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Characterizations of Flip-Accessibility

for Domino Tilings of the Whole Plane

Olivier Bodini, Thomas Fernique, and Éric Rémila

Abstract. It is known that any two domino tilings of a polygon are flip-accessible, i.e., linked by a finite
sequence of local transformations, called flips. This paper considers flip-accessibility for domino tilings of
the whole plane, asking whether two of them are linked by a possibly infinite sequence of flips. The answer
turning out to depend on tilings, we provide three equivalent characterizations of flip-accessibility.

Résumé. Étant donnés deux pavages par dominos d’un mme polygone, on sait qu’on peut toujours passer
de l’un l’autre en effectuant un nombre fini de transformations locales, appelées flips ; ces pavages sont dits
flip-accessibles. Dans ce papier, nous étendons cette notion de flip-accessibilité aux pavages par dominos du
plan entier, en s’autorisant cette fois effectuer un nombre infini de flips. Dans ce cas, la flip-accessibilité
dépend des pavages considérés et nous en donnons trois caractérisations équivalentes.

Introduction

In this paper, we study domino tilings. These tilings are of particular importance in theoretical physics,
where a domino is seen as a dimer, that is a diatomic molecule (as the molecule of dihydrogen) and each
tiling is a possible state of a solid, or a fluid. Flips are local transformations involving two tiles covering
a 2×2 square (see Fig. 1). They induce a dynamic on tilings that plays a central role in domino tilings theory.

Figure 1. Two domino tilings differing from a flip.

Flips can be directed using the notion of height function, introduced by Thurston [13]. Then, given a
hole-free bounded domain D, consider the directed graph whose vertices corresponds to tilings of D, with
an edge from v to v′ if the tiling v′ can be obtained from v by performing an upwards flips: a central result
is that this graph is the covering relation of a distributive lattice (see, for example, [4, 12], and also [6] for
general lattice theory). Many applications rely on this result: tiling algorithm, computation of the distance
(in number of flips) between tilings, random sampling [9] or listing [8, 7]. Some extensions for domains with
holes can be found in [2, 10].

In particular, the previous result yields that, given any two domino tilings of a same given polygon, one
can be transformed into the other one by performing flips: they are said to be flip-accessible. However, this
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no more holds, in general, for domino tilings of the whole plane, as considered here. Thus, we would like
to characterize pairs of domino tilings of the plane which can be linked by flips. Moreover, we would like
to allow infinitely many flips to be performed, for linking two such tilings, since it appears more natural in
this new context. It is worth stressing that this relaxation changes the nature of flip-accessibility since, for
example, we will see that it is no more a symmetric relation.

The main results of this paper consist in three equivalent characterizations of flip-accessibility for these
domino tilings of the whole plane. Since we strongly rely on the background used for finite domino tilings,
we first briefly recall it in Section 1, where it is also extended to the infinite case, in particular concerning the
notion of flip-accessibility. This allows to state our characterizations in the three following sections: the first
one (Section 2) uses special domino tilings, called pyramids ; the second one (Section 3) reduces the problem
to a set of one-dimensional problems of flip-accessibility; the third one (Section 4) relies on the new notion
of shadows of domino tilings. Let us note that a similar study can be done for lozenge tilings (see [1, 3])
and for eulerian orientations of the grid.

1. General settings

1.1. Domino tilings and height functions. Here, we recall some basic settings which hold for both
finite or infinite domino tilings. A cell is a unit square whose vertices belong to this grid Z

2. A Domino tiling
T can then be defined as an involutive function over a set of cells, such that a cell and its image always share
a unit segment. In other words, each domino covers exactly two cells, and each cell is covered by exactly one
domino. Without loss of generality, we consider only connected set of cells.

Given a set of cells, we assume that cells are colored in black and white as a chessboard, and we associate
with this set a directed graph G as follows (see Fig. 2, left):

• vertices correspond to vertices of cells;
• edges correspond to boundary segments of cells;
• an edge (v, v′) is directed from v to v′ so that an ant moving from v to v′ has a white cell on its

left and a black cell on its right.

This allows to associate, with a domino tiling T of this set of cells, a function hT defined over vertices of G
as follows (see Fig. 2, right):

• we choose a vertex v0 and we arbitrarily set hT (v0) ∈ R;
• for each edge (v, v′), one has hT (v′) = hT (v)− 3 if (v, v′) belongs to two cells covered by a domino

(in other words, this edge cuts a domino), hT (v′) = hT (v) + 1 otherwise.

The consistency of such a definition is easily checked.
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Figure 2. A set of chessboard-like colored cells and the directed edges of the associated
graph (left). A domino tiling T of this set of cells and a corresponding function hT (right).

