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Introduction

Part of a project STOCHASFLIP, also involving:

O. Bodini (LIP6, Paris);

Ch. Mercat (I3M, Montpellier);

D. Regnault (LIP, Lyon);

É. Rémila (LIP, Lyon);

M. Sablik (LATP, Marseille).

Goal: study a toy-model for quasicrystal growth and stabilization.
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Canonical tilings

Let ~v1, . . . , ~vd be non-colinears vectors of Rn, d > n ≥ 1.

For 1 ≤ i1 < . . . < in ≤ d , one defines the proto-tile:

Ti1,...,in = {
∑

1≤j≤n

λij~vij | λij ∈ [0, 1]}.

A d → n tiling is a tiling of Rn by translated copies of proto-tiles.
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Lifting

Let (~e1, . . . ,~ed) be the canonical basis of Rd .

Lift of a d → n tiling: image by the linear map φ : ~vi 7→ ~ei .

 n-dim. “stepped” hypersurface of Rd .
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Cut & project tilings

A d → n tiling has thickness at most k if its lift lies into a “slice”

V + [0, k]d ,

where V is a n-dim. affine subspace of Rd .

A tiling of thickness at most 1 is called a V -cut.
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Modeling quasicrystals

Canonical tilings: widely spread theoretical model for quasicrystals.
(Tile ' stable microscopic cluster)

Known: V -cuts have pure point diffraction (perfect quasicrystals).

How such complicated structures can be physically formed?
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Growth and stability

General physical principle:

Stability ⇔ minimal free energy F = E − TS

where

E : (internal) energy; (local interactions)

S : entropy; (phase space size)

T : temperature. (local excitation)

Low T approach: minimizing E (matching rules)
High T approach: maximizing S (random tilings).
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Minimizing the energy

Very general definition:

Definition (Matching rules)

Decoration of a proto-tile: real function defined over its boundary.
Two tiles match if, at any intersecting point, decorations sum to 1.

Decoration of boundaries ' bumps & dents of jigsaw puzzles.

Idea: energy is proportional to the ratio of unmatched tiles.
 decorations ensuring quasicrystalline ground states are known.
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Minimizing the energy

However, this does not help a lot to tile:

Theorem (Dworkin)

For any aperiodic tileset and for any R > 0, there is a deception of
order R, i.e., a valid finite tiling of radius at least R which do not
appears in any valid tiling of the plane.

Self-assembly approach (Onoda-Steinhardt-Vicenzo-Socolar):
promising, rises many questions, e.g. about the growth rate.
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Maximizing the entropy

Entropy: proportional to the size of the phase space.

Phase space of a finite tiling: all the tilings which are accessible by
“elementary moves”, e.g., local reconfiguration of tiles.

Example: some phase spaces of 2→ 1 tilings of size 4:

{1111}, {1112, 1121, 1211, 2111},

{1122, 1212, 1221, 2112, 2121, 2211}.

Entropy seems to be maximal for phase spaces containing
quasicrystalline tilings (partial theoretical results).
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Hybrid approach

Hybrid approach:

1 At high T , minimizing F = E − TS ' maximizing S .
 tiling whose phase space contains a quasicrystalline tiling.

2 When T decreases, the effect of E overcomes the one of S .
 local transformations decreasing E become favoured.

3 At T = 0: local transformations are frozen.
 How far from the quasicrystalline tiling are we?

Note: looks like the relaxation process briefly described by Janot.
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Generalized Penrose tilings

V -cuts with ~V directed by (cos(2kπ
5 ))1≤k≤5 and (sin(2kπ

5 ))1≤k≤5:



Canonical tilings Growing stable quasicrystals A nice experimental example A simpler rigorous example

Generalized Penrose tilings

V -cuts with ~V directed by (cos(2kπ
5 ))1≤k≤5 and (sin(2kπ

5 ))1≤k≤5:



Canonical tilings Growing stable quasicrystals A nice experimental example A simpler rigorous example

