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Introduction

Part of a project STOCHASFLIP, also involving:
e O. Bodini (LIP6, Paris);
e Ch. Mercat (I13M, Montpellier);
e D. Regnault (LIP, Lyon);
e E. Rémila (LIP, Lyon);
e M. Sablik (LATP, Marseille).

Goal: study a toy-model for quasicrystal growth and stabilization.
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@ A simpler rigorous example
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Canonical tilings
°

Canonical tilings

Let V4,..., Vy be non-colinears vectors of R", d > n > 1.

For1<i <...<i,<d, one defines the proto-tile:

Toin=1{ > XV | A €[0,1]}.

1<j<n

A d — n tiling is a tiling of R” by translated copies of proto-tiles.



Canonical tilings
.

Lifting

Let (&, ...,&y) be the canonical basis of RY.

Lift of a d — n tiling: image by the linear map ¢ : V; — €.

~+ n-dim. “stepped” hypersurface of RY.



Canonical tilings
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Cut & project tilings

A d — n tiling has thickness at most k if its lift lies into a “slice”
V + [0, K%,

where V is a n-dim. affine subspace of RY.



Canonical tilings
°

Cut & project tilings

A d — n tiling has thickness at most k if its lift lies into a “slice”
V + [0, K%,
where V is a n-dim. affine subspace of RY.

A tiling of thickness at most 1 is called a V-cut.
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Modeling quasicrystals

Canonical tilings: widely spread theoretical model for quasicrystals.
(Tile ~ stable microscopic cluster)

Known: V-cuts have pure point diffraction (perfect quasicrystals).

How such complicated structures can be physically formed?
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Growing stable quasicrystals
°

Growth and stability

General physical principle:

’Stability < minimal free energy F = E — TS‘

where
e E: (internal) energy; (local interactions)
e S: entropy; (phase space size)

e T: temperature. (local excitation)



Growing stable quasicrystals
°

Growth and stability

General physical principle:

’Stability < minimal free energy F = E — TS‘

where
e E: (internal) energy; (local interactions)
e S: entropy; (phase space size)
e T: temperature. (local excitation)

Low T approach: minimizing E (matching rules)
High T approach: maximizing S (random tilings).
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[ 1o}

Minimizing the energy

Very general definition:

Definition (Matching rules)

Decoration of a proto-tile: real function defined over its boundary.
Two tiles match if, at any intersecting point, decorations sum to 1.

Decoration of boundaries ~ bumps & dents of jigsaw puzzles.
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Minimizing the energy

Slightly less general definition:

Definition (Matching rules)

Decoration of a proto-tile: real function defined over its boundary.
Two tiles match if, at any intersecting point, decorations sum to O.

Decoration of boundaries ~ colors of jigsaw puzzles.
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Minimizing the energy

Slightly less general definition:

Definition (Matching rules)

Decoration of a proto-tile: real function defined over its boundary.
Two tiles match if, at any intersecting point, decorations sum to O.

Decoration of boundaries ~ colors of jigsaw puzzles.

Idea: energy is proportional to the ratio of unmatched tiles.
~> decorations ensuring quasicrystalline ground states are known.



Growing stable quasicrystals
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Minimizing the energy

However, this does not help a lot to tile:

Theorem (Dworkin)

For any aperiodic tileset and for any R > 0, there is a deception of
order R, i.e., a valid finite tiling of radius at least R which do not
appears in any valid tiling of the plane.
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Minimizing the energy

However, this does not help a lot to tile:

Theorem (Dworkin)

For any aperiodic tileset and for any R > 0, there is a deception of
order R, i.e., a valid finite tiling of radius at least R which do not
appears in any valid tiling of the plane.

Self-assembly approach (Onoda-Steinhardt-Vicenzo-Socolar):
promising, rises many questions, e.g. about the growth rate.
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°

Maximizing the entropy

Entropy: proportional to the size of the phase space.

Phase space of a finite tiling: all the tilings which are accessible by
“elementary moves”, e.g., local reconfiguration of tiles.
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Maximizing the entropy

Entropy: proportional to the size of the phase space.

Phase space of a finite tiling: all the tilings which are accessible by
“elementary moves”, e.g., local reconfiguration of tiles.

Example: some phase spaces of 2 — 1 tilings of size 4:
{1111}, {1112,1121,1211,2111},

{1122,1212,1221, 2112, 2121, 2211}.



Growing stable quasicrystals
°

Maximizing the entropy

Entropy: proportional to the size of the phase space.

Phase space of a finite tiling: all the tilings which are accessible by
“elementary moves”, e.g., local reconfiguration of tiles.

Example: some phase spaces of 2 — 1 tilings of size 4:
{1111}, {1112,1121,1211,2111},

{1122,1212,1221, 2112, 2121, 2211}.

Entropy seems to be maximal for phase spaces containing
quasicrystalline tilings (partial theoretical results).



Growing stable quasicrystals
)

Hybrid approach

Hybrid approach:
@ At high T, minimizing F = E — TS ~ maximizing S.
~ tiling whose phase space contains a quasicrystalline tiling.

@ When T decreases, the effect of E overcomes the one of S.
~ local transformations decreasing E become favoured.

© At T = 0: local transformations are frozen.
~» How far from the quasicrystalline tiling are we?

