flips (see [10]). This led to study flip dynamics, thus the preliminary question of flip-accessibility.

In the case of rhombus tilings of a polygon, it is proven in [9] that any two rhombus tilings are linked by a finite sequence of flips. In other words, rhombus tilings of a polygon are all mutually flip-accessible. Many results concerning flip dynamics, in particular random sampling, have been obtained (see *e.g.* [5, 11]). The case of rhombus tilings of the whole plane is more complicated. First, note that it is natural to consider flip-accessibility in terms of *possibly infinite* sequences of flips. Then, even with this definition, tilings turn out to be not always flip-accessible. Thus, answering the question of flip-accessibility amounts to *characterize* flip-accessibility between pairs of tilings.

The paper is organized as follows. In Section 1, we more formally define rhombus tilings of the whole plane and the corresponding notion of flip-accessibility. We also show that rhombus tilings are naturally associated with a useful higherdimensional notion, namely *stepped surfaces*. Section 2 then states the main result of this paper, that is, a characterization of flip-accessibility in terms of *shadows* (Theorem 1). As a corollary, we show that there is a large class of rhombus tilings, namely the *canonical projection tilings*, from which any other rhombus tiling over the same set of rhombus tiles is flip-accessible. The last section is devoted to the proof of this characterization. In particular, we rely on the de Bruijn lines of [3] to introduce *de Bruijn cones*, a tool which could be used for achieving efficient algorithms in the finite case.

1 General settings

Let us first define rhombus tilings of the whole plane. Let v_1, \ldots, v_d be $d \ge 3$ non-colinear unit vectors of \mathbb{R}^2 . *Rhombus tiles* are the $\binom{d}{2}$ compact sets of non-

empty interior defined for $1 \le i < j \le d$ by:

$$T_{ij} = \{\lambda \boldsymbol{v}_i + \mu \boldsymbol{v}_j, \ 0 \le \lambda, \ \mu \le 1\}.$$

Then, for $\boldsymbol{x} \in \bigoplus_i \mathbb{Z} \boldsymbol{v}_i$, we denote by $\boldsymbol{x} + T_{ij}$ the rhombus tile obtained by translating T_{ij} by \boldsymbol{x} . Note that there is no loss of generality by considering rhombus tiles translated in $\bigoplus_i \mathbb{Z} \boldsymbol{v}_i$ (instead of the whole \mathbb{R}^2) because we are here interested in flip-accessibility; this restriction will be useful in Prop. 1, below. Let us now define rhombus tilings of the whole plane:

Definition 1. A $d \to 2$ rhombus tiling is a set \mathcal{T} of translated rhombus tiles of disjoint interiors, meeting edge-to-edge⁴ and whose union is the whole plane \mathbb{R}^2 .

For example, Fig. 1 depicts $d \rightarrow 2$ rhombus tilings for, respectively, d = 3, 4, 5.

Let us now define *flip-accessibility* for $d \rightarrow 2$ rhombus tilings. Introduced in [15] for finite domino or lozenge tilings, flips are similarly defined for rhombus tilings (see Fig. 3).

Fig. 3. A flip is a local exchange of three rhombus tiles sharing a vertex.

Clearly, performing a flip on a rhombus tiling yields a (new) rhombus tiling. This also holds for a finite sequence of flips, but we need to be more precise in the case of an *infinite* sequence of flips. Let us define the distance $d(\mathcal{T}, \mathcal{T}')$ between two tilings \mathcal{T} and \mathcal{T}' by:

$$d(\mathcal{T}, \mathcal{T}') = \inf\{2^{-r} \mid \mathcal{T}_{|B(\mathbf{0}, r)} = \mathcal{T}'_{|B(\mathbf{0}, r)}\},\$$

where $\mathcal{T}_{|B(\mathbf{0},r)}$ denotes the set of rhombus tiles in \mathcal{T} which belong to the 2dimensional ball of center **0** and radius *r*. This allows us to indiscriminately consider finite or infinite sequences of flips for defining flip-accessibility:

Definition 2. Let \mathcal{T} and \mathcal{T}' be two rhombus tilings of the whole plane. If there is a sequence $(\mathcal{T}_n)_{n\geq 0}$ of rhombus tilings such that $\mathcal{T}_0 = \mathcal{T}$, \mathcal{T}_{n+1} is obtained by performing a flip on \mathcal{T}_n and $d(\mathcal{T}_n, \mathcal{T}')$ tends towards 0, then one says that \mathcal{T}' is flip-accessible from \mathcal{T} , and one writes:

$$\mathcal{T} \stackrel{flips}{\longrightarrow} \mathcal{T}'$$

⁴ that is, two intersecting tiles share either a point x or an edge $\{x + \lambda v_i, 0 \le \lambda \le 1\}$

Last, let us show how rhombus tilings and flips can be seen from a higherdimensional viewpoint. This will be very useful in the following sections.

