
Generation and Recognition of Digital Planes

using Multi-dimensional Continued Fractions

Thomas Fernique

LIRMM, CNRS and Univ. Montpellier 2

161 rue Ada, 34392 Montpellier, France

LIF, CNRS and Univ. de Provence

39 rue Joliot-Curie, 13453 Marseille, France

Abstract

This paper extends, in a multi-dimensional framework, pattern recognition tech-
niques for generation or recognition of digital lines. More precisely, we show how the
connection between chain codes of digital lines and continued fractions can be gene-
ralized by a connection between tilings and multi-dimensional continued fractions.
This leads to a new approach for generating and recognizing digital hyperplanes.

Key words: Brun algorithm, continued fractions, digital plane generation, digital
plane recognition, discrete geometry, dual map, substitution.

Introduction

Discrete (or digital) geometry mainly deals with discrete sets considered to be
digitized objects of the Euclidean space. A challenging problem is to decom-
pose a discrete set into elementary ones, which could be easily stored and from
which one can easily reconstruct the original discrete set. Good candidates for
such elementary discrete sets are digitizations of Euclidean hyperplanes, in
particular arithmetic discrete hyperplanes (see ,e.g., [1,2,9,10,15,17]). We thus
need efficient algorithms generating arbitrarily big patches of such digitiza-
tions from given parameters and, conversely, recognizing parameters of given
digitizations.

In the particular case of digitizations of lines, among other techniques, so-
called linguistic techniques provide a nice connection with word theory and

Email address: thomas.fernique@lif.univ-mrs.fr (Thomas Fernique).

Preprint submitted to Elsevier 15 October 2008

continued fractions. Let us briefly detail this. A (connected) digital line made
of horizontal or vertical unit segments can be encoded by a two-letter word,
called chain code or Freeman code. For example, if a horizontal (resp. vertical)
unit segment is encoded by 0 (resp. 1), then a segment of slope 1 can be
encoded by a word of the form 10 . . . 10 = (10)k. Basic transformations on
words correspond then to basic operations on slopes of the segments they
encode. For example, replacing each 0 by 01 and each 1 by 0 in the previous
word leads to the word (001)k, which encodes a segment of slope 1/2. There are
algorithms using this approach for both recognition and generation of digital
lines. Continued fraction expansions of slopes of segments turn out to play a
central role there (see e.g. [6,19,21] or references in [16]).

In higher dimensions, there are also various techniques for generating or recog-
nizing digital hyperplanes as, for example, linear programming, computational
geometry or preimage techniques (see e.g. [11] and references therein). How-
ever, these approaches do not extend the connection between word theory and
continued fractions. The aim of this paper is to introduce an approach which
does.

The paper is organized as follows.
The three first sections introduce main objects and tools. More precisely, Sec.
1 defines stepped planes, which are the digital planes that we consider, and
formally states what we mean by generate or recognize such a digital plane.
Then, Sec. 2 recalls the dual map notion, a powerful tool introduced in [4] as
a generalization of substitutions on words. Some useful properties proved in
[7] are also given. Last, Sec. 3 recalls the Brun algorithm, one of the existing
multi-dimensional continued fractions algorithms.
The two following sections present the main results of this paper. In Sec. 4, we
show how to construct a finite subset of a stepped plane which tiles it – one
speaks about generation of digital plane. This subset is obtained by successive
applications of dual maps related to the Brun expansion of the normal vector
of the stepped plane. Conversely, in Sec. 5, we show how to decide whether a
given object is a stepped plane or not, and how to compute its parameters if
it is a stepped plane – one speaks about recognition of digital plane. Roughly
speaking, the idea is to compute the Brun expansion of a potential normal
vector directly on the given objects by successive applications of dual maps;
the process eventually either fails if it is not a stepped plane, or leads to a
trivial stepped plane, from which parameters of the initial stepped plane (in
fact, the Brun expansion of its normal vector) are deduced.
A short conclusion resumes advantages and drawbacks of both generation and
recognition algorithms.

2

1 Stepped planes

In this section, we introduce our basic digital objects, namely binary functions
and stepped planes. Formally, it is convenient to consider the set of functions
from Zd × {1, . . . , d} to Z, denoted by Fd. Then, we define:

Definition 1 A binary function is a function in Fd which takes values in
{0, 1}. The size of a binary function B, denoted by |B|, is the cardinality of
its support, that is, the subset of Zd×{1, . . . , d} where B takes value one. We
denote by Bd the set of binary functions. For ~x ∈ Zd and i ∈ {1, . . . , d}, we
call face of type i located in ~x the binary function denoted by (~x, i∗) whose
support is {(~x, i)}.

Note that binary functions (resp. functions of Fd) can be seen as sums of faces
(resp. weighted sums of faces). Let us now provide a geometric interpretation
of binary functions. Let (~e1, . . . , ~ed) denote the canonical basis of Rd. The
geometric interpretation of a face (~x, i∗) is the closed subset of Rd defined by:

{~x+ ~ei +
∑

j 6=i

λj~ej | 0 ≤ λj ≤ 1}.

This subset is a hyperface of the unit cube of Rd whose lowest vertex is ~x (see
Fig. 1). Then, the geometric interpretation of a binary function, that is, of a
sum of faces, is the union of the geometrical interpretations of these faces.

e
3

e
1

e
2

x

e
3

e
1

e
2

x

e
3

e
1

e
2

x

Fig. 1. Geometrical interpretations of faces (~x, i∗), for i = 1, 2, 3 (from left to right).

Among binary functions, we are especially interested in so-called stepped planes,
as introduced in [20]:

Definition 2 Let ~α ∈ Rd
+\{~0} and ρ ∈ R. The stepped plane of normal

vector ~α and intercept ρ, denoted by P~α,ρ, is the binary function defined by:

P~α,ρ(~x, i) = 1 ⇔ 〈~x|~α〉 < ρ ≤ 〈~x+ ~ei|~α〉,

where 〈|〉 is the dot product. We denote by Pd the set of stepped planes.

Fig. 2 depicts the geometrical interpretation of a stepped plane. It is not hard
to check that the vertices of a stepped plane P~α,ρ, that is, the integers vec-
tors which belong to its geometrical interpretation, form a standard arithmetic
discrete plane of parameters (~α, ρ) (see [1,15,17]). Moreover, one checks that

3

the orthogonal projection along ~e1 + . . . + ~ed maps the geometrical represen-
tation of a stepped plane onto a tiling of Rd−1 whose tiles are projections of
geometrical representations of faces (see also Fig. 2).

