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3 LIP UMR 5668 (CNRS - INRIA - ENS Lyon - Université Lyon 1),46 allée d'Italie 69364 Lyon Cedex 7 - Frane,Eri.Remila�ens-lyon.frAbstrat. It is known that any two rhombus tilings of a polygon are�ip-aessible, i.e. linked by a �nite sequene of loal transformationsalled �ips. This paper onsider �ip-aessibility for rhombus tilings ofthe whole plane, asking whether any two of them are linked by a possiblyin�nite sequene of �ips. The answer turning out to depend on tilings, aharaterization of �ip-aessibility is provided. This yields, for example,that any tiling by Penrose tiles is �ip-aessible from a Penrose tiling.IntrodutionA rhombus tiling of D ⊂ R
2 is a set of rhombus-shaped ompat sets, namelyrhombus tiles, whose interiors are disjoint, whih meet edge-to-edge and whoseunion is D. Fig. 1 depits elebrated rhombus tilings of D = R

2 (see also [6℄).

Fig. 1. Rauzy-dual, Ammann-Beenker and Penrose rhombus tilings (from left to right).



2 Then, the �ip is a well-known loal transformation over rhombus tilings whihjust exhanges three rhombus tiles sharing a vertex (see e.g. [1, 2, 5, 9, 11, 15℄, andalso Fig. 2). Flips rise the question of �ip-aessibility : an a given rhombus tilingbe transformed into another one by performing a sequene of �ips?
Fig. 2. A �ip is an exhange of three rhombus tiles sharing a vertex.A motivation for studying �ip-aessibility for rhombus tilings omes fromstatistial physis. Indeed, rhombus tilings appeared to be a suitable model forthe struture of reently disovered quasirystalline alloys (see [14℄). Moreover,elementary transformations of real quasirystal, alled phasons, seem being ef-�iently modeled by �ips (see [10℄). This led to study �ip dynamis, thus thepreliminary question of �ip-aessibility.In the ase of rhombus tilings of a polygon, it is proven in [9℄ that any tworhombus tilings are linked by a �nite sequene of �ips. In other words, rhom-bus tilings of a polygon are all mutually �ip-aessible. Many results onerning�ip dynamis, in partiular random sampling, have been obtained (see e.g. [5,11℄). The ase of rhombus tilings of the whole plane is more ompliated. First,note that it is natural to onsider �ip-aessibility in terms of possibly in�nitesequenes of �ips. Then, even with this de�nition, tilings turn out to be notalways �ip-aessible. Thus, answering the question of �ip-aessibility amountsto haraterize �ip-aessibility between pairs of tilings.The paper is organized as follows. In Setion 1, we more formally de�ne rhom-bus tilings of the whole plane and the orresponding notion of �ip-aessibility.We also show that rhombus tilings are naturally assoiated with a useful higher-dimensional notion, namely stepped surfaes. Setion 2 then states the mainresult of this paper, that is, a haraterization of �ip-aessibility in terms ofshadows (Theorem 1). As a orollary, we show that there is a large lass ofrhombus tilings, namely the anonial projetion tilings, from whih any otherrhombus tiling over the same set of rhombus tiles is �ip-aessible. The last se-tion is devoted to the proof of this haraterization. In partiular, we rely on thede Bruijn lines of [3℄ to introdue de Bruijn ones, a tool whih ould be usedfor ahieving e�ient algorithms in the �nite ase.1 General settingsLet us �rst de�ne rhombus tilings of the whole plane. Let v1, . . . , vd be d ≥ 3non-olinear unit vetors of R

2. Rhombus tiles are the (

d
2

) ompat sets of non-



3empty interior de�ned for 1 ≤ i < j ≤ d by:
Tij = {λvi + µvj , 0 ≤ λ, µ ≤ 1}.Then, for x ∈ ⊕iZvi, we denote by x + Tij the rhombus tile obtained by trans-lating Tij by x. Note that there is no loss of generality by onsidering rhombustiles translated in ⊕iZvi (instead of the whole R