Let (e_1, \ldots, e_d) be the canonical basis of \mathbb{R}^d . For $1 \leq i < j \leq d$ and $x \in \mathbb{Z}^d$, the *unit face* of *type* t_{ij} *located* at x is the subset of \mathbb{R}^d defined by:

$$(\boldsymbol{x}, t_{ij}) = \{ \boldsymbol{x} + \lambda \boldsymbol{e}_i + \mu \boldsymbol{e}_j, \ 0 \le \lambda, \ \mu \le 1 \}.$$

Let then $\Psi : \mathbb{R}^d \to \mathbb{R}^2$ be the linear map defined by:

$$\Psi(x_1,\ldots,x_d)=\sum_{i=1}^d x_i\boldsymbol{v}_i.$$

We are now in a position to introduce so-called *stepped surfaces*:

Definition 3. A $d \to 2$ stepped surface is a set S of unit faces of \mathbb{R}^d such that Ψ is a homeomorphism from the union of these unit faces onto \mathbb{R}^2 .

A stepped surface is thus a sort of fairly rugged subset of \mathbb{R}^d homeomorphic to a plane. Rhombus tilings and stepped surfaces turn out to be naturally connected:

Proposition 1. If S is a $d \to 2$ stepped surface, then $\Psi(S)$ is a $d \to 2$ rhombus tiling. Conversely, if T is a $d \to 2$ rhombus tiling, then there is a $d \to 2$ stepped surface S such that $\Psi(S) = T$, and S is unique up to a translation in ker $(\Psi) \cap \mathbb{Z}^d$.

Proof. Let S be a stepped surface. First, Ψ clearly maps unit faces onto rhombus tiles whose vertices belong to $\bigoplus_i \mathbb{Z} \boldsymbol{v}_i$. Then, note that unit faces are of disjoint interiors and meet edge-to-edge: this still holds by applying the homeomorphism Ψ . Last, Ψ is onto \mathbb{R}^2 . This shows that $\Psi(S)$ is a rhombus tiling of \mathbb{R}^2 .

Conversely, let \mathcal{T} be a rhombus tiling of \mathbb{R}^2 . Let $\boldsymbol{x_0}$ be a vertex of \mathcal{T} . Since $\boldsymbol{x_0} \in \bigoplus_i \mathbb{Z} \boldsymbol{v}_i$ (by definition), there is some $\boldsymbol{y_0} \in \mathbb{Z}^d$ such that $\Psi(\boldsymbol{y_0}) = \boldsymbol{x_0}$, and $\boldsymbol{y_0}$ is unique up to a translation in $\ker(\Psi) \cap \mathbb{Z}^d$. One then define a function h from the vertices of \mathcal{T} to \mathbb{Z}^d as follows:

$$h(\boldsymbol{x}_0) = \boldsymbol{y}_0$$
 and $\boldsymbol{x}' = \boldsymbol{x} + \boldsymbol{v}_i \Rightarrow h(\boldsymbol{x}') = h(\boldsymbol{x}) + \boldsymbol{e}_i.$

Actually, h is nothing but a height function, and is thus consistent (see e.g. [4]). Here, note that $\Psi(h(\boldsymbol{x})) = \boldsymbol{x}$ for any vertex \boldsymbol{x} of \mathcal{T} , and let us define the following set of unit faces:

$$\mathcal{S} = \{ (h(\boldsymbol{x}), t_{ij}) \mid \boldsymbol{x} + T_{ij} \in \mathcal{T} \}.$$

It follows from the construction of \mathcal{S} that the restriction of Ψ to the union of unit faces of \mathcal{S} , denoted by $\Psi_{|\mathcal{S}}$, is a bijection onto \mathbb{R}^2 . It is continuous as Ψ does, and its inverse is also continuous since $\Psi_{|\mathcal{S}}$ is closed. Thus, Ψ is a homeomorphism from \mathcal{S} onto \mathbb{R}^2 , that is, \mathcal{S} is a stepped surface. Last, \mathcal{S} is unique up to the initial choice of y_0 , that is, up to a translation in $\ker(\Psi) \cap \mathbb{Z}^d$.