Fig. 2. Geometrical interpretation of the stepped plane P(24,9,10),0 (highlighted ori-
gin). This is a union of faces of unit three-dimensional cubes.

We can now formally state the problem of generation and recognition of digital
planes that we consider throughout this paper. The generation problem con-
sists, given a normal vector ~α ∈ Rd

+\{~0} and an intercept ρ ∈ R, in designing
an algorithm for computing any finite subsets of the stepped plane P~α,ρ. In
particular, shapes of subsets plays an important role. In fact, since any finite
subset of a stepped plane can be seen as a subset of a stepped plane with
rational normal vector and intercept, we will consider further only the case of
stepped planes with rational parameters. Conversely, the recognition problem
consists, given a finite binary function B ∈ Bd, in computing a normal vector
~α ∈ Rd

+\{~0} and an intercept ρ ∈ R such that B is a subset of the stepped
plane P~α,ρ. Such a normal vector and intercept turning out to be not unique,
we will also consider the problem of finding all of them.

2 Dual maps

In this section, we introduce the main tool of this paper, namely dual maps.
Dual maps have been introduced in [4] under the name generalized substitu-
tions (see also [3,5]) and extended to the framework here considered in [12].

Let us first recall some basic definitions and notations. We denote by Fd the
free group generated by the alphabet {1, . . . , d}, with the concatenation as a
composition rule and the empty word as unit. An endomorphism of Fd is a
substitution if it maps any letter to a non-empty concatenation of letters with
non-negative powers. The Parikh or Abelianization map ~f is defined by:

∀w ∈ Fd, ~f(w) = (|w|1, . . . , |w|d),

4

where |w|i is the sum of the powers of the occurrences of the letter i in w.
Then, the incidence matrix of an endomorphism σ of Fd, denoted by Mσ,
is the d × d integer matrix whose i-th column is the vector ~f(σ(i)). Last,
an endomorphism of Fd is said to be unimodular if its incidence matrix has
determinant ±1.

Example 1 Let σ be the endomorphism of F3 defined by σ(1) = 12, σ(2) = 13
and σ(3) = 1. Note that σ is a substitution (often called Rauzy substitution).
One computes, for example, σ(1−12) = σ(1)−1σ(2) = 2−11−113 = 2−13, and
~f(2−13) = ~e3 − ~e2. This substitution is unimodular since its incidence matrix
Mσ (below) has determinant 1:

Mσ =















1 1 1

1 0 0

0 1 0















.

We are now in a position to recall from [12] the definition of dual maps :

Definition 3 The dual map of a unimodular endomorphism σ of Fd, denoted
by E∗

1(σ), is the endomorphism of Fd defined on a function F by:

E∗
1(σ)(F) : (~x, i) 7→

∑

j|σ(i)=p·j·s

F(Mσ~x+ ~f(p), j)−
∑

j|σ(i)=p·j-1·s

F(Mσ~x+ ~f(p)− ~ej , j).

Note that the value of E∗
1(σ)(F) in (~x, i) is finite since it depends only on the

values of F over a finite subset of Zd × {1, . . . , d}. This shows that E∗
1(σ) is

an endomorphism of Fd.

The formula defining E∗
1(σ) can seem obfuscating: we refer to [4,5,12] for a

detailed presentation. Here, let us just mention that the subscript of E∗
1(σ)

refers to the fact that this is a map acting over (d − 1)-dim. faces of d-dim.
unit cubes, while the superscript refers to a sort of duality between this map
and σ. Before providing an intuitive viewpoint on dual maps, let us consider
a simple example, and then give an important property of dual maps.

Example 2 The dual map of the substitution σ introduced in Ex. 1 satisfies:

E∗
1(σ) :



























(~0, 1∗) 7→ (~0, 1∗) + (~0, 2∗) + (~0, 3∗),

(~0, 2∗) 7→ (−~e3, 1
∗),

(~0, 3∗) 7→ (−~e3, 2
∗).

The image of any function of Fd, that is, of a weighted sum of faces, can then

5

be easily computed by linearity. Fig. 3 illustrates this.

M
−1

σ

M
−1

σ

E ()σ∗
1

E ()σ∗
1

discretization

discretization

Fig. 3. Dual maps act over weighted sums of faces. Here is depicted the cases of
single faces (left) and a binary function (right). The action of a dual map E∗

1(σ)
can be intuitively seen as a digitization of the linear map M−1

σ .

The following theorem describes the action of dual maps on stepped planes:

Theorem 1 ([7]) Let σ be a unimodular endomorphism of Fd. Let ~α ∈ Rd
+\{~0}

and ρ ∈ R. If M⊤
σ ~α ∈ Rd

+, then the image of the stepped plane P~α,ρ by E∗
1(σ)

is the stepped plane PM⊤
σ ~α,ρ. Otherwise, this image is not a binary function.

Note that, although the image by E∗
1(σ) of a stepped plane is a stepped plane,

the image of each face of this stepped plane is a weighted sum of faces (in
particular, not necessarily binary). Note also that if σ is a substitution, then
M⊤

σ ~α ∈ Rd
+ holds for any ~α ∈ Rd

+\{~0}: the image of a stepped plane by the
dual map of a substitution is thus always a stepped plane.

We are now in a position to provide a more intuitive viewpoint on dual maps.
On the one hand, let us recall that the stepped plane of normal vector ~α and
intercept ρ can be viewed as the digitization of the Euclidean plane of normal
vector ~α and intercept ρ (that is, the set {~x ∈ Rd | 〈~x|~α〉 = ρ}). On the other
hand, one easily checks that M−1

σ maps the real plane of normal vector ~α and
intercept ρ onto the real plane of normal vector M⊤

σ ~α and intercept ρ. Thus,
the previous theorem leads to consider the dual map E∗

1(σ) as a digitization
of the linear map M−1

σ (Fig. 3). This viewpoint turns out to give a good
intuition for numerous properties of dual maps (by the way, note that M−1

σ

plays a special role in the formula defining E∗
1(σ)).

To end this section, we examine action of dual maps over subsets of stepped
plane, that is, binary functions lesser than or equal to stepped planes (in the
sense of the usual partial order over functions). Such binary functions are
said to be planar. Let us first consider the case of a unimodular substitution σ
(recall that substitutions are positive morphisms). Let ~α ∈ Rd

+\{~0} and ρ ∈ R,
and assume that M⊤

σ ~α ∈ Rd
+. Let B be a binary function lesser than or equal

6

to P~α,ρ. We set B′ = P~α,ρ − B: this is also a binary function. One has:

PM⊤
σ ~α,ρ = E∗

1(σ)(P~α,ρ) = E∗
1(σ)(B) + E∗

1(σ)(B′).