2) beause we are here interestedin �ip-aessibility; this restrition will be useful in Prop. 1, below. Let us nowde�ne rhombus tilings of the whole plane:De�nition 1. A d→ 2 rhombus tiling is a set T of translated rhombus tiles ofdisjoint interiors, meeting edge-to-edge4 and whose union is the whole plane R
2.For example, Fig. 1 depits d→ 2 rhombus tilings for, respetively, d = 3, 4, 5.Let us now de�ne �ip-aessibility for d→ 2 rhombus tilings. Introdued in[15℄ for �nite domino or lozenge tilings, �ips are similarly de�ned for rhombustilings (see Fig. 3).
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xFig. 3. A �ip is a loal exhange of three rhombus tiles sharing a vertex.Clearly, performing a �ip on a rhombus tiling yields a (new) rhombus tiling.This also holds for a �nite sequene of �ips, but we need to be more preisein the ase of an in�nite sequene of �ips. Let us de�ne the distane d(T , T ′)between two tilings T and T ′ by:
d(T , T ′) = inf{2−r | T|B(0,r) = T ′

|B(0,r)},where T|B(0,r) denotes the set of rhombus tiles in T whih belong to the 2-dimensional ball of enter 0 and radius r. This allows us to indisriminatelyonsider �nite or in�nite sequenes of �ips for de�ning �ip-aessibility:De�nition 2. Let T and T ′ be two rhombus tilings of the whole plane. If thereis a sequene (Tn)n≥0 of rhombus tilings suh that T0 = T , Tn+1 is obtained byperforming a �ip on Tn and d(Tn, T ′) tends towards 0, then one says that T ′ is�ip-aessible from T , and one writes:
T

flips
−→ T ′4 that is, two interseting tiles share either a point x or an edge {x +λvi, 0 ≤ λ ≤ 1}



4 Last, let us show how rhombus tilings and �ips an be seen from a higher-dimensional viewpoint. This will be very useful in the following setions.Let (e1, . . . , ed) be the anonial basis of R
d. For 1 ≤ i < j ≤ d and x ∈ Z

d,the unit fae of type tij loated at x is the subset of R
d de�ned by:

(x, tij) = {x + λei + µej , 0 ≤ λ, µ ≤ 1}.Let then Ψ : R
d → R

2 be the linear map de�ned by:
Ψ(x1, . . . , xd) =

d
∑

i=1

xivi.We are now in a position to introdue so-alled stepped surfaes :De�nition 3. A d→ 2 stepped surfae is a set S of unit faes of R
d suh that

Ψ is a homeomorphism from the union of these unit faes onto R
2.A stepped surfae is thus a sort of fairly rugged subset of R

d homeomorphi to aplane. Rhombus tilings and stepped surfaes turn out to be naturally onneted:Proposition 1. If S is a d→ 2 stepped surfae, then Ψ(S) is a d→ 2 rhombustiling. Conversely, if T is a d→ 2 rhombus tiling, then there is a d→ 2 steppedsurfae S suh that Ψ(S) = T , and S is unique up to a translation in ker(Ψ)∩Z
d.Proof. Let S be a stepped surfae. First, Ψ learly maps unit faes onto rhombustiles whose verties belong to ⊕iZvi. Then, note that unit faes are of disjointinteriors and meet edge-to-edge: this still holds by applying the homeomorphism

Ψ . Last, Ψ is onto R
2. This shows that Ψ(S) is a rhombus tiling of R

2.Conversely, let T be a rhombus tiling of R
2. Let x0 be a vertex of T . Sine

x0 ∈ ⊕iZvi (by de�nition), there is some y0 ∈ Z
d suh that Ψ(y0) = x0, and y0is unique up to a translation in ker(Ψ) ∩ Z

d. One then de�ne a funtion h fromthe verties of T to Z
d as follows:

h(x0) = y0 and x
′ = x + vi ⇒ h(x′) = h(x) + ei.Atually, h is nothing but a height funtion, and is thus onsistent (see e.g. [4℄).Here, note that Ψ(h(x)) = x for any vertex x of T , and let us de�ne the followingset of unit faes:

S = {(h(x), tij) | x + Tij ∈ T }.It follows from the onstrution of S that the restrition of Ψ to the union of unitfaes of S, denoted by Ψ|S , is a bijetion onto R
2. It is ontinuous as Ψ does, andits inverse is also ontinuous sine Ψ|S is losed. Thus, Ψ is a homeomorphismfrom S onto R

2, that is, S is a stepped surfae. Last, S is unique up to the initialhoie of y0, that is, up to a translation in ker(Ψ) ∩ Z
d. ⊓⊔In other words, stepped surfaes are nothing but rhombus tilings seen froma higher-dimensional viewpoint. Atually, this is just a generalization of ideas



5introdued in [15℄ for �nite domino or lozenge tilings. Note also that the ase
d = 3 orresponds to the notion introdued in [8℄, where the 3-dimensional view-point is very natural (see, for example, the leftmost tiling of Fig. 1).The notion of �ip is then de�ned over stepped surfaes so that if a steppedsurfae S′ is obtained by performing a �ip on a stepped surfae S, then therhombus tiling Ψ(S′) is obtained by performing a �ip on the rhombus tiling
Ψ(S) (it su�es to replae vi by ei on Fig. 3). If, moreover, one says that twostepped surfaes S and S′ are at distane less than 2−r if they share the same setof unit faes within the d-dimensional ball B(0, r), then this leads to a notionof �ip-aessibility for stepped surfaes whih satis�es:Proposition 2. For two stepped surfaes S and S′, one has:

Ψ(S)
flips
−→ Ψ(S′) ⇔ ∃a ∈ ker(Ψ) ∩ Z

d s.t. S flips
−→ a + S′,where a + S′ denotes the stepped surfae obtained by translating S′ by a.Fig. 4 illustrates the notion of �ip-aessibility. Note that, ontrarily to thease of rhombus tilings of a polygon, �ip-aessibility does not always holds, andis moreover even not symmetri.2 Charaterization by shadowsThe aim of this setion is to provide a haraterization of �ip-aessibility forstepped surfaes (whih an be then restated in terms of rhombus tilings aord-ing to Prop. 1 and 2). Let us �rst de�ne the following maps, for 1 ≤ i < j ≤ d:

πij :
R

d → R
2

(z1, . . . , zd) 7→ (zi, zj)In partiular, πij maps the unit fae (x, tkl) onto a unit square if i = k and
j = l, onto a unit segment if i = k or j = l and onto a point otherwise. We thenuse these maps to de�ne the shadows of a stepped surfae (see e.g. Fig. 4):De�nition 4. The shadows of a d→ 2 stepped surfae S are the (

d

2

) subsets of
R

2 de�ned, for 1 ≤ i < j ≤ d, by:
πij(S) =

⋃

(x,t)∈S

πij(x, t).A simple but fundamental property of shadows is that they are invariant byperforming a �ip (this an be easily heked on Fig. 3). This also holds for �nitesequenes of �ips, but we have only a weaker property for in�nite sequenes:Proposition 3. If a stepped surfae S′ is �ip-aessible from a stepped surfae
S, then the shadows of S′ are inluded in the shadows of S:

S
flips
−→ S′ ⇒ ∀i, ∀j, πij(S

′) ⊂ πij(S).