Generalized Penrose tilings

V -cuts with ~V directed by (cos(2kπ
5 ))1≤k≤5 and (sin(2kπ

5 ))1≤k≤5:



Canonical tilings Growing stable quasicrystals A nice experimental example A simpler rigorous example
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They are characterized by the Socolar’s alternation condition (AC):
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Hybrid approach

Flip: rotation by π of a hexagon tiled by three tiles:

The AC is affected only in the stripe of the two symmetric tiles:

good flip: T . . .T T . . .T → T . . .T T . . .T ;

bad flip: T . . .T T . . .T → T . . .T T . . .T ;

neutral flip: T . . .T T . . .T → T . . .T T . . .T .

Process: at each step, each possible flip is performed with a
probability depending whether it is good, bad or neutral.

The AC is satisfied when only bad flips can be performed (video).
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Experimental convergence

We start from a patch of a generalized Penrose tiling:
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Experimental convergence

We “freeze” some boundary tiles to ensure possible AC-checking:



Canonical tilings Growing stable quasicrystals A nice experimental example A simpler rigorous example

Experimental convergence

We perform “many” context-free flips (here 100 millions):
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Experimental convergence

The result should have almost nothing to do with the initial tiling:
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Experimental convergence

After 40 of the 307 steps (' 40% of the context-sensitive flips):
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Experimental convergence

The result already partially agree with the generalized Penrose tiling:
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Experimental convergence

After half of the 307 steps (' 80% of the context-sensitive flips):
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Experimental convergence

The result almost totally agree with the generalized Penrose tiling:
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Experimental convergence

The initial tiling is reached in 307 steps (6797 flips):
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Some statistics. . .

In blue: x tiles, y flips. In pink: y ' 0.156x
√

x .
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Some statistics. . .

In blue: x tiles, y steps. In pink: y ' 0.268x .
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Tilings of the line

2→ 1 case: tilings of the line, or two-letter words.

AC characterizes the periodic tiling . . . 121212 . . ..

Flip: 12↔ 21. As in the previous example:

good flip: xxyy → xyxy ;

bad flip: xyxy → xxyy ;

neutral flip: xxyx → xyxx .

Process: perform a uniformly chosen good or neutral flip (.ml).
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Bounding the expected convergence time

Consider a stochastic process (Xt)t>0 in X .
Assume that there is ψ : X → R+ such that:

∀t > 0, E(ψ(Xt+1)− ψ(Xt)|Xt) ≤ −ε < 0.

Then:

E(min{t | ψ(Xt) = 0}) ≤ ψ(X0)

ε
.

Here, by defining a suitable ψ, we get:

Theorem

The expected number of random good or neutral flips to stabilize a
configuration is at most cubic in the size of this configuration.
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Bounding the expected convergence time

More precisely, we introduce Dyck Factors:

Then, for 0 < α < 1, define:

ψα(w) =
∑

v∈DF (w)

(1 + |v |1)α.

Using the concavity of x → xα, we show (with n = |Xt |):

E(ψα(Xt+1)−ψα(Xt)|Xt) ≤ −α(1−α)nα−2 and ψα(Xt) ≤ n1+α.
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From the worst case to the average case

Note: ψα maximal for 1n2n and 2n1n.
But these tilings are only special cases.

Expected value of ψα for a random uniformly chosen tiling?

For α→ 1, this tends to the average area below a Dyck path.
Using this yields a slightly better bound: O(n2,5+δ), for δ > 0.
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Experimental result

In blue: x tiles, y flips (worst case). In pink: y ' 0.17x3.
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Experimental result

In blue: x tiles, y flips (average case). In pink: y ' 0.24x2√x .



Conclusion

We defined a stochastic process which “straighten” tilings and
stabilizes a V -cut, provided that tiles densities are suitable.

Does it make sense in physics?

Surprisingly, the convergence seems to be much better in the
5→ 2 case as in the 2→ 1. It is however harder to study.

We are first studying intermediate cases:

d → 1 (codimension effect);

d → d − 1 (dimension effect).
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