It is not hard to see that the set of binary functions is stable under the action of
dual maps of substitutions (in this case, positivity is preserved by the formula
defining dual maps). One thus deduces from the above equation that E∗

1(σ)(B)
is lesser than or equal to PM⊤

σ ~α,ρ. In other words, for a substitution σ, one has:

0 ≤ B ≤ P~α,ρ =⇒ 0 ≤ E∗
1(σ)(B) ≤ E∗

1(σ)(P~α,ρ).

This generally does no more hold when σ is not a substitution (negative values
appear in the formula defining dual maps). Recall that this however holds if
B is a stepped plane (Th. 1). Let us already mention that, in Sec. 5, we will
show that it also holds in a particular but useful case (dual maps of special
morphisms – namely inverse of the later defined Brun substitutions – acting
over specially shaped subsets of stepped planes).

3 Brun algorithm

The Brun algorithm is one of the numerous multi-dimensional continued frac-
tions algorithm. For a complete exposition of these algorithms, the reader is
referred to [8,18]. Here, we just briefly recall the Brun algorithm and prove a
simple property (Prop. 1, below). Let us stress that the choice of the Brun al-
gorithm is rather arbitrary: most of other matricial algorithms could be used;
here, we just need the matrix linking two steps to be unimodular and finiteness
of rational expansions.

Definition 4 The Brun map T is the map from [0, 1]d\{~0} to [0, 1]d defined
on ~α = (α1, . . . , αd) by:

T (α1, . . . , αd) =
(

α1

αi
, . . . ,

αi−1

αi
,

1

αi
−
⌊

1

αi

⌋

,
αi+1

αi
, . . . ,

αd

αi

)

,

where i = min{j | αj = ||~α||∞}. The Brun expansion of a vector ~α ∈ [0, 1]d is
the sequence (an, in)n≥0 of N∗ × {1, . . . , d} defined, while T n(~α) 6= ~0, by:

an =
⌊

||T n(~α)||−1
∞

⌋

and in = min{j | 〈T n(~α)|~ej〉 = ||T n(~α)||∞}.

Let us stress that, in the d = 1 case, the Brun map T is nothing but the classic
Gauss map, and if (an, in)n≥0 is the Brun expansion of ~α ∈ [0, 1], then (an)n

is the continued fraction expansion of ~α, while, for all n, in = 1. We call Brun
algorithm the process which computes Brun expansion by applying T .

7

Example 3 The Brun expansion of (3
8
, 5

12
) is (2, 2), (1, 1), (2, 2), (4, 1), (1, 2).

Let us now give a matrix viewpoint. For (a, i) ∈ N×{1, . . . , d}, one introduces
the following (d+ 1)× (d+ 1) symmetric and unimodular matrix:

Ba,i =





















a 1

Ii−1

1 0

Id−i





















,

where Ip stands for the p×p identity matrix. For ~α = (α1, . . . , αd) ∈ [0, 1]d\{~0},
i = min{j | αj = ||~α||∞} and a = ⌊α−1

i ⌋, a simple computation then shows:

(1, ~α) = ||~α||∞Ba,i(1, T (~α)), (1)

where, for any vector ~u, (1, ~u) stands for the vector obtained by adding to ~u
a first entry equal to 1.

To end this section, we give a bound on length of Brun expansions of rational
vectors (irrational ones clearly having infinite expansions):

Proposition 1 With any rational vector ~α is associated the following integer:

m(~α) = p1 + . . .+ pd + q,

where p1, . . . , pd and q are co-prime integers such that ~α = (p1/q, . . . , pd/q).
Then, the length of the Brun expansion of ~α ∈ [0, 1]d ∩Qd is bounded by:

log d+2

d+1

(m(~α)),

where loga denotes the logarithm to the base a.

Proof. We show by induction on k ≥ 1 that if ~α is a rational vector whose
Brun expansion has length k, then one has:

m(~α) ≥

(

d+ 2

d+ 1

)k

.

For k = 1, T (~α) = ~0 yields:

~α = (0, . . . , 0, 1/q, 0, . . . , 0),

where q ≥ 1. Hence, one has: m(~α) = 1 + q ≥ 2 ≥ (d + 2)/(d + 1). Let us
now assume that the result holds for some k ≥ 1. Let ~α ∈ [0, 1]d be a rational

8

vector whose Brun expansion has length k+1. Since T (~α) is rational, one has:

T (~α) = (p1/q, . . . , pd/q),

where p1, . . . , pd and q are co-prime integers, that is, gcd(p1, . . . , pd, q) = 1.
The definition of T then yields that there is (a, i) ∈ N∗×{1, . . . , d} such that:

~α =

(

p1

aq + pi
, . . . ,

pi−1

aq + pi
,

q

aq + pi
,
pi+1

aq + pi
, . . . ,

pd

aq + pi

)

.

Since gcd(p1, . . . , pi−1, q, pi+1, . . . , pd, aq+pi) = gcd(p1, . . . , pd, q) = 1, one has:

m(~α) = p1 + . . .+ pi−1 + q + pi+1 + . . .+ pd + aq + pi,

that is, m(~α) = m(T (~α)) + aq. But a ≥ 1 and q ≥ p1, . . . , pd. Hence:

m(~α) ≥ m(T (~α)) +
p1 + . . .+ pd + q

d+ 1
=
d+ 2

d+ 1
m(T (~α)).

The result thus holds for k + 1. This completes the proof. ⊓⊔

It is not hard to find examples showing that the bound of Prop. 1 is not tight.
The characterization of rational vectors of longest Brun expansions remains
an open question (except in the one-dimensional case, where they are ratios
of successive Fibonacci numbers).

4 Generation of stepped planes

In this section, we show how notions and results of previous sections can be
used to generate stepped planes. Let us first introduce special substitutions:

Definition 5 Let (a, i) ∈ N∗ × {1, . . . , d}. The Brun substitution associated
with (a, i), denoted by βa,i, is defined over Fd+1 by:

βa,i(1) = 1a· (i+ 1), βa,i(i+ 1) = 1, ∀j /∈ {1, i+ 1}, βa,i(j) = j.