Note: looks like the relaxation process briefly described by Janot.
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A nice experimental example
°

Generalized Penrose tilings

V-cuts with V directed by (cos(T”))1<k<5 and (sm(%))lgkg:
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A nice experimental example
°

Generalized Penrose tilings

V-cuts with V directed by (cos(T”))1<k<5 and (sm(%))lgkg:
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Canonical tilings

Socolar’s alternation condition

They are characterized by the Socolar’s alternation condition (AC):
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Socolar’s alternation condition

They are characterized by the Socolar’s alternation condition (AC):
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Socolar’s alternation condition

They are characterized by the Socolar’s alternation condition (AC):
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Socolar’s alternation condition

They are characterized by the Socolar’s alternation condition (AC):
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Socolar’s alternation condition

They are characterized by the Socolar’s alternation condition (AC):



A nice experimental example
°

Socolar’s alternation condition

They are characterized by the Socolar's alternation condition (AC):
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Socolar’s alternation condition




A nice experimental example
°

Hybrid approach

Flip: rotation by 7 of a hexagon tiled by three tiles:

e-—

The AC is affected only in the stripe of the two symmetric tiles:
e goodflip: T...TT...T—T...TT...T;
@ badflip: T... TT... T—=T...TT...T;

e neutralflip: T...TT... T—T...TT... T.



A nice experimental example
°

Hybrid approach

Flip: rotation by 7 of a hexagon tiled by three tiles:

e-—

The AC is affected only in the stripe of the two symmetric tiles:
e goodflip: T...TT...T—T...TT...T;
@ badflip: T... TT... T—=T...TT...T;

e neutralflip: T...TT... T—T...TT... T.

Process: at each step, each possible flip is performed with a
probability depending whether it is good, bad or neutral.

The AC is satisfied when only bad flips can be performed (video).



A nice experimental example

Experimental convergence
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We “freeze” some boundary tiles to ensure possible AC

Experimental convergence




A nice experimental example
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The result should have almost nothing to do with the initial tiling:

Experimental convergence



A nice experimental example

Experimental convergence
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A nice experimental example
°

Experimental convergence

The result already partially agree with the generalized Penrose tiling:
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A nice experimental example

Experimental convergence
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A nice experimental example

Experimental convergence
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A nice experimental example
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A nice experimental example

Some statistics. . .

In blue: x tiles, y flips. In pink: y ~ 0.156x+/x.

4000000

3000000 —

2000000

1000000

T T T T T T T 1
0 10000 20000 30000 40000 50000 60000 70000 80000




A nice experimental example
°

Some statistics. . .

In blue: x tiles, y steps. In pink: y ~ 0.268x.
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A simpler rigorous example
°

Tilings of the line

2 — 1 case: tilings of the line, or two-letter words.
AC characterizes the periodic tiling ...121212. ...

Flip: 12 «<» 21. As in the previous example:
e good flip: xxyy — xyxy;
@ bad flip: xyxy — xxyy;

o neutral flip: xxyx — xyxx.

Process: perform a uniformly chosen good or neutral flip (.ml).



A simpler rigorous example
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Bounding the expected convergence time

Consider a stochastic process (X:)t>o in X.
Assume that there is 1) : X — R™ such that:

V>0, E(Xer1) — 0(Xe)|Xe) < —¢ < 0.

Then:
QZ)(XO)'

E(min{t | ¥(X) = 0}) < “




A simpler rigorous example
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Bounding the expected convergence time

Consider a stochastic process (X:)t>o in X.
Assume that there is 1) : X — R™ such that:

Vit >0, E(¥(Xer1) —¥(X:)|Xe) < —e <.
Then:
%Z)(Xo)'

E(min{t | ¥(X) = 0}) < “

Here, by defining a suitable 1), we get:

The expected number of random good or neutral flips to stabilize a
configuration is at most cubic in the size of this configuration.
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Bounding the expected convergence time

More precisely, we introduce Dyck Factors:

e Seies

Then, for 0 < o < 1, define:

Ya(w)= > (1+4|v[)"

veDF(w)



A simpler rigorous example
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Bounding the expected convergence time

More precisely, we introduce Dyck Factors:

e Seies

Then, for 0 < o < 1, define:

Ya(w)= > (1+4|v[)"

veDF(w)
Using the concavity of x — x“, we show (with n = | X¢|):

E(a(Xer1)=ta(Xe) [ Xe) < —a(1—a)n®? and e (X:) < n'+e.
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From the worst case to the average case

Note: 1), maximal for 172" and 271",
But these tilings are only special cases.

Expected value of 9, for a random uniformly chosen tiling?



A simpler rigorous example
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From the worst case to the average case

Note: 1), maximal for 172" and 271",
But these tilings are only special cases.

Expected value of 9, for a random uniformly chosen tiling?

For o« — 1, this tends to the average area below a Dyck path.
Using this yields a slightly better bound: O(n*°%?), for § > 0.



Experimental result

In blue: x tiles, y flips (worst case).

A simpler rigorous example
°

In pink: y ~ 0.17x3.
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A simpler rigorous example
°

Experimental result

In blue: x tiles, y flips (average case). In pink: y ~ 0.24x2,/x.
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Conclusion

We defined a stochastic process which “straighten” tilings and
stabilizes a V-cut, provided that tiles densities are suitable.

Does it make sense in physics?

Surprisingly, the convergence seems to be much better in the
5 — 2 case as in the 2 — 1. It is however harder to study.

We are first studying intermediate cases:
e d — 1 (codimension effect);

e d — d — 1 (dimension effect).
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