6

Fig. 4. Four pathes of 3 → 2 stepped surfaes and their shadows (see Def. 4, below).Flip-aessibility is represented by arrows: the top two stepped surfaes are mutually�ip-aessible (by a �nite sequene of �ips), and the bottom two stepped surfaesare �ip-aessible from them (by an in�nite sequene of �ips rejeting the �orner� toin�nity in one of the two possible diretions). The bottom two stepped surfaes aresort of dead ends: no �ip an be performed on them. It is worth notiing that a steppedsurfae is �ip-aessible from another one if and only if the shadows of the latter areinluded in the shadows of the former (this illustrates Th. 1, below).Proof. Let Sn be a sequene of stepped surfaes, obtained by performing �ipson S, whih tends towards S′. Let z ∈ πij(S′): z belongs to the projetionof a fae (x, t) ∈ S′. Let r ∈ R suh that (x, t) ⊂ B(0, r) and N ∈ N suhthat d(SN ,S′) ≤ 2−r. In partiular, (x, t) ∈ SN . Sine SN is obtained from
S by performing a �nite number of �ips, both have the same shadows. Thus,
z ∈ πij(x, t) ⊂ πij(SN ) yields z ∈ πij(S). This proves πij(S′) ⊂ πij(S). ⊓⊔In the previous proposition, inlusions of shadows an be strit (see, forexample, Fig. 4). Atually, the main result of this paper is that the onverse ofthis proposition also holds:Theorem 1. A stepped surfae S′ is �ip-aessible from a stepped surfae S i�the shadows of S′ are inluded in the shadows of S:

S
flips
−→ S′ ⇔ ∀i, ∀j, πij(S

′) ⊂ πij(S).Th. 1 is proven in the following setion. Before this, let us provide an inter-esting orollary. We need the following de�nition:



7De�nition 5. Let u and v be two vetors of R
d with non-zero entries. The

d→ 2 stepped plane Pu,v is de�ned as the set of all unit faes whih lie (entirely)in the following �slie� of R
d:

Ru + Rv + [0, 1]d.Roughly speaking, the stepped plane Pu,v is an approximation by unit faesof the real plane Ru+Rv (this orresponds to a viewpoint developed in disretegeometry, see e.g. [12℄). Atually, stepped planes are nothing but the stepped sur-faes whih are assoiated by Prop. 1 with so-alled anonial projetion tilings.These are rhombus tilings obtained by the ut and projet method (see [7, 13℄).For example, the Rauzy-dual, Ammann-Beenker and Penrose tilings depited onFig. 1 are anonial projetion tilings assoiated with d→ 2 stepped planes for,respetively, d = 3, 4, 5 (see [6℄).Now, let us note that πij(Ru+Rv) = R
2. This easily yields that πij(Pu,v) =

R
2. In partiular, the shadows of the stepped plane Pu,v ontain the shadows ofany other stepped surfae. We thus obtain as an immediate orollary of Th. 1:Corollary 1. Any stepped surfae is �ip-aessible from a stepped plane.In terms of rhombus tilings, this means that any rhombus tiling is �ip-aessible from a anonial projetion tiling over the same set of rhombus tiles.3 Proof of the haraterizationThis setion provides a proof of the haraterization stated in Theorem 1. Theneessary ondition is proven by Prop. 3. Let thus S and S′ be two steppedsurfaes suh that the shadows of S′ are inluded in the shadows of S, and letus prove that S′ is �ip-aessible from S.Sine the proof is not so short, it is worth giving a brief outline. The generalidea is to transform S into S′ by moving one by one unit faes. More preisely, for

(x′, tij) ∈ S′, inlusion of shadows ensure that there is a unit fae (x, tij) ∈ Ssuh that πij(x
′, tij) = πij(x, tij). We would like to move (x, tij) to (x′, tij).We proeed as follows. While there is k suh that xk < x′

k, we hoose suh a
k and we de�ne a set F ∗

k (x, tij) suh that, by performing a �nite number �ipsover this set, we an translate (x, tij) by ek (Lem. 1, 2 and 3). Similarly, wean translate (x, tij) by −ek for k suh that xk > x′
k. Hene, we an move

(x, tij) ∈ S to (x′, tij) ∈ S′ by performing a �nite number of �ips. The last stepwill be to show that we an, in this way, obtain unit faes of S ′ over growingballs entered in 0 (Lem. 4), that is, that S′ is �ip-aessible from S (see Def. 2).Let us now start the proof. We �rst de�ne a useful tool:



8De�nition 6. Let S be a stepped surfae, k ∈ Z and 1 ≤ i ≤ d. If not empty,the following set of unit faes de�nes the k-th de Bruijn setion of type i of S:
Si,k = {((x1, . . . , xd), tij) ∈ S | xi = k}.It is easily seen that Si,k is an in�nite stripe of unit faes two by two adjaentalong vetors ei. Then, removing Si,k naturally splits S into the two followingonneted sets of unit faes (see Fig. 5):

T +
i,k = {((x1, . . . , xd), t) ∈ S | xi > k} and T−

i,k = S\(Si,k ∪ T +
i,k).

