Quasicrystallization by Flips

Thomas Fernique

CNRS, Marseille

July 13, 2009

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Part of a project STOCHASFLIP, also involving:

- O. Bodini (LIP6, Paris);
- Ch. Mercat (I3M, Montpellier);
- D. Regnault (LIP, Lyon);
- É. Rémila (LIP, Lyon);
- M. Sablik (LATP, Marseille).

Goal: study a toy-model for quasicrystal growth and stabilization.

Canonical tilings	Growing stable quasicrystals	A nice experimental example 00000	A simpler rigorous example 00000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Canonical tilings

- 2 Growing stable quasicrystals
- 3 A nice experimental example

Canonical tilings	Growing stable quasicrystals	A nice experimental example	A simpler rigorous example

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1 Canonical tilings

- 2 Growing stable quasicrystals
- 3 A nice experimental example
- 4 A simpler rigorous example

Canonical tilings ●○○○	Growing stable quasicrystals	A nice experimental example 00000	A simpler rigorous example
Canonical tilings			

Let $\vec{v}_1, \ldots, \vec{v}_d$ be non-colinears vectors of \mathbb{R}^n , $d > n \ge 1$. For $1 \le i_1 < \ldots < i_n \le d$, one defines the proto-tile:

$$T_{i_1,\ldots,i_n} = \{\sum_{1\leq j\leq n} \lambda_{i_j} \vec{\mathbf{v}}_{i_j} \mid \lambda_{i_j} \in [0,1]\}.$$

A $d \rightarrow n$ tiling is a tiling of \mathbb{R}^n by translated copies of proto-tiles.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Canonical tilings	Growing stable quasicrystals	A nice experimental example	A simpler rigorous example
Lifting			

Let $(\vec{e}_1, \dots, \vec{e}_d)$ be the canonical basis of \mathbb{R}^d . Lift of a $d \to n$ tiling: image by the linear map $\phi : \vec{v}_i \mapsto \vec{e}_i$. $\rightsquigarrow n$ -dim. "stepped" hypersurface of \mathbb{R}^d .

Canonical tilings	Growing stable quasicrystals	A nice experimental example	A simpler rigorous example
0000			
Cut & project tilings			

A $d \rightarrow n$ tiling has thickness at most k if its lift lies into a "slice"

 $V+[0,k]^d,$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● ● ● ●

where V is a *n*-dim. affine subspace of \mathbb{R}^d .

Canonical tilings	Growing stable quasicrystals	A nice experimental example	A simpler rigorous example
0000			
Cut & project tilings			

A $d \rightarrow n$ tiling has thickness at most k if its lift lies into a "slice"

 $V+[0,k]^d,$

where V is a *n*-dim. affine subspace of \mathbb{R}^d .

A tiling of thickness at most 1 is called a V-cut.

Canonical tilings	Growing stable quasicrystals	A nice experimental example	A simpler rigorous example
0000			
Modeling quasicrystals			

Canonical tilings: widely spread theoretical model for quasicrystals. (Tile \simeq stable microscopic cluster)

Known: V-cuts have pure point diffraction (perfect quasicrystals).

How such complicated structures can be physically formed?

Canonical tilings	Growing stable quasicrystals	A nice experimental example 00000	A simpler rigorous example 00000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Canonical tilings

2 Growing stable quasicrystals

3 A nice experimental example

4 A simpler rigorous example

Canonical tilings	Growing stable quasicrystals •••••	A nice experimental example 00000	A simpler rigorous example
Growth and stability			

General physical principle:

Stability \Leftrightarrow minimal free energy F = E - TS

where

- E: (internal) energy;
- *S*: entropy;
- T: temperature.

(local interactions) (phase space size) (local excitation)

Canonical tilings	Growing stable quasicrystals	A nice experimental example	A simpler rigorous example
0000	•••••	00000	00000
Growth and stability			

General physical principle:

Stability \Leftrightarrow minimal free energy F = E - TS

where

- E: (internal) energy;
- S: entropy;
- T: temperature.

(local interactions) (phase space size) (local excitation)

Low T approach: minimizing E (matching rules) High T approach: maximizing S (random tilings).

Canonical tilings 0000	Growing stable quasicrystals	A nice experimental example 00000	A simpler rigorous example
Minimizing the energy			

Very general definition:

Definition (Matching rules)

Decoration of a proto-tile: real function defined over its boundary. Two tiles match if, at any intersecting point, decorations sum to 1.

Decoration of boundaries \simeq bumps & dents of jigsaw puzzles.

Canonical tilings	Growing stable quasicrystals	A nice experimental example	A simpler rigorous example
0000	○●○○○	00000	00000
Minimizing the energy			

Slightly less general definition:

Definition (Matching rules)

Decoration of a proto-tile: real function defined over its boundary. Two tiles match if, at any intersecting point, decorations sum to 0.