In other words, stepped surfaces are nothing but rhombus tilings seen from a higher-dimensional viewpoint. Actually, this is just a generalization of ideas introduced in [15] for finite domino or lozenge tilings. Note also that the case d = 3 corresponds to the notion introduced in [8], where the 3-dimensional view-point is very natural (see, for example, the leftmost tiling of Fig. 1).

The notion of flip is then defined over stepped surfaces so that if a stepped surface S' is obtained by performing a flip on a stepped surface S, then the rhombus tiling $\Psi(S')$ is obtained by performing a flip on the rhombus tiling $\Psi(S)$ (it suffices to replace v_i by e_i on Fig. 3). If, moreover, one says that two stepped surfaces S and S' are at distance less than 2^{-r} if they share the same set of unit faces within the *d*-dimensional ball $B(\mathbf{0}, r)$, then this leads to a notion of flip-accessibility for stepped surfaces which satisfies:

Proposition 2. For two stepped surfaces S and S', one has:

$$\Psi(\mathcal{S}) \xrightarrow{flips} \Psi(\mathcal{S}') \iff \exists a \in \ker(\Psi) \cap \mathbb{Z}^d \ s.t. \ \mathcal{S} \xrightarrow{flips} a + \mathcal{S}',$$

where $\mathbf{a} + \mathcal{S}'$ denotes the stepped surface obtained by translating \mathcal{S}' by \mathbf{a} .

Fig. 4 illustrates the notion of flip-accessibility. Note that, contrarily to the case of rhombus tilings of a polygon, flip-accessibility does not always holds, and is moreover even not symmetric.

2 Characterization by shadows

The aim of this section is to provide a characterization of flip-accessibility for stepped surfaces (which can be then restated in terms of rhombus tilings according to Prop. 1 and 2). Let us first define the following maps, for $1 \le i < j \le d$:

$$\pi_{ij} : \begin{array}{c} \mathbb{R}^d \to \mathbb{R}^2\\ (z_1, \dots, z_d) \mapsto (z_i, z_j) \end{array}$$

In particular, π_{ij} maps the unit face (x, t_{kl}) onto a unit square if i = k and j = l, onto a unit segment if i = k or j = l and onto a point otherwise. We then use these maps to define the *shadows* of a stepped surface (see *e.g.* Fig. 4):

Definition 4. The shadows of a $d \to 2$ stepped surface S are the $\binom{d}{2}$ subsets of \mathbb{R}^2 defined, for $1 \leq i < j \leq d$, by:

$$\pi_{ij}(\mathcal{S}) = \bigcup_{(\boldsymbol{x},t)\in\mathcal{S}} \pi_{ij}(\boldsymbol{x},t).$$

A simple but fundamental property of shadows is that they are invariant by performing a flip (this can be easily checked on Fig. 3). This also holds for finite sequences of flips, but we have only a weaker property for infinite sequences:

Proposition 3. If a stepped surface S' is flip-accessible from a stepped surface S, then the shadows of S' are included in the shadows of S:

$$\mathcal{S} \xrightarrow{flips} \mathcal{S}' \Rightarrow \forall i, \forall j, \ \pi_{ij}(\mathcal{S}') \subset \pi_{ij}(\mathcal{S}).$$

Fig. 4. Four patches of $3 \rightarrow 2$ stepped surfaces and their shadows (see Def. 4, below). Flip-accessibility is represented by arrows: the top two stepped surfaces are mutually flip-accessible (by a finite sequence of flips), and the bottom two stepped surfaces are flip-accessible from them (by an infinite sequence of flips rejecting the "corner" to infinity in one of the two possible directions). The bottom two stepped surfaces are sort of *dead ends*: no flip can be performed on them. It is worth noticing that a stepped surface is flip-accessible from another one if and only if the shadows of the latter are included in the shadows of the former (this illustrates Th. 1, below).

Proof. Let S_n be a sequence of stepped surfaces, obtained by performing flips on S, which tends towards S'. Let $z \in \pi_{ij}(S')$: z belongs to the projection of a face $(\boldsymbol{x},t) \in S'$. Let $r \in \mathbb{R}$ such that $(\boldsymbol{x},t) \subset B(0,r)$ and $N \in \mathbb{N}$ such that $d(S_N, S') \leq 2^{-r}$. In particular, $(\boldsymbol{x},t) \in S_N$. Since S_N is obtained from S by performing a finite number of flips, both have the same shadows. Thus, $z \in \pi_{ij}(\boldsymbol{x},t) \subset \pi_{ij}(S_N)$ yields $z \in \pi_{ij}(S)$. This proves $\pi_{ij}(S') \subset \pi_{ij}(S)$.