Ti, k
+

Ti, k

_ Si, k

ei

Fig. 5. A de Bruijn setion Si,k, here represented by a broken line rossing its unitfaes, splits a stepped surfae into two onneted sets of unit faes, T−

i,k and T+

i,k.Atually, de Bruijn setions turn out to be the set of unit faes assoiated byProp. 1 with the well-known de Bruijn lines introdued in [3℄. In other words,
Si,k is a de Bruijn setion of S i� Ψ(Si,k) is a de Bruijn line of the rhombustiling Ψ(S). In partiular, two de Bruijn setions share at most one fae, aswell as de Bruijn lines. In suh a ase, they are said to interset. Note that,if (x, tkl) = Si,n ∩ Sj,m, then k = i, l = j, xi = n and xj = m. In partiular,only setions of di�erent types an interset, although they an also not interset.We use de Bruijn setions to de�ne so-alled de Bruijn triangles :De�nition 7. For (x = (x1, . . . , xd), tij) ∈ S and 1 ≤ k ≤ d, k 6= i, k 6= j, thede Bruijn triangle Fk(x, tij) is the set of unit faes of S de�ned by:

Fk(x, tij) = (Si,xi
∪ T εi

i,xi
) ∩ (Sj,xj

∪ T
εj

j,xj
) ∩ (Sk,xk

∪ T−
k,xk

),where εi and εj respetively denote the signs of entries of vk in the basis (vi, vj).Roughly speaking, Fk(x, tij) is the triangle de�ned by the three �lines� Si,xi
,

Sj,xj
and Sk,xk

(see Fig. 6, left). Note that it ould be in�nite, sine the deBruijn setions Si,xi
or Sj,xj

do not neessarily interset Sk,xk
. We will later



9avoid this ase (Lem. 3). Intuitively, for translating (x, tij) by ek, we �rst needto translate by ek the unit faes in Fk(x, tij). However, moving a unit fae of
Fk(x, tij) requires, in turn, to move some others unit faes before. Therefore, weextend de Bruijn triangles by so-alled de Bruijn ones (see also Fig. 6, right):De�nition 8. With the onvention Fk(A ∪B) = Fk(A) ∪ Fk(B), we de�ne:

F 0
k (x, tij) = (x, tij) and Fn+1

k (x, tij) = Fk(Fn
k (x, tij)).Then, the de Bruijn one F ∗

k (x, tij) is de�ned by:
F ∗

k (x, tij) =
⋃

n≥0

Fn
k (x, tij).

Sk x, k

Si x, i

Sj x, j

Sk x, k

Si x, i

Sj x, j

Fig. 6. A de Bruijn triangle Fk(x, tij) (the shaded unit faes, left) and its losure, thede Bruijn one F ∗

k (x, tij) (right). Reall that one has always (x, tij) = Si,xi
∩ Sj,xj

.Let us now show that (x, tij) an be translated by performing �ips overF ∗
k (x, tij):Lemma 1. If F ∗

k (x, tij) is �nite, then one an translate (x, tij) by ek by per-forming ard(F ∗
k (x, tij)\Sk,xk

) �ips over F ∗
k (x, tij).Proof. Def. 8 yields, for any unit faes (y, t) and (y′, t′):