Note that the incidence matrix of βa,i is the matrix Ba,i introduced in the
previous section (in particular, Brun substitutions are unimodular). We thus
deduce from Eq. (1) and Th. 1 (recall that Ba,i is symmetric) that, for any
~α ∈ [0, 1]d\{~0} and ρ ∈ R, one has:

P(1,~α),ρ = E∗
1(βa,i)(P||~α||∞(1,T (~α)),ρ) = E∗

1(βa,i)(P(1,T (~α)),ρ/||~α||∞), (2)

9

where the last equality just easily follows from the definition of stepped planes.

Let us now apply this to the generation of stepped planes. The idea is that a
stepped plane of normal vector ~e1 can be easily generated: this is nothing but
a sum of faces of type 1 translated along the lattice Z~e2 + . . .+Z~ed+1. Then, it
easily follows from what precedes that any stepped plane whose normal vector
has a finite Brun expansion (that is, is rational) can be similarly generated.
We can state this more precisely with the following theorem:

Theorem 2 Let ~α ∈ [0, 1]d∩Qd having (finite) Brun expansion (an, in)0≤n≤N .
Let ρ ∈ R and ρ′ = ρ/||Ba0,i0 × . . .×BaN ,iN~e1||∞. Let D(1,~α),ρ be defined by:

D(1,~α),ρ = E∗
1(βa0,i0) ◦ . . . ◦ E

∗
1(βaN ,iN)(ρ′~e1, 1

∗).

Let L(1,~α),ρ ⊂ Zd+1 be the lattice of rank d defined by:

L(1,~α),ρ = B−1
a0,i0

. . . B−1
aN ,iN

d+1
∑

k=2

Z~ek.

Then, P(1,~α),ρ is the sum of D(1,~α),ρ translated along the lattice L(1,~α),ρ.

Example 4 Fig. 4 shows the generation of the binary function D(1,3/8,5/12),0

by the dual maps of the Brun substitutions associated with the Brun expansion
of the vector (3/8, 5/12) (recall Ex. 3). One also computes:

L(1,3/8,5/12),0 = Z(~e1 + 4~e2 − 6~e3) + Z(2~e1 − 2~e2 − 3~e3).

Th. 2 then yields that the geometrical interpretation of P(1,3/8,5/12),0 is the
union of all the translations along L(1,3/8,5/12),0 of the geometrical interpreta-
tion of D(1,3/8,5/12),0 (Fig. 5).

Fig. 4. Generation of D(1,3/8,5/12),0 by applications of the dual maps E∗
1(β1,2),

E∗
1(β4,1), E

∗
1(β2,2), E

∗
1(β1,1) and E∗

1(β2,2) (from left to right – highlighted origin).

Note that Th. 2 does not say anything about the shape of binary functions
D(1,~α),ρ, although it is clearly a critical point for practical generation of stepped
planes. Intuitively, we would like a small and ”compact” D(1,~α),ρ. In fact, the
size of any binary function which generate P(1,~α),ρ by translations along L(1,~α),ρ

is the size of the fundamental domain of L(1,~α),ρ (if ~α = (p1/q, . . . , pd/q) with

10

Fig. 5. According to Th. 2, the stepped plane P(1,3/8,5/12),0 can be generated by
translated copies of D(1,3/8,5/12),0 (framed).

p1, . . . , pd and q co-primes, then this size is q + p1 + . . . + pd). Thus, the real
question deals with the shape of D(1,~α),ρ. How can the compactness of D(1,~α),ρ

be quantified? For example, denoting by s the size of D(1,~α),ρ and by b the
number of faces of P(1,~α),ρ which are not in D(1,~α),ρ but adjacent to it (the
”boundary” of D(1,~α),ρ), we can consider that the smaller the ratio bd/sd−1 is
the better the shape is; this yields that good shapes look like balls. According
to this criterion, D(1,~α),ρ seems to be generally rather compact (Fig. 6). We
do not provide here bounds on such a compactness measure (it should be
investigated using the notion of boundary endomorphisms, introduced in [5]).

Fig. 6. Examples of binary functions D~α,ρ for some rational vectors ~α (see Th. 2).
Here, ratio b2/s takes values 25, 39, 40, 45 and 80 (from top-left to bottom-right).

To conclude this section, let us briefly mention the case where P(1,~α),ρ is an
irrational stepped plane, that is, ~α has an infinite Brun expansion (an, in)n.
In particular, if this expansion is periodic with period p and if ~αk denotes
the rational vector whose Brun expansion is (an, in)n≤k×p, then (D(1,~αk),ρ)k

turns out to be an increasing sequence of subsets of P(1,~α),ρ which, under some
conditions, eventually contains any finite subset of P(1,~α),ρ (see [14], chap. 6).

11

5 Recognition of stepped planes

5.1 Principle

In the previous section, dual maps and the Brun algorithm were used to gen-
erate stepped planes from their normal vectors. Here, the idea is to process
backwards. Let us first provide, in this section, an overview of the principle of
the recognition algorithm which will be detailed in the next sections.

One easily checks that Brun substitutions are invertible. Eq. (2) thus can be
rewritten as follows:

P(1,T (~α)),ρ/||~α||∞ = E∗
1(β

−1
a,i)(P(1,~α),ρ). (3)

In particular, note that only the quantities a and i are required to transform
a stepped plane of normal vector (1, ~α) into a stepped plane of normal vector
(1, T (~α)). Since i = min{j | αj = ||~α||∞} and a = ⌊α−1

i ⌋, they depend on
~α. However, let us stress that they contain only a partial information on ~α.
This information turns out to be easily deducible from local configurations of
a stepped plane of normal vector (1, ~α) – this is the point of Sec. 5.2, below. In
other words, given a stepped plane whose normal vector is unknown, we know
how to obtain the first term of the Brun expansion of this vector (that is, a
and i) as well as the stepped plane whose normal vector is the image of the
previous one by the Brun map T . Assuming that the initial vector has a finite
Brun expansion, we thus can iterate the process up to obtaining a stepped
plane of normal vector (1,~0), which is easily recognizable, as well as the Brun
expansion of the initial vector.

Note that the the previous process is rather theoretical, since stepped planes
are infinite objects. Moreover, this just allows to compute the normal vector of
a given stepped plane, not to decide whether a given binary function is planar
or not. However, these problems can be fixed by some slight modifications of
the previous process. Indeed, the way partial information on its normal vector
is deduced from a stepped plane can be extended to any binary function, under
some mild conditions (end of Sec. 5.2). Of course, the information obtained
in this way cannot always be linked with a normal vector, since this notion
makes sense only for stepped planes. In particular, this information can be
“inconsistent”, that is, cannot be linked with any possible normal vector: in
such a case, the binary function is clearly non-planar. Otherwise, the binary
function “locally looks planar” (this will be later formalized).