In the previous proposition, inclusions of shadows can be strict (see, for example, Fig. 4). Actually, the main result of this paper is that the converse of this proposition also holds:

Theorem 1. A stepped surface S' is flip-accessible from a stepped surface S iff the shadows of S' are included in the shadows of S:

$$\mathcal{S} \xrightarrow{flips} \mathcal{S}' \Leftrightarrow \forall i, \forall j, \ \pi_{ij}(\mathcal{S}') \subset \pi_{ij}(\mathcal{S}).$$

Th. 1 is proven in the following section. Before this, let us provide an interesting corollary. We need the following definition: **Definition 5.** Let u and v be two vectors of \mathbb{R}^d with non-zero entries. The $d \to 2$ stepped plane $\mathcal{P}_{u,v}$ is defined as the set of all unit faces which lie (entirely) in the following "slice" of \mathbb{R}^d :

$$\mathbb{R}\boldsymbol{u} + \mathbb{R}\boldsymbol{v} + [0,1]^d.$$

Roughly speaking, the stepped plane $\mathcal{P}_{u,v}$ is an approximation by unit faces of the real plane $\mathbb{R}u + \mathbb{R}v$ (this corresponds to a viewpoint developed in discrete geometry, see *e.g.* [12]). Actually, stepped planes are nothing but the stepped surfaces which are associated by Prop. 1 with so-called *canonical projection tilings*. These are rhombus tilings obtained by the *cut and project* method (see [7, 13]). For example, the Rauzy-dual, Ammann-Beenker and Penrose tilings depicted on Fig. 1 are canonical projection tilings associated with $d \to 2$ stepped planes for, respectively, d = 3, 4, 5 (see [6]).

Now, let us note that $\pi_{ij}(\mathbb{R}\boldsymbol{u} + \mathbb{R}\boldsymbol{v}) = \mathbb{R}^2$. This easily yields that $\pi_{ij}(\mathcal{P}_{\boldsymbol{u},\boldsymbol{v}}) = \mathbb{R}^2$. In particular, the shadows of the stepped plane $\mathcal{P}_{\boldsymbol{u},\boldsymbol{v}}$ contain the shadows of any other stepped surface. We thus obtain as an immediate corollary of Th. 1:

Corollary 1. Any stepped surface is flip-accessible from a stepped plane.

In terms of rhombus tilings, this means that any rhombus tiling is flipaccessible from a canonical projection tiling over the same set of rhombus tiles.

3 Proof of the characterization

This section provides a proof of the characterization stated in Theorem 1. The necessary condition is proven by Prop. 3. Let thus S and S' be two stepped surfaces such that the shadows of S' are included in the shadows of S, and let us prove that S' is flip-accessible from S.

Since the proof is not so short, it is worth giving a brief outline. The general idea is to transform S into S' by moving one by one unit faces. More precisely, for $(\mathbf{x}', t_{ij}) \in S'$, inclusion of shadows ensure that there is a unit face $(\mathbf{x}, t_{ij}) \in S$ such that $\pi_{ij}(\mathbf{x}', t_{ij}) = \pi_{ij}(\mathbf{x}, t_{ij})$. We would like to move (\mathbf{x}, t_{ij}) to (\mathbf{x}', t_{ij}) . We proceed as follows. While there is k such that $x_k < x'_k$, we choose such a k and we define a set $F_k^*(\mathbf{x}, t_{ij})$ such that, by performing a finite number flips over this set, we can translate (\mathbf{x}, t_{ij}) by \mathbf{e}_k (Lem. 1, 2 and 3). Similarly, we can translate $(\mathbf{x}, t_{ij}) \in S'$ by performing a finite number of flips. The last step will be to show that we can, in this way, obtain unit faces of S' over growing balls centered in $\mathbf{0}$ (Lem. 4), that is, that S' is flip-accessible from S (see Def. 2).

Let us now start the proof. We first define a useful tool:

Definition 6. Let S be a stepped surface, $k \in \mathbb{Z}$ and $1 \leq i \leq d$. If not empty, the following set of unit faces defines the k-th de Bruijn section of type i of S:

$$S_{i,k} = \{((x_1, \ldots, x_d), t_{ij}) \in \mathcal{S} \mid x_i = k\}.$$

It is easily seen that $S_{i,k}$ is an infinite stripe of unit faces two by two adjacent along vectors e_i . Then, removing $S_{i,k}$ naturally splits S into the two following connected sets of unit faces (see Fig. 5):

$$T_{i,k}^+ = \{ ((x_1, \dots, x_d), t) \in \mathcal{S} \mid x_i > k \} \text{ and } T_{i,k}^- = \mathcal{S} \setminus (S_{i,k} \cup T_{i,k}^+).$$

Fig. 5. A de Bruijn section $S_{i,k}$, here represented by a broken line crossing its unit faces, splits a stepped surface into two connected sets of unit faces, $T_{i,k}^-$ and $T_{i,k}^+$.