(y, t) ∈ F ∗
k (y′, t′) ⇒ F ∗

k (y, t) ⊂ F ∗
k (y′, t′).This naturally leads to de�ne the following partial order over F ∗

k (x, tij):
∀(y, t), (y′, t′) ∈ F ∗

k (x, tij), (y, t) � (y′, t′) ⇔ F ∗
k (y, t) ⊂ F ∗

k (y′, t′).Let us now onsider a unit fae (y, t) ∈ F ∗
k (x, tij)\Sk,xk

whih is minimal for thisorder. It is not hard to hek that F ∗
k (y, t) is a set of three unit faes on whiha �ip an be performed (see, for example, Fig. 6, right). By performing this �ip,

(y, t) is translated by ek, so that the obtained fae does no more belongs to
F ∗

k (x, tij), whih thus dereased (Fig. 7, left). This an be indutively repeated,up to translate by ek the unit fae whih was originally maximal in F ∗
k (x, tij),that is, (x, tij) itself (Fig. 7, right). Sine there is one �ip performed for eahtranslated unit fae, there is a total of ard(F ∗

k (x, tij)\Sk,xk
) �ips performed. ⊓⊔
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Sk x, k

Si x, i

Sj x, j

Sk x, k

Si x, i

Sj x, j

Fig. 7. Three �ips have been performed on the minimal elements of the de Bruijn oneof Fig. 6 (left). This an be repeated, reduing the de Bruijn one up to only three unitfaes (right), on whih performing a �ip will translate the unit fae (x, tij) by ek.Although the de�nition of de Bruijn ones by transitive losure su�es toprove the previous lemma, the following stronger property atually holds:Lemma 2. One has F ∗
k (x, tij) = F 2

k (x, tij).Proof. Let (y, t) ∈ F 2
k (x, tij). If Fk(y, t) is not inluded in F 2

k (x, tij), then aase study (relying on the fat that two de Bruijn setions interset at mostone) shows that one of the two de Bruijn setions ontaining (y, t), say Sk′,yk′
,neessarily intersets Fk(x, tij). Let thus (y′, t′) ∈ Sk′,yk′

∩ Fk(x, tij). One has
Fk(y, t) ⊂ Fk(y′, t′), and (y′, t′) ∈ Fk(x, tij) yields Fk(y′, t′) ⊂ F 2

k (x, tij).Hene, Fk(y, t) ⊂ F 2
k (x, tij). Sine this holds for any (y, t) ∈ F 2

k (x, tij), thisproves F 3
k (x, tij) ⊂ F 2

k (x, tij). The result follows. ⊓⊔We are now in a position to prove that one an hoose k0 suh that F ∗
k0

(x, tij)is �nite and (x, tij) should be translated by ek0
(the ondition k0 ∈ D below).Lem. 1 then yields that (x, tij) an be e�etively translated by ek0

.Lemma 3. Let (x′, tij) ∈ S′ and (x, tij) ∈ S suh that πij(x
′, tij) = πij(x, tij).If D = {k | x′

k > xk} 6= ∅, then there is k0 ∈ D suh that F ∗
k0

(x, tij) is �nite.Proof. We �rst prove that Fk(x, tij) is �nite for any k ∈ D, and then that thereis k0 ∈ D suh that F ∗
k0

(x, tij) = F 2
k0

(x, tij) is �nite.Let k ∈ D. Note that Fk(x, tij) is �nite i� both Si,xi
and Sj,xj

interset Sk,xk
.Suppose that Si,xi

does not interset Sk,xk
. Thus, Si,xi

⊂ T−
k,xk

. Then, sine theshadows of S′ are inluded in the shadows of S, there is (z, t) ∈ S suh that
πik(x′) ∈ πik(z, t). This yields zi = x′

i = xi and zk = x′
k > xk. In partiular,

z ∈ Si,xi
∩ T +

k,xk
. Sine this ontradits Si,xi

⊂ T−
k,xk

, we dedue that Si,xiintersets Sk,xk
. Similarly, Sj,xj

intersets Sk,xk
. The �rst result is proven.Let us now hoose k0 ∈ D being minimal in D for the following partial order:

n � m ⇔ T +
m,xm

⊂ T +
n,xn

.