This yields the following process of recognition. While the current binary func-
tion “locally looks planar”, we apply E∗

1(β
−1
a,i), that is, we perform what we

12

call a Brun step. If we eventually get a subset of a stepped plane of normal
vector (1,~0), then the initial binary function is planar (as an image by dual
maps of substitutions of planar binary function). Else, if we eventually get a
binary function which is clearly not planar, then the initial binary function is
also not planar (this is not completely evident, we prove it in Sec. 5.3). This
process is formalized in Sec. 5.4. Bounds on the maximal number of Brun steps
that ensure termination are also proposed there.

5.2 Runs

Runs are special subsets of binary functions:

Definition 6 An (i, j)-run of a binary function B is a binary function R ≤ B
which can be written, for some vector ~x ∈ Zd and maximal interval I ⊂ Z:

R =
∑

k∈I

(~x+ k~ej, i
∗).

Such a run is right-closed if I has a right endpoint b, with B(~x+ b~ej , j
∗) = 1.

It is left-closed if I has a left endpoint a, with B(~x+(a−1)~ej +~ei, j
∗) = 1. The

terms closed, open, right-open and left-open are then defined as for intervals.

In other words, the geometric interpretation of an (i, j)-run of a binary func-
tion B is a maximal sequence of contiguous faces of type i, aligned with the
direction ~ej, and included in the geometric interpretation of B (see Fig. 7).

Fig. 7. This binary function has every type of (1, 3)-runs: left-closed, right-closed,
closed and open (framed runs, from left to right).

The following proposition links runs with normal vectors of stepped planes:

Proposition 2 A stepped plane of normal vector ~α = (α1, . . . , αd) has (i, j)-
runs of size max(⌊αi/αj⌋, 1) and max(⌈αi/αj⌉, 1) if αj 6= 0, infinite otherwise.

Proof. Let ~x ∈ Zd and I ⊂ Z such that the following binary function is an
(i, j)-run of the stepped plane P~α,ρ:

R =
∑

k∈I

(~x+ k~ej, i
∗).

Assume that I contains an interval [a, b], of length b− a + 1. Then, one has:

P~α,ρ(~x+ a~ej , i) = 1 ⇒ 〈~x|~α〉+ aαj < ρ ≤ 〈~x|~α〉+ aαj + αi,

13

P~α,ρ(~x+ b~ej , i) = 1 ⇒ 〈~x|~α〉+ bαj < ρ ≤ 〈~x|~α〉+ bαj + αi.

One deduces:
(b− a)αj < ρ− 〈~x|~α〉 ≤ αi,

that is, for αj 6= 0:

b− a+ 1 <
αi

αj
+ 1.

We thus have an upper bound on the length of I.
Let us now assume that I = [a, b]. Then, one has:

P~α,ρ(~x+ a~ej , i) = 1 ⇒ 〈~x|~α〉+ (a− 1)αj < 〈~x|~α〉+ aαj < ρ,

and one deduces:

P~α,ρ(~x+ (a− 1)~ej , i) = 0 ⇒ ρ > 〈~x|~α〉+ (a− 1)αj + αi.

Similarly, one shows:

ρ ≤ 〈~x|~α〉+ (b+ 1)αj + αi.

Finally, one has:

(a− 1)αj + αi < ρ− 〈~x|~α〉 ≤ (b+ 1)αj ,

that is, for αj 6= 0:

b− a+ 1 >
αi

αj
− 1.

We thus have a lower bound on the length of I.
In conclusion, we shown that size of (i, j)-runs of P~α,ρ range in the open inter-
val (αi/αj − 1, αi/αj + 1). The result follows (recall that, by definition, runs
are of size at least 1). ⊓⊔

Given a stepped plane with an unknown normal vector (1, ~α) = (1, α1, . . . , αd),
this proposition allows to use runs for computing i = min{j | αj = ||~α||∞}
and a = ⌊1/αi⌋. Indeed, i is the smallest integer such that no (j+1, i+1)-run
has size greater than 1, for j = 1, . . . , d, while a is the size of the smallest
(1, i+ 1) run. Note that one should also check that there is no (j + 1, 1)-run
of size greater than 1 (this proves that ~α ∈ [0, 1]d) and that there is at least
one (1, j + 1)-run of finite size (this proves that ~α 6= ~0).

Example 5 Consider the stepped plane of Fig. 2. Let (1, α, β) denotes its
unknown 1 normal vector. Its (2, 1)- and (3, 1)-runs are of size 1, and its (1, 2)-
and (1, 3)-runs have finite size. Thus, (α, β) ∈ [0, 1]d\{~0}. Its (2, 3)-runs are

1 Here, in fact, we already know that (1, α, β) = (1, 3/8, 5/12) = (24, 9, 10)/24. One
thus can check that the first term of the Brun expansion here obtained matches with
the Brun expansion of (3/8, 5/12) computed in Ex. 3.

14

all of size 1. Thus, β ≥ α, that is, i = 2. And since its (1, i + 1)-runs have
size 2 or 3, one has a = 2. This finally shows that the first term of the Brun
expansion of (α, β) is (a, i) = (2, 2).

Following the principle described in Sec. 5.1, we now would like to extend this
to binary functions. It is not hard to deduce from Prop. 2 that planar binary
functions satisfy the following proposition:

Proposition 3 If a binary function B is a subset of a stepped plane of normal
vector ~α = (α1, . . . , αd), then B has (i, j)-runs of size at most max(⌈αi/αj⌉, 1)
and closed runs of size at least max(⌊αi/αj⌋, 1).

We then introduce the notion of local planarity :

Definition 7 A binary function is said to be locally planar if:

(1) for i 6= j, there is no (i, j)-run and (j, i)-run both of size greater than 1;
(2) if a closed (i, j)-run has size a, then (i, j)-runs have size of at most a+1.

Local planarity means that runs do not contradict planarity. Indeed, if B is
a subset of a stepped plane of normal vector ~α, the first condition means
that one cannot have both αi > αj and αi < αj , while the second condition
means that floor and ceiling parts of αi/αj differ by at most 1. For example,
one checks that the binary function of Fig. 7 is locally planar. In fact, local
planarity corresponds to the informal “locally looks planar” of Sec. 5.1.