Decoration of boundaries \simeq colors of jigsaw puzzles.

Canonical tilings 0000	Growing stable quasicrystals	A nice experimental example 00000	A simpler rigorous example
Minimizing the energy			

Slightly less general definition:

Definition (Matching rules)

Decoration of a proto-tile: real function defined over its boundary. Two tiles match if, at any intersecting point, decorations sum to 0.

Decoration of boundaries \simeq colors of jigsaw puzzles.

Idea: energy is proportional to the ratio of unmatched tiles. ~> decorations ensuring quasicrystalline ground states are known.

Canonical tilings	Growing stable quasicrystals	A nice experimental example	A simpler rigorous example
0000	○○●○○	00000	
Minimizing the energy			

However, this does not help a lot to tile:

Theorem (Dworkin)

For any aperiodic tileset and for any R > 0, there is a deception of order R, i.e., a valid finite tiling of radius at least R which do not appears in any valid tiling of the plane.

Canonical tilings	Growing stable quasicrystals ○○●○○	A nice experimental example 00000	A simpler rigorous example
Minimizing the energy			

However, this does not help a lot to tile:

Theorem (Dworkin)

For any aperiodic tileset and for any R > 0, there is a deception of order R, i.e., a valid finite tiling of radius at least R which do not appears in any valid tiling of the plane.

Self-assembly approach (Onoda-Steinhardt-Vicenzo-Socolar): promising, rises many questions, *e.g.* about the growth rate.

Canonical tilings	Growing stable quasicrystals	A nice experimental example	A simpler rigorous example
0000		00000	00000
Maximizing the entropy			

Entropy: proportional to the size of the phase space.

Phase space of a finite tiling: all the tilings which are accessible by "elementary moves", *e.g.*, local reconfiguration of tiles.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Canonical tilings	Growing stable quasicrystals	A nice experimental example 00000	A simpler rigorous example
Maximizing the entropy			

Entropy: proportional to the size of the phase space.

Phase space of a finite tiling: all the tilings which are accessible by "elementary moves", *e.g.*, local reconfiguration of tiles.

Example: some phase spaces of $2 \rightarrow 1$ tilings of size 4:

```
\{1111\}, \{1112, 1121, 1211, 2111\},\
```

 $\{1122, 1212, 1221, 2112, 2121, 2211\}.$

Canonical tilings	Growing stable quasicrystals	A nice experimental example	A simpler rigorous example
0000		00000	00000
Maximizing the entropy			

Entropy: proportional to the size of the phase space.

Phase space of a finite tiling: all the tilings which are accessible by "elementary moves", *e.g.*, local reconfiguration of tiles.

Example: some phase spaces of $2 \rightarrow 1$ tilings of size 4:

```
\{1111\}, \{1112, 1121, 1211, 2111\},\
```

```
\{1122, 1212, 1221, 2112, 2121, 2211\}.
```

Entropy seems to be maximal for phase spaces containing quasicrystalline tilings (partial theoretical results).

Canonical tilings	Growing stable quasicrystals	A nice experimental example	A simpler rigorous example
0000		00000	00000
Hybrid approach			

Hybrid approach:

- At high T, minimizing $F = E TS \simeq$ maximizing S. \rightarrow tiling whose phase space contains a quasicrystalline tiling.
- When T decreases, the effect of E overcomes the one of S.
 ~> local transformations decreasing E become favoured.
- At T = 0: local transformations are frozen.
 → How far from the quasicrystalline tiling are we?

Note: looks like the *relaxation process* briefly described by Janot.

Canonical tilings	Growing stable quasicrystals	A nice experimental example	A simpler rig

2 Growing stable quasicrystals

3 A nice experimental example

Growing stable quasicrystals 00000

A nice experimental example $\circ \circ \circ \circ \circ$

A simpler rigorous example 00000

Generalized Penrose tilings

V-cuts with \vec{V} directed by $(\cos(\frac{2k\pi}{5}))_{1 \le k \le 5}$ and $(\sin(\frac{2k\pi}{5}))_{1 \le k \le 5}$:

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 - のへぐ

Growing stable quasicrystals 00000

A nice experimental example $\circ \circ \circ \circ \circ$

A simpler rigorous example 00000

Generalized Penrose tilings

V-cuts with \vec{V} directed by $(\cos(\frac{2k\pi}{5}))_{1 \le k \le 5}$ and $(\sin(\frac{2k\pi}{5}))_{1 \le k \le 5}$:

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Growing stable quasicrystals 00000

A nice experimental example $\circ \circ \circ \circ \circ$

A simpler rigorous example 00000

Generalized Penrose tilings

V-cuts with \vec{V} directed by $(\cos(\frac{2k\pi}{5}))_{1 \le k \le 5}$ and $(\sin(\frac{2k\pi}{5}))_{1 \le k \le 5}$:

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 - のへぐ

Canonical tilings 0000	Growing stable quasicrystals	A nice experimental example •••••	A simpler rigorous example
Socolar's alternation cond	lition		

Canonical tilings 0000	Growing stable quasicrystals	A nice experimental example •••••	A simpler rigorous example
Socolar's alternation cond	lition		

Canonical tilings 0000	Growing stable quasicrystals	A nice experimental example •••••	A simpler rigorous example
Socolar's alternation cond	lition		

Socolar's alternation of	condition		
0000	00000	0000	00000
Canonical tilings	Growing stable quasicrystals	A nice experimental example	A simpler rigorous example

Socolar's alternation of	condition		
0000	00000	0000	00000
Canonical tilings	Growing stable quasicrystals	A nice experimental example	A simpler rigorous example

Canonical tilings	Growing stable quasicrystals	A nice experimental example ○●○○○	A simpler rigorous example 00000
Socolar's alternation con	dition		

Canonical tilings	Growing stable quasicrystals	A nice experimental example	A simpler rigorous example 00000
Socolar's alternation c	ondition		

Canonical tilings 0000	Growing stable quasicrystals	A nice experimental example •••••	A simpler rigorous example
Socolar's alternation cond	ition		

Canonical tilings	Growing stable quasicrystals	A nice experimental example	A simpler rigorous example
Hybrid approach			

Flip: rotation by π of a hexagon tiled by three tiles:

The AC is affected only in the stripe of the two symmetric tiles:

- good flip: $T \dots T\overline{T} \dots \overline{T} \to T \dots \overline{T} T \dots \overline{T};$
- bad flip: $T \dots \overline{T} T \dots \overline{T} \to T \dots T \overline{T}$;
- *neutral* flip: $T \dots T \overline{T} \dots T \to T \dots \overline{T} T \dots T$.

Canonical tilings	Growing stable quasicrystals	A nice experimental example	A simpler rigorous example
Hybrid approach			

Flip: rotation by π of a hexagon tiled by three tiles:

The AC is affected only in the stripe of the two symmetric tiles:

- good flip: $T \dots T\overline{T} \dots \overline{T} \to T \dots \overline{T}T \dots \overline{T};$
- bad flip: $T \dots \overline{T} T \dots \overline{T} \to T \dots T \overline{T}$;
- *neutral* flip: $T \dots T \overline{T} \dots T \to T \dots \overline{T} T \dots T$.

Process: at each step, each possible flip is performed with a probability depending whether it is good, bad or neutral.

The AC is satisfied when only bad flips can be performed (video).

Canonical	tilings

Growing stable quasicrystals 00000 A nice experimental example $\circ \circ \circ \circ \circ \circ$

A simpler rigorous example 00000

Experimental convergence

We start from a patch of a generalized Penrose tiling:

Canonical tilings	Growing stable quasicrystals	A nice experimental example	A simpler rigorous example
0000	00000	00000	00000
Experimental convergence			

We "freeze" some boundary tiles to ensure possible AC-checking:

Canonical	tilings

Growing stable quasicrystals

A nice experimental example $\circ \circ \circ \circ \circ \circ$

A simpler rigorous example 00000

Experimental convergence

We perform "many" context-free flips (here 100 millions):

Canonical tilings	Growing stable quasicrystals	A nice experimental example	A simpler ri 00000
Experimental converg	ence		

The result should have almost nothing to do with the initial tiling:

Canonical tilings 0000	Growing stable quasicrystals	A nice experimental example	A simpler rigorous example
Experimental convergence			

After 40 of the 307 steps (\simeq 40% of the context-sensitive flips):

Canonical	tilings

Growing stable quasicrystals 00000 A nice experimental example $\circ \circ \circ \circ \circ \circ$

A simpler rigorous example 00000

Experimental convergence

The result already partially agree with the generalized Penrose tiling:

Canonical tilings 0000	Growing stable quasicrystals	A nice experimental example $\circ \circ \circ \bullet \circ$	A simpler rigorous example 00000
Experimental convergence	2		

After half of the 307 steps ($\simeq 80\%$ of the context-sensitive flips):

Canonical tilings 0000	Growing stable quasicrystals	A nice experimental example	A simpler rigorous exan 00000
Experimental converge	ence		

The result almost totally agree with the generalized Penrose tiling:

Growing stable quasicrystals 00000 A nice experimental example $\circ \circ \circ \circ \circ \circ$

A simpler rigorous example 00000

Experimental convergence

The initial tiling is reached in 307 steps (6797 flips):

Canonical tilings 0000	Growing stable quasicrystals	A nice experimental example	A simpler rigorous example
Some statistics			

In blue: x tiles, y flips.