Actually, de Bruijn sections turn out to be the set of unit faces associated by Prop. 1 with the well-known de Bruijn lines introduced in [3]. In other words, $S_{i,k}$ is a de Bruijn section of S iff $\Psi(S_{i,k})$ is a de Bruijn line of the rhombus tiling $\Psi(S)$. In particular, two de Bruijn sections share at most one face, as well as de Bruijn lines. In such a case, they are said to *intersect*. Note that, if $(\boldsymbol{x}, t_{kl}) = S_{i,n} \cap S_{j,m}$, then $k = i, l = j, x_i = n$ and $x_j = m$. In particular, only sections of different types can intersect, although they can also not intersect.

We use de Bruijn sections to define so-called *de Bruijn triangles*:

Definition 7. For $(\boldsymbol{x} = (x_1, \ldots, x_d), t_{ij}) \in S$ and $1 \leq k \leq d, k \neq i, k \neq j$, the de Bruijn triangle $F_k(\boldsymbol{x}, t_{ij})$ is the set of unit faces of S defined by:

$$F_k(\boldsymbol{x}, t_{ij}) = (S_{i,x_i} \cup T_{i,x_i}^{\varepsilon_i}) \cap (S_{j,x_j} \cup T_{j,x_i}^{\varepsilon_j}) \cap (S_{k,x_k} \cup T_{k,x_k}^{-}),$$

where ε_i and ε_j respectively denote the signs of entries of v_k in the basis (v_i, v_j) .

Roughly speaking, $F_k(\boldsymbol{x}, t_{ij})$ is the triangle defined by the three "lines" S_{i,x_i} , S_{j,x_j} and S_{k,x_k} (see Fig. 6, left). Note that it could be infinite, since the de Bruijn sections S_{i,x_i} or S_{j,x_j} do not necessarily intersect S_{k,x_k} . We will later

avoid this case (Lem. 3). Intuitively, for translating (\boldsymbol{x}, t_{ij}) by \boldsymbol{e}_k , we first need to translate by \boldsymbol{e}_k the unit faces in $F_k(\boldsymbol{x}, t_{ij})$. However, moving a unit face of $F_k(\boldsymbol{x}, t_{ij})$ requires, in turn, to move some others unit faces before. Therefore, we extend de Bruijn triangles by so-called de Bruijn cones (see also Fig. 6, right):

Definition 8. With the convention $F_k(A \cup B) = F_k(A) \cup F_k(B)$, we define:

$$F_k^0(\boldsymbol{x}, t_{ij}) = (\boldsymbol{x}, t_{ij})$$
 and $F_k^{n+1}(\boldsymbol{x}, t_{ij}) = F_k(F_k^n(\boldsymbol{x}, t_{ij})).$

Then, the de Bruijn cone $F_k^*(\boldsymbol{x}, t_{ij})$ is defined by:

$$F_k^*(\boldsymbol{x}, t_{ij}) = \bigcup_{n \ge 0} F_k^n(\boldsymbol{x}, t_{ij})$$

Fig. 6. A de Bruijn triangle $F_k(x, t_{ij})$ (the shaded unit faces, left) and its closure, the de Bruijn cone $F_k^*(x, t_{ij})$ (right). Recall that one has always $(x, t_{ij}) = S_{i,x_i} \cap S_{j,x_j}$.

Let us now show that (\boldsymbol{x}, t_{ij}) can be translated by performing flips over $F_k^*(\boldsymbol{x}, t_{ij})$: **Lemma 1.** If $F_k^*(\boldsymbol{x}, t_{ij})$ is finite, then one can translate (\boldsymbol{x}, t_{ij}) by \boldsymbol{e}_k by performing $card(F_k^*(\boldsymbol{x}, t_{ij}) \setminus S_{k,x_k})$ flips over $F_k^*(\boldsymbol{x}, t_{ij})$.