However, local planarity does not ensure that we can always deduce from runs
enough information to perform a Brun step, as explained in Sec. 5.1. Fig. 8
(right) illustrates this. This leads to introduce 1-recognizable binary functions,
which are those whose runs contains enough information to perform one Brun
step 2 . Technically:

Definition 8 A binary function B ∈ Bd+1 is said to be 1-recognizable if:

(1) there is i ∈ {1, . . . , d} such that B has a (1, i+1)-run of size greater than
1 and, for any j 6= i, an (i+ 1, j + 1)-run of size greater than 1;

(2) for such an i, B has a closed (1, i+1)-run of size a ∈ N∗ and a (1, i+1)-
run of size greater than a.

The first condition ensures that, if B is a subset of a stepped plane of normal
vector (1, ~α), then the i-th entry of ~α is smaller than 1 and greater than any
other entry. The second condition ensures that, if B is a subset of a stepped
plane of normal vector (1, ~α), then the size of the smallest (1, i + 1)-runs of
this stepped plane is a, that is, ⌊1/αi⌋. For example, the binary function of

2 The 1 of 1-recognizable emphasizes that this holds for one Brun step

15

Fig. 7 is 1-recognizable, with (a, i) = (2, 2). We will later examine the problem
of non-1-recognizable binary functions.

In all what follows, if B is a 1-recognizable binary function, then a and i will
implicitly stand for integers a and i appearing in Def. 8.

Note that 1-recognizability and local planarity are independent notions, as
illustrated by Fig. 8. The “good” case is the one of a locally planar and 1-
recognizable binary function: we thus know that we must perform a Brun step
using the dual map E∗

1(β
−1
a,i). We focus on this case in the next section.

Fig. 8. A binary function having a closed (1, 3)-run of size 1 and a (1, 3)-run of size
3 is not locally planar, although it can be 1-recognizable (left, with (a, i) = (1, 2)).
Conversely, a locally planar binary function can be not 1-recognizable (right: size
of runs of stepped planes containing this binary function can range in {2, 3, 4}).

5.3 Brun step and boundary problems

Let B ∈ Bd+1 be a locally planar 1-recognizable binary function. The previous
section shows that runs give integers a and i such that if B is a subset of a
stepped plane of normal vector (1, ~α), then E∗

1(β
−1
a,i) maps this stepped plane

onto a stepped plane of normal vector (1, T (~α)). However, we would like to
apply E∗

1(β
−1
a,i) on B, not on some hypothetical stepped plane which would

contain B. In other words, we would like to ensure:

0 ≤ B ≤ P(1,~α),ρ ⇒ 0 ≤ E∗
1(β

−1
a,i)(B) ≤ P(1,T (~α)),ρ/||~α||∞. (4)

Indeed, assuming that E∗
1(β

−1
a,i)(B) is 1-recognizable, we could iterate this up

to recognize a planar binary function or to get a not locally planar binary
function. But β−1

a,i is not positive (thus not a substitution), since one computes:

β−1
a,i (1) = (i+ 1), β−1

a,i (i+ 1) = (i+ 1)−a· 1, ∀j /∈ {1, i+ 1}, β−1
a,i (j) = j.

Hence, we cannot rely on the end of Sec. 2 to ensure that (4) holds.

Actually, (4) fails because of boundary problems. Indeed, E∗
1(β

−1
a,i) maps each

face of B to a sum of weighted faces (recall Def. 3). Roughly speaking, when
B is an entire stepped plane, images of faces are sums which add up or cancel
so that we finally get a stepped plane (Th. 1). But if B is smaller, these

16

additions/cancellations can be incomplete, so that “artifacts” will remain near
boundaries.

The idea is to avoid these boundary problems by slightly modifying B. More
precisely, let us associate with any binary function B the set of its admissible
parameters P (B):

P (B) = {(~α, ρ) ∈ [0, 1]d\{~0} ×R | B ≤ P(1,~α),ρ}.

This set turns out to be a convex set of Rd+1, empty if B is not planar.
Moreover, it is open if B is a subset of a rational stepped plane; in particular,
this is the case if B is planar and finite. Let us stress that recognizing B or
any binary function of P (B) is strictly equivalent. In particular, we would be
especially interested in finding a binary function in P (B) satisfying (4). The
end of this section explains how this can be done.

Let us define three transformation rules acting over binary functions (Fig. 9):

Definition 9 Let a ∈ N∗ and i ∈ {1, . . . , d}. The rule φa,i left-extends any
right-closed and left-open (1, i+1)-run into a run of size a; the rule ψa,i right-
closes any right-open (1, i+ 1)-run of size greater than a; the rule χi removes
any left-closed and right-open (1, i+ 1)-run.

χ
2

ψ
2,2

φ
2,2

Fig. 9. Definition of transformation rules φa,i, ψa,i and χi relies on runs.

Fig. 10 shows how the locally planar 1-recognizable binary function of Fig. 7
is transformed by the three above transformation rules.

φ
2,2

ψ
2,2

χ
2

Fig. 10. Successive applications of rules φa,i, ψa,i and χi in the (a, i) = (2, 2) case.
Leftmost and rightmost binary functions have the same admissible parameters
(Prop. 4, below), with the latter satisfying (4) (Prop. 5, below).

Proposition 4 Let B ∈ Bd+1 be a 1-recognizable binary function. Let B′ be
the binary function obtained applying φa,i, ψa,i and χi on B. Then, P (B) =
P (B′).

Proof. Suppose that there is a stepped plane P such that B ≤ P. Thus, any
left-open and right-closed (1, i+ 1)-run of B is lesser than or equal to a closed
(1, i+1)-run of P. Since such a run has size at least a, this ensures that φa,i(B)

17

is still lesser than or equal to P. Conversely, if φa,i(B) is lesser than or equal
to P, then B also since B ≤ φa,i(B). This shows that B ≤ P if and only if
φa,i(B) ≤ P. One similarly proceeds for ψa,i and χi, so that, finally, B ≤ P if
and only if B′ ≤ P. This proves P (B) = P (B′). ⊓⊔

Proposition 5 Let B ∈ Bd+1 be a 1-recognizable binary function. Let B′ be
the binary function obtained applying φa,i, ψa,i and χi on B. If B′ does not
have open (1, i+ 1)-runs, then (4) holds, that is:

0 ≤ B′ ≤ P(1,~α),ρ ⇒ 0 ≤ E∗
1(β

−1
a,i)(B

′) ≤ P(1,T (~α)),ρ/||~α||∞.