In pink: $y \simeq 0.156 x \sqrt{x}$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Canonical tilings 0000	Growing stable quasicrystals	A nice experimental example	A simpler rigorous example
Some statistics			

In blue: x tiles, y steps.

In pink: $y \simeq 0.268x$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Canonical tilings 0000	Growing stable quasicrystals	A nice experimental example 00000	A simpler rigorous example

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Canonical tilings

2 Growing stable quasicrystals

3 A nice experimental example

Canonical tilings	Growing stable quasicrystals	A nice experimental example	A simpler rigorous example
0000		00000	•••••
Tilings of the line			

 $2 \rightarrow 1$ case: tilings of the line, or two-letter words.

AC characterizes the periodic tiling 121212.....

Flip: $12 \leftrightarrow 21$. As in the previous example:

- good flip: $xxyy \rightarrow xyxy$;
- bad flip: xyxy → xxyy;
- *neutral* flip: $xxyx \rightarrow xyxx$.

Process: perform a uniformly chosen good or neutral flip (.ml).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Canonical tilings 0000	Growing stable quasicrystals	A nice experimental example 00000	A simpler rigorous example
Bounding the expected of	onvergence time		

Consider a stochastic process $(X_t)_{t>0}$ in X. Assume that there is $\psi : X \to \mathbb{R}^+$ such that:

$$orall t > 0, \quad \mathbb{E}(\psi(X_{t+1}) - \psi(X_t)|X_t) \leq -\varepsilon < 0.$$

Then:

$$\mathbb{E}(\min\{t \mid \psi(X_t) = 0\}) \leq \frac{\psi(X_0)}{\varepsilon}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Canonical tilings 0000	Growing stable quasicrystals	A nice experimental example 00000	A simpler rigorous example
Bounding the expected of	onvergence time		

Consider a stochastic process $(X_t)_{t>0}$ in X. Assume that there is $\psi : X \to \mathbb{R}^+$ such that:

$$orall t > 0, \quad \mathbb{E}(\psi(X_{t+1}) - \psi(X_t)|X_t) \leq -\varepsilon < 0.$$

Then:

$$\mathbb{E}(\min\{t \mid \psi(X_t) = 0\}) \leq rac{\psi(X_0)}{arepsilon}.$$

Here, by defining a suitable $\psi,$ we get:

Theorem

The expected number of random good or neutral flips to stabilize a configuration is at most cubic in the size of this configuration.

Growing stable quasicrystals 00000

A nice experimental example 00000

A simpler rigorous example $\circ \circ \circ \circ \circ \circ$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Bounding the expected convergence time

More precisely, we introduce Dyck Factors:

Then, for $0 < \alpha < 1$, define:

$$\psi_{\alpha}(w) = \sum_{v \in DF(w)} (1 + |v|_1)^{\alpha}.$$

Canonical tilings Grov

Growing stable quasicrystals 00000

A nice experimental example 00000

A simpler rigorous example 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Bounding the expected convergence time

More precisely, we introduce Dyck Factors:

Then, for 0 $< \alpha <$ 1, define:

$$\psi_{lpha}(w) = \sum_{v \in DF(w)} (1 + |v|_1)^{lpha}.$$

Using the concavity of $x \to x^{\alpha}$, we show (with $n = |X_t|$):

$$\mathbb{E}(\psi_{\alpha}(X_{t+1})-\psi_{\alpha}(X_{t})|X_{t}) \leq -\alpha(1-\alpha)n^{\alpha-2} \quad \text{and} \quad \psi_{\alpha}(X_{t}) \leq n^{1+\alpha}.$$

Canonical tilings 0000	Growing stable quasicrystals	A nice experimental example 00000	A simpler rigorous example
From the worst case to the	ne average case		

Note: ψ_{α} maximal for $1^n 2^n$ and $2^n 1^n$. But these tilings are only special cases.

Expected value of ψ_{α} for a random uniformly chosen tiling?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Canonical tilings	Growing stable quasicrystals	A nice experimental example	A simpler rigorous example
			00000
From the worst case to the	ne average case		

Note: ψ_{α} maximal for $1^n 2^n$ and $2^n 1^n$. But these tilings are only special cases.

Expected value of ψ_{α} for a random uniformly chosen tiling?

For $\alpha \to 1$, this tends to the average area below a Dyck path. Using this yields a slightly better bound: $\mathcal{O}(n^{2,5+\delta})$, for $\delta > 0$.

・ロト ・聞ト ・ヨト ・ヨト ж

~) Q (~

We defined a stochastic process which "straighten" tilings and stabilizes a V-cut, provided that tiles densities are suitable.

Does it make sense in physics?

Surprisingly, the convergence seems to be much better in the $5 \rightarrow 2$ case as in the $2 \rightarrow 1$. It is however harder to study.

We are first studying intermediate cases:

- $d \rightarrow 1$ (codimension effect);
- $d \rightarrow d 1$ (dimension effect).