Proof. Def. 8 yields, for any unit faces (\boldsymbol{y}, t) and (\boldsymbol{y}', t') :

$$(\boldsymbol{y},t) \in F_k^*(\boldsymbol{y}',t') \Rightarrow F_k^*(\boldsymbol{y},t) \subset F_k^*(\boldsymbol{y}',t').$$

This naturally leads to define the following partial order over $F_k^*(\boldsymbol{x}, t_{ij})$:

$$\forall (\boldsymbol{y},t), (\boldsymbol{y}',t') \in F_k^*(\boldsymbol{x},t_{ij}), \quad (\boldsymbol{y},t) \preceq (\boldsymbol{y}',t') \iff F_k^*(\boldsymbol{y},t) \subset F_k^*(\boldsymbol{y}',t').$$

Let us now consider a unit face $(\boldsymbol{y},t) \in F_k^*(\boldsymbol{x},t_{ij}) \setminus S_{k,x_k}$ which is minimal for this order. It is not hard to check that $F_k^*(\boldsymbol{y},t)$ is a set of three unit faces on which a flip can be performed (see, for example, Fig. 6, right). By performing this flip, (\boldsymbol{y},t) is translated by \boldsymbol{e}_k , so that the obtained face does no more belongs to $F_k^*(\boldsymbol{x},t_{ij})$, which thus decreased (Fig. 7, left). This can be inductively repeated, up to translate by \boldsymbol{e}_k the unit face which was originally maximal in $F_k^*(\boldsymbol{x},t_{ij})$, that is, (\boldsymbol{x},t_{ij}) itself (Fig. 7, right). Since there is one flip performed for each translated unit face, there is a total of $\operatorname{card}(F_k^*(\boldsymbol{x},t_{ij}) \setminus S_{k,x_k})$ flips performed. \Box

Fig. 7. Three flips have been performed on the minimal elements of the de Bruijn cone of Fig. 6 (left). This can be repeated, reducing the de Bruijn cone up to only three unit faces (right), on which performing a flip will translate the unit face (x, t_{ij}) by e_k .

Although the definition of de Bruijn cones by transitive closure suffices to prove the previous lemma, the following stronger property actually holds:

Lemma 2. One has $F_k^*(x, t_{ij}) = F_k^2(x, t_{ij})$.

Proof. Let $(\boldsymbol{y},t) \in F_k^2(\boldsymbol{x},t_{ij})$. If $F_k(\boldsymbol{y},t)$ is not included in $F_k^2(\boldsymbol{x},t_{ij})$, then a case study (relying on the fact that two de Bruijn sections intersect at most once) shows that one of the two de Bruijn sections containing (\boldsymbol{y},t) , say $S_{k',y_{k'}}$, necessarily intersects $F_k(\boldsymbol{x},t_{ij})$. Let thus $(\boldsymbol{y}',t') \in S_{k',y_{k'}} \cap F_k(\boldsymbol{x},t_{ij})$. One has $F_k(\boldsymbol{y},t) \subset F_k(\boldsymbol{y}',t')$, and $(\boldsymbol{y}',t') \in F_k(\boldsymbol{x},t_{ij})$ yields $F_k(\boldsymbol{y}',t') \subset F_k^2(\boldsymbol{x},t_{ij})$. Hence, $F_k(\boldsymbol{y},t) \subset F_k^2(\boldsymbol{x},t_{ij})$. Since this holds for any $(\boldsymbol{y},t) \in F_k^2(\boldsymbol{x},t_{ij})$, this proves $F_k^3(\boldsymbol{x},t_{ij}) \subset F_k^2(\boldsymbol{x},t_{ij})$. The result follows.

We are now in a position to prove that one can choose k_0 such that $F_{k_0}^*(\boldsymbol{x}, t_{ij})$ is finite and (\boldsymbol{x}, t_{ij}) should be translated by \boldsymbol{e}_{k_0} (the condition $k_0 \in D$ below). Lem. 1 then yields that (\boldsymbol{x}, t_{ij}) can be effectively translated by \boldsymbol{e}_{k_0} .

Lemma 3. Let $(\mathbf{x}', t_{ij}) \in \mathcal{S}'$ and $(\mathbf{x}, t_{ij}) \in \mathcal{S}$ such that $\pi_{ij}(\mathbf{x}', t_{ij}) = \pi_{ij}(\mathbf{x}, t_{ij})$. If $D = \{k \mid x'_k > x_k\} \neq \emptyset$, then there is $k_0 \in D$ such that $F_{k_0}^*(\mathbf{x}, t_{ij})$ is finite.

Proof. We first prove that $F_k(\boldsymbol{x}, t_{ij})$ is finite for any $k \in D$, and then that there is $k_0 \in D$ such that $F_{k_0}^*(\boldsymbol{x}, t_{ij}) = F_{k_0}^2(\boldsymbol{x}, t_{ij})$ is finite. Let $k \in D$. Note that $F_k(\boldsymbol{x}, t_{ij})$ is finite iff both S_{i,x_i} and S_{j,x_j} intersect S_{k,x_k} .