Proof. Assume that B′ does not have open (1, i + 1)-run. In this case, one
checks that B′ can be uniquely written as the image by E∗

1(βa,i) of a binary
function, say B′′ (rules φa,i, ψa,i and χi have been specially defined for). One
also checks that B′ is 1-recognizable, as well as B. In particular, E∗

1(β
−1
a,i)(B

′)
is a binary function. Now, assume that there is a stepped plane P such that
B′ ≤ P and E∗

1(β
−1
a,i)(P) ≥ 0. Let us introduce the binary function C = P−B′.

Since both P and B′ are images by E∗
1(βa,i) of binary functions, it is also the

case for C; say C = E∗
1(βa,i)(C

′), for some binary function C′. Hence, applying
E∗

1(β
−1
a,i) on P yields:

E∗
1(β

−1
a,i)(P) = E∗

1(β
−1
a,i)(B

′ + C) = E∗
1(β

−1
a,i)(B

′) + C′ ≥ E∗
1(β

−1
a,i)(B

′) = B′′ ≥ 0.

Thus, we shown that one has, for any stepped plane P:

0 ≤ B′ ≤ P ⇒ 0 ≤ E∗
1(β

−1
a,i)(B

′) ≤ E∗
1(β

−1
a,i)(P).

Conversely, assume that 0 ≤ E∗
1(β

−1
a,i)(B

′) ≤ E∗
1(β

−1
a,i)(P) for some stepped

plane P. Note that the set of positive functions of Fd+1 is stable under dual
maps of substitutions. Thus, since βa,i is a substitution, applying E∗

1(βa,i)
yields 0 ≤ B′ ≤ P. This concludes the proof. ⊓⊔

Fig. 11 illustrates Prop. 5.

βE ()1 2,2

−1*

Fig. 11. Once transformation rules have been applied on a 1-recognizable binary
function, the suitable dual map E∗

1(β−1
a,i) can be used to perform a Brun step.

18

5.4 A hybrid algorithm

According to what precedes, it remains to address two problems related to
iterating Brun steps:

(1) what is to be done when getting a non-1-recognizable binary function?
(2) what is to be done with open runs (recall hypothesis of Prop. 5)?

For the first problem, we rely on a generic recognition algorithm – here
called XReco – which computes the admissible parameters of the first non-
1-recognizable binary function we get (hence the term hybrid). For example,
XReco can be a preimage algorithm, as described in [11]. Of course, if no Brun
step is performed, then our algorithm is nothing but XReco itself. However,
it is expected that non-1-recognizable binary functions are often small, since
the bigger they are, the more information (runs) they contain. Thus, XReco
would play a little role. But further experiments have to been carried out to
make this point clearer. In particular, difficulties arise from the fact that this
process heavily depends on the way initial binary functions are chosen.
For the second problem, a solution consists in removing (and storing) open
runs when computing admissible parameters, and then checking how they
modify these parameters (if they do).
This leads to the following algorithm, where B′

a,i is the (d+ 2)× (d+ 2) block
matrix whose first block is Ba,i and the second the 1× 1 identity matrix:

HybridBrunReco(B)

1. n ← 0;

2. B0 ← B;

3. while Bn locally planar and 1-recognizable do

4. read (a, i) on Bn;

5. (an, in) ← (a, i);

6. compute B′
n;

7. Ln ← open runs of B′
n;

8. Bn+1 ← E∗
1(β

−1
an,in)(B′

n − Ln);

9. n ← n + 1;

10. end while;

11. Pn ← XReco(Bn);

12. for k = n− 1 downto k=0 do

13. Pk ← B′
ak,ik

Pk+1;

14. Pk ← Pk ∩ XReco(Lk);

15. end for;

16. return P0;

19

Lines 1-10 correspond to iterated Brun steps (“Brun stage” of the algorithm),
while lines 11 and 12-15 respectively handle the first and the second of the
above mentioned problems (“Correction stage” of the algorithm – let us stress
that the term ”correction” is here informal).

We are now in a position to easily prove the correction of this algorithm:

Theorem 3 If there are finitely many Brun steps, then HybridBrunReco re-
turns the set of admissible parameters of the binary function in input.

Proof. We prove it by induction on the number of Brun steps (that is, the
value of n at line 11 of the pseudo-code). If n = 0, admissible parameters are
computed by XReco. Assume that the result holds for some n. One has:

((1, ~α), ρ) ∈ P (B0)⇔ 0 ≤ B0 ≤ P(1,~α),ρ

⇔ 0 ≤ B′
0 ≤ P(1,~α),ρ

⇔ 0 ≤ B′
0 − L0 ≤ P(1,~α),ρ and 0 ≤ L0 ≤ P(1,~α),ρ

⇔ 0 ≤ B1 ≤ PB−1

a0,i0
(1,~α),ρ and ((1, ~α), ρ) ∈ XReco(L0)

⇔ (B−1
a0,i0(1, ~α), ρ) ∈ P (B1) and ((1, ~α), ρ) ∈ XReco(L0)

One passes from first to second line by Prop. 4, and from third to fourth line
by Prop. 5, applying E∗

1(β
−1
a0,i0). So, finally:

P (B0) = B′
a0,i0P (B1) ∩ XReco(L0).

The claim follows by induction. ⊓⊔

Let us now prove that there are finitely many Brun steps. It is not hard to
show that, at each step, the size of the considered binary function decreases.
This bounds the number of Brun steps by the size of the initial binary function
(that is, the one given in input). However, assuming that the initial binary
function is not too sparse, we can achieve a better bound. We say that a binary
function fits into a bounding box of size D if the distance between any two
vertices of its geometric representation is lesser than D. One shows:

Proposition 6 If the initial binary function B0 ∈ Bd+1 fits in a bounding box
of side D, then either it is not planar, or the algorithms stops after lesser than
log d+2

d+1

((d+ 1)Dd) Brun steps.

Proof. Assume that B fits in a bounding box of side D and that it is a subset of
a stepped plane of normal vector (1, ~α) ∈ Rd+1. The key point consists in prov-
ing that entries of ~α can be assumed to be sufficiently small integers. First, note
that Def. 2 yields that any vertex ~x of B satisfies: ρ ≤ 〈~x|(1, ~α)〉 < ρ+||(1, ~α)||1,
that is, are between hyperplanes 〈~x|(1, ~α)〉 = ρ and 〈~x|(1, ~α)〉 = ρ + ||~α||1.