11In other words, k0 is hosen suh that there is no setion Sk,xk
separating (x, tij)from Sk0,xk0

, that is, suh that (x, tij) ∈ T−
k,xk

and Sk0,xk0
⊂ T +

k,xk
. This yieldsthat a unit fae (y, t) of Fk0

(x, tij) belongs to two de Bruijn setions whih bothinterset Sk0,xk0
. Thus, Fk(y, t) is �nite. The seond result follows. ⊓⊔Note that the previous lemma only proves that there is k0 ∈ D suh that onean (and should) translate (x, tij) by ek0

. Atually, one an easily hek that, for
d = 3, any k ∈ D is onvenient, whereas this is no more true for d > 3. Withoutgoing into details, let us just say that it is strongly onneted with the fat thatthe set of d → 2 rhombus tilings of a polygon forms a distributive lattie for
d = 3, whereas not for d > 3 (see [5, 11℄).So, following the outline given at the beginning of this setion, we an now,by performing �ips, translate (x, tij) by some ek0

suh that x′
k0

> xk0
. We anrepeat this up to have x′

k ≤ xk for any k. The way we an translate by −ek0
aunit fae (x, tij) suh that x′

k0
< xk0

is similar. So, we are able to move (x, tij)to (x′, tij). The end of the proof relies on the following lemma:Lemma 4. Let (x′, tij) ∈ S′ and (x, tij) ∈ S suh that πij(x
′, tij) = πij(x, tij).If x′

k > xk, then F ∗
k (x, tij) ∩ S′ = ∅.Proof. (sketh) Writing down a detailed proof is rather tehnial and obfusat-ing, but the underlying geometrial idea is quite easy. Indeed, x′

k > xk yields
(x, tij) ∈ T−

k,xk
and (x′, tij) ∈ T ′+

k,xk
, as depited on Fig. 8. So, suppose thatthere is a unit fae (y, t) ∈ Fk(x, tij) ∩ S

′. Suh a fae thus should have thesame position, in S and S′, relatively to any de Bruijn setion. For example, if
(y, t) belongs to T +

i,xi
∩ T +

j,xj
∩ T−

k,xk
in S (as in the ase of Fig. 8, left), thenit should belongs to T ′+

i,xi
∩ T ′+

j,xj
∩ T ′−

k,xk
in S′. However, this last set turns outto be empty (see Fig. 8, right). Thus, Fk(x, tij) ∩ S′ = ∅. Suppose now that

(y, t) ∈ F 2
k (x, tij) ∩ S′. There is (z, tz) ∈ Fk(x, tij) suh that (y, t) ∈ Fk(z, tz).We prove Fk(z, tz) ∩ S′ = ∅ as above, with (z, tz) instead of (x, tij). ⊓⊔

Sk, xk

e k

k, xk
S’

e i

e k
Si, x

e i

Sj, x

i

ej

j

Si, x
’

Sj, x
’

i

ej

jFig. 8. If (x, tij) must ross the setion Sk,xk
to be transformed to (x′, tij), then anyunit fae inside the triangle T+

i,xi
∩ T+

j,xj
∩ T−

k,xk
must also ross one of the setions

Si,xi
, Sj,xj

or Sk,xk
, hene is moved.



12 This lemma ensures that, one a unit fae of S′ is obtained, it is no moremoved. We thus an get unit faes of S′ over growing balls, and Th. 1 follows. Weend the paper by summing up the whole proof by the following pseudo-algorithm:for r=0 to ∞while SB(0,r) 6= S
′
B(0,r)hoose (x, tij) in SB(0,r)\S

′
B(0,r)

(x′, tij)← S′
i,xi
∩ S′

j,xj
(πij(S′) ⊂ πij(S))while x 6= x

′hoose k s.t. xk 6= x′
k and F ∗

k (x, tij) is �nite (Lem. 3)
xk ← xk ± 1 by performing �ips over F ∗
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