Let $k \in D$. Note that $F_k(\boldsymbol{x}, t_{ij})$ is finite iff both S_{i,x_i} and S_{j,x_j} intersect S_{k,x_k} . Suppose that S_{i,x_i} does not intersect S_{k,x_k} . Thus, $S_{i,x_i} \subset T_{k,x_k}^-$. Then, since the shadows of \mathcal{S}' are included in the shadows of \mathcal{S} , there is $(\boldsymbol{z},t) \in \mathcal{S}$ such that $\pi_{ik}(\boldsymbol{x}') \in \pi_{ik}(\boldsymbol{z},t)$. This yields $z_i = x'_i = x_i$ and $z_k = x'_k > x_k$. In particular, $\boldsymbol{z} \in S_{i,x_i} \cap T_{k,x_k}^+$. Since this contradicts $S_{i,x_i} \subset T_{k,x_k}^-$, we deduce that S_{i,x_i} intersects S_{k,x_k} . Similarly, S_{j,x_j} intersects S_{k,x_k} . The first result is proven. Let us now choose $k_0 \in D$ being minimal in D for the following partial order:

$$n \leq m \Leftrightarrow T_{m,x_m}^+ \subset T_{n,x_n}^+.$$

In other words, k_0 is chosen such that there is no section S_{k,x_k} separating (\boldsymbol{x}, t_{ij}) from $S_{k_0,x_{k_0}}$, that is, such that $(\boldsymbol{x}, t_{ij}) \in T_{k,x_k}^-$ and $S_{k_0,x_{k_0}} \subset T_{k,x_k}^+$. This yields that a unit face (\boldsymbol{y}, t) of $F_{k_0}(\boldsymbol{x}, t_{ij})$ belongs to two de Bruijn sections which both intersect $S_{k_0,x_{k_0}}$. Thus, $F_k(\boldsymbol{y}, t)$ is finite. The second result follows. \Box

Note that the previous lemma only proves that there is $k_0 \in D$ such that one can (and should) translate (\boldsymbol{x}, t_{ij}) by \boldsymbol{e}_{k_0} . Actually, one can easily check that, for d = 3, any $k \in D$ is convenient, whereas this is no more true for d > 3. Without going into details, let us just say that it is strongly connected with the fact that the set of $d \to 2$ rhombus tilings of a polygon forms a distributive lattice for d = 3, whereas not for d > 3 (see [5, 11]).

So, following the outline given at the beginning of this section, we can now, by performing flips, translate (\boldsymbol{x}, t_{ij}) by some \boldsymbol{e}_{k_0} such that $x'_{k_0} > x_{k_0}$. We can repeat this up to have $x'_k \leq x_k$ for any k. The way we can translate by $-\boldsymbol{e}_{k_0}$ a unit face (\boldsymbol{x}, t_{ij}) such that $x'_{k_0} < x_{k_0}$ is similar. So, we are able to move (\boldsymbol{x}, t_{ij}) to $(\boldsymbol{x}', t_{ij})$. The end of the proof relies on the following lemma:

Lemma 4. Let $(\mathbf{x}', t_{ij}) \in S'$ and $(\mathbf{x}, t_{ij}) \in S$ such that $\pi_{ij}(\mathbf{x}', t_{ij}) = \pi_{ij}(\mathbf{x}, t_{ij})$. If $x'_k > x_k$, then $F^*_k(\mathbf{x}, t_{ij}) \cap S' = \emptyset$.

Proof. (sketch) Writing down a detailed proof is rather technical and obfuscating, but the underlying geometrical idea is quite easy. Indeed, $x'_k > x_k$ yields $(\boldsymbol{x}, t_{ij}) \in T^-_{k,x_k}$ and $(\boldsymbol{x}', t_{ij}) \in T'^+_{k,x_k}$, as depicted on Fig. 8. So, suppose that there is a unit face $(\boldsymbol{y}, t) \in F_k(\boldsymbol{x}, t_{ij}) \cap \mathcal{S}'$. Such a face thus should have the same position, in \mathcal{S} and \mathcal{S}' , relatively to any de Bruijn section. For example, if (\boldsymbol{y}, t) belongs to $T^+_{i,x_i} \cap T^+_{j,x_j} \cap T^-_{k,x_k}$ in \mathcal{S} (as in the case of Fig. 8, left), then it should belongs to $T'^+_{i,x_i} \cap T'^+_{j,x_j} \cap T'^-_{k,x_k}$ in \mathcal{S}' . However, this last set turns out to be empty (see Fig. 8, right). Thus, $F_k(\boldsymbol{x}, t_{ij}) \cap \mathcal{S}' = \emptyset$. Suppose now that $(\boldsymbol{y}, t) \in F^2_k(\boldsymbol{x}, t_{ij}) \cap \mathcal{S}'$. There is $(\boldsymbol{z}, t_z) \in F_k(\boldsymbol{x}, t_{ij})$ such that $(\boldsymbol{y}, t) \in F_k(\boldsymbol{z}, t_z)$. We prove $F_k(\boldsymbol{z}, t_z) \cap \mathcal{S}' = \emptyset$ as above, with (\boldsymbol{z}, t_z) instead of (\boldsymbol{x}, t_{ij}) .