20

Then, let us call leaning point a vertex ~x on the lower hyperplane, that is,
such that ρ = 〈~x|(1, ~α)〉. If, for i ∈ {2, . . . , d+1}, B admits two leaning points
~x and ~y such that xi 6= yi, then one computes: αi−1 = (x1− y1)/(xi− yi), that
is, αi−1 is quotient of integer lesser than or equal to D. Otherwise, one checks
that one can slightly modify ~α and ρ in order to have two leaning points:
geometrically, it suffices to “slide upwards” and “twist” the two hyperplanes
containing vertices of B, until two vertices belong to the lower hyperplane (see
Fig. 12). By applying this for any i in {2, . . . , d+ 1}, we obtain for ~α a vector
whose entries are quotient of integer lesser than or equal to D. The result then
follows from Prop. 1. ⊓⊔

Fig. 12. Consider a subset of a stepped hyperplane of parameters (1, ~α) and ρ (left,
in bold black). Its vertices lie between two euclidean hyperplanes (left, in blue). One
can always slightly modify parameters (that is, slide or twist blue hyperplanes) in
order to have two leaning points (right, highlighted points). If the subset fits into
a bounding box of size D, then entries of the modified parameter ~α are quotient of
integer lesser than or equal to D (here, D = 7 and α = 3/2).

Thus, we can slightly modify HybridBrunReco in order to stop if more than
logD Brun steps are performed (in such a case, B0 is not a stepped plane, that
is, the set of admissible parameters is empty). In particular, if the initial binary
function B0 fits in a bounding box whose size is polynomial in the size of B0

(that is, B0 is “not too sparse”), then Prop. 6 shows that one can assume that
the number of Brun steps is logarithmic in the size of B0. Moreover, since each
Brun step can be performed in linear time in the size of Bn (which decreases),
the complexity of the “Brun stage” (lines 1-10) is quasi-linear in the size of
the input.

6 Conclusion

To conclude, let us briefly recall main results as well as drawbacks of this
paper. Concerning digital plane generation, we described a way to easily com-
pute suitable finite subsets of (rational) stepped planes that allow to generate
it by translated copies. However, shapes of these subsets are still not charac-
terized. Concerning digital plane recognition, we provided an original hybrid
algorithm, in the spirit of the theoretical results that we obtained in [7]. The

21

”Brun stage” of this algorithm (which is its original part) has quasi-linear com-
plexity, while the complexity of the ”correction stage” remains to be studied,
in particular from a practical viewpoint (since this stage is expected to have
much lesser importance than the Brun one). Note also that this recognition al-
gorithm is rather complicated (because of dual maps) and not robust: stepped
plane with small perturbations are not recognized as stepped planes. Thus, it
is worth to ask whether a simple and robust algorithm could be found, which
would rely on the main idea of the one here described (that is, local recognition
and iterated encodings).

Acknowledgments. I would like to thank Valérie Berthé, Bruno Gaujal and
Jacques-Olivier Lachaud for a careful reading of a preliminary version of this
paper, as well as Rémy Malgouyres for a suggestion which led to Prop. 6. I
would also like to thank referees of both [13] and this paper, for their useful
comments.

References

[1] É. Andres, Le plan discret, in Proc. of Discrete Geometry for Computer
Imagery DGCI’93 (1993), pp. 45–61.

[2] É. Andres, R. Acharya, C. Sibata, Discrete analytical hyperplanes, Graphical
Models and Image Processing 59 (1997), pp. 302–309.

[3] P. Arnoux, V. Berthé, Th. Fernique, D. Jamet, Generalized substitutions,

functional stepped surfaces and flips, Theor. Comput. Sci. 380, pp. 251–267.

[4] P. Arnoux, S. Ito, Pisot substitutions and Rauzy fractals, Bull. Bel. Math. Soc.
Simon Stevin 8 (2001), pp. 181–207.

[5] P. Arnoux, S. Ito, Y. Sano, Higher dimensional extensions of substitutions and

their dual maps, J. Annal. Math. 83 (2001), pp. 183–206.

[6] J. Berstel, Tracé de droites, fractions continues et morphismes itérés, in Mots,
Hermès, 1990, pp. 298-309.

[7] V. Berthé, Th. Fernique, Brun expansions of stepped surfaces, preprint,
available at http://www.lif.univ-mrs.fr/~fernique/info/bf.pdf.gz

[8] A. J. Brentjes, Multi-dimensional continued fraction algorithms, Mathematical
Centre Tracts 145, Matematisch Centrum, Amsterdam, 1981.

[9] V. E. Brimkov, R. P. Barneva, Plane digitization and related combinatorial

problems, Discrete Applied Mathematics 147 (2005), pp. 169–186.

[10] V. E. Brimkov, D. Cœurjolly, R. Klette Digital planarity–a review, Discrete
Applied mathematics 155 (2007), pp. 468–495.

22

[11] D. Cœurjolly, V. E. Brimkov, Computational aspects of Digital plane and

hyperplane recognition, in Proc. of International Workshop on Combinatorial
Image Analysis IWCIA’06, LNCS 4040 (2006), pp. 543–562.

[12] H. Ei, Some properties of invertible substitutions of rank d and higher

dimensional substitutions, Osaka Journal of Mathematics 40 (2003), pp. 543–
562.

[13] Th. Fernique, Generation and recognition of digital planes using multi-

dimensional continued fractions, in Proc. of Discrete Geometry for Computer
Imagery DGCI’08 (2008), LNCS 4992 (2008), pp. 33–44.

[14] Th. Fernique, Pavages, fractions continues et géométrie discrète, Ph. D. thesis,
Univ. Montpellier 2, 2007.

[15] J. Françon, Sur la topologie d’un plan arithmétique, Theor. Comput. Sci. 156

(1996), pp. 159–176.

[16] R. Klette, A. Rosenfeld, Digital straightness–a review, Elec. Notes in Theoret.
Comput. Sci. 46 (2001).

[17] J.-P. Réveilles, Calcul en nombres entiers et algorithmique, Ph. D Thesis, Univ.
Louis Pasteur, Strasbourg (1991).

[18] F. Schweiger, Multi-dimensional continued fractions, Oxford Science
Publications, Oxford Univ. Press, Oxford (2000).

[19] A. Troesch, Interprétation géométrique de l’algorithme d’Euclide et

reconnaissance de segments, Theor. Comput. Sci. 115 (1993), pp. 291–320.

[20] L. Vuillon, Combinatoire des motifs d’une suite sturmienne bidimensionelle,
Theoret. Comput. Sci. 209 (1998), pp. 261–285.

[21] L.-D. Wu, On the chain code of a line, IEEE Transactions on Pattern Analysis
and Machine Intelligence 4 (1982), pp. 359–368.

23