Fig. 8. If (x, t_{ij}) must cross the section S_{k,x_k} to be transformed to (x', t_{ij}) , then any unit face inside the triangle $T^+_{i,x_i} \cap T^+_{j,x_j} \cap T^-_{k,x_k}$ must also cross one of the sections S_{i,x_i}, S_{j,x_j} or S_{k,x_k} , hence is moved.

This lemma ensures that, once a unit face of S' is obtained, it is no more moved. We thus can get unit faces of S' over growing balls, and Th. 1 follows. We end the paper by summing up the whole proof by the following pseudo-algorithm:

for r=0 to ∞ while $S_{B(\mathbf{0},r)} \neq S'_{B(\mathbf{0},r)}$ choose (\mathbf{x}, t_{ij}) in $S_{B(\mathbf{0},r)} \setminus S'_{B(\mathbf{0},r)}$ $(\mathbf{x}', t_{ij}) \leftarrow S'_{i,x_i} \cap S'_{j,x_j}$ $(\pi_{ij}(S') \subset \pi_{ij}(S))$ while $\mathbf{x} \neq \mathbf{x}'$ choose k s.t. $x_k \neq x'_k$ and $F_k^*(\mathbf{x}, t_{ij})$ is finite (Lem. 3) $x_k \leftarrow x_k \pm 1$ by performing flips over $F_k^*(\mathbf{x}, t_{ij})$ (Lem. 1) endwhile endwhile (Lem. 4)

References

- 1. P. Arnoux, V. Berthé, T. Fernique, D. Jamet, Functional stepped surfaces, flips and generalized substitutions, to appear in Theor. Comput. Sci.
- M. Baake, U. Grimm, R. V. Moody, What is quasiperiodic order, Spektrum der Wissenschaften, pp. 64-74 (2002)
- 3. N. G. de Bruijn, Algebraic theory of Penrose's non-periodic tilings of the plane, Indagationes mathematicae 43 (1981), pp. 39-66.
- F. Chavanon, E. Rémila, Rhombus Tilings: Decomposition and Space Structure. Disc. Comput. Geom. 35 no. 2 (2006), pp. 329-358.
- 5. N. Destainville, Flip dynamics in octogonal rhombus tiling sets, Phys. Rev. Lett. 88 30601 (2002).
- 6. D. Frettlöh, E. O. Harriss (maintainers), *The tiling encyclopaedia*, available at http://tilings.math.uni-bielenfeld.de/tilings
- 7. E. O. Harriss, On canonical substitution tilings Ph. D Thesis, Imperial College, London, 2003.
- 8. D. Jamet, On the language of discrete planes and surfaces, proceedings of IW-CIA'04 (2004), pp. 227-241.
- R. Kenyon, Tiling a polygon with parallelograms. Algorithmica 9 no. 4 (1993), pp. 382-397.
- S. Lyonnard and al., Study of atomic hopping (phasons) in perfect icosahedral quasicrystals Al70.3Pd21.4Mn8.3 by time-of-flight quasi-elastic neutron scattering. Phys. Rev. B53 (1996), pp. 3150-3160.
- 11. J. Propp, Generating random elements of finite distributive lattices, Electr. J. Comb. 4 no. 2 R15 (1997).
- 12. J.-P. Reveillès, *Calcul en nombres entiers et algorithmique*. Thèse d'etat, Univ. Louis Pasteur, Strasbourg, France, 1991.
- 13. M. Schlottman, *Cut-and-project sets in locally compact abelian groups*, in Quasicrystal and discrete geometry, Providence, RI, AMS, 1998.
- D. Shechtman, I. Blech, D. Gratias, J. W. Cahn, Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett. 53 (1984), pp. 1951-1953.
- W. P. Thurston, Conway's tiling group. American Mathematical Monthly 97 (1990), pp. 757-773.