Conversely, to any function h over the vertices of G such that h(v′)−h(v) ∈ {1,−3} for any edge (v, v′),
with moreover h(v′) − h(v) = 1 if (v, v′) belongs to only one cell (that is, it is on the boundary of the set of
cell), corresponds a domino tiling. Such function are called height functions : to any height function corre-
sponds a unique domino tiling, and to any domino tiling correspond a family of height functions, identical
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up to a translation (that is, of the form {hc : v → h0(v) + c | c ∈ R}, where h0 is a fixed height func-
tion). Note that domino tilings of the whole plane correspond to height functions defined over the whole Z

2.
Geometrically, one can represent height functions using a three-dimensional viewpoint, as depicted on Fig. 3.

Figure 3. The domino tilings of Fig. 1 (bottom) and a lifted viewpoint, according to height
functions (top). Note that performing a flip changes the height of only one vertex (by ±4).

In order to perform operation over height functions, it is convenient to consider, for each domino tiling,
only a restricted subset of the height functions which correspond to it. More precisely, let us define the
function mod4 from Z

2 to Z/4Z by:

mod4(0, 1) = 3 mod4(1, 1) = 2

mod4(0, 0) = 0 mod4(1, 0) = 1

and, for any (x, y) ∈ Z
2:

mod4(x + 2, y) = mod4(x, y + 2) = mod4(x, y).

We say that a point (v, z) ∈ Z
2 × Z is admissible if z = mod4(v) mod 4. Without loss of generality, we

will consider in all what follows only height functions whose vertices are admissible (or, equivalently, which
contains at least one admissible vertex). This allows to define the following useful operations (see [12]):

Definition 1.1. Let h and h′ be two height functions defined over the same set of cells. Then, max(h, h′)
and min(h, h′) are height functions over this set of cells. They are respectively called the supremum and the
infimum of h and h′, and denoted by h ∨ h′ and h ∧ h′.

These two operations naturally endow height functions over a given set of cells with a structure of dis-
tributive lattice, and will be useful in the following sections. Note that intuitively, following the previous
three-dimensional viewpoint (recall Fig. 3), the height function h ∨ h′ (resp. h ∧ h′) corresponds to the
domino tiling that we would see by looking top-down (resp. bottom-up) height functions h and h′ (both
represented on the same picture); the admissibility restriction then ensures that domino tiles of h and h′

cross only along edges.

1.2. Flip-accessibility. Now, we recall the classic notion of flip-accessibility, and we extend it to the
case of domino tilings of the whole plane. Note that there is only two way to tile a 2×2 square by dominoes:
two vertical dominoes, or two horizontal ones. If v denotes the central vertex of such a square in a domino
tiling, then a flip around v is the operation which exchanges these two local configurations (recall Fig. 1).

Two finite domino tilings are said to be flip-accessible if one can transform the first one into the second
one by performing a finite number of flips. It is known that any two finite domino tilings are flip-accessible
(see e.g. []). Here, we are interested in the case of domino tilings of the whole plane. One cannot expect
that a finite number of flips always suffices to link such tilings, since they can be different arbitrarily far
from the origin. Thus, it is natural to consider possibly infinite sequence of flips. For this, we first need to
define a notion of convergence over domino tilings of the whole plane. Let us define the distance d(T , T ′)
between two tilings T and T ′ by:

d(T , T ′) = inf{2−r | T|B(0,r) = T ′
|B(0,r)},

where T|B(0,r) denotes the set of dominoes which belong to the ball of center 0 and radius r. This allows us
to extend the previous definition of flip-accessibility:
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Definition 1.2. Let T and T ′ be two domino tilings of the whole plane. If there is a sequence (Tn)n≥0

of tilings such that T0 = T , d(Tn, T ′) tends toward 0, and either Tn+1 is obtained from Tn by performing a
flip, or Tn+1 = Tn, then one says that T ′ is flip-accessible from T , and one writes:

T
flips
−→ T ′.

It is worth noting that this notion of flip-accessibility changes the situation. Indeed, domino tilings of
the whole plane turn out to be not always flip-accessible. Moreover, flip-accessibility is no more a symmetric
relation, i.e., there is pairs of tilings such that the second one is flip-accessible from the first one, but not
conversely. Fig. 4 illustrates this. Thus, we are interested in characterizations of pairs of domino tilings of
the whole plane which are flip-accessible.

Figure 4. Some domino tilings of the whole plane which differ on a thin infinite diagonal
(grey dominoes) and agree everywhere else (white dominoes, arranged as brickwalls up to
infinity). Consider the central tiling: there is a local configuration of 3 similar dominoes
which tiles a 2 × 3 rectangle (a “bubble”). This allows to perform two flips: the lower
one leads to the tiling at its left (the bubble moved downward) and the upper one leads
to the tiling at its right (the bubble moved upward). This can be infinitely repeated, up
to obtain one of the extremal tilings (the bubble is rejected to infinity, either upward or
downward), on which no more flip can be performed. Thus, the three central tilings are
mutually flip-accessible, while the leftmost and rightmost tilings are sort of dead ends.

Last, note that it is straightforward to restate flip-accessibility for height functions corresponding to
domino tilings and, clearly, flip-accessibility of height functions implies flip-accessibility of the corresponding
domino tilings (with the converse being true only up to a translation). This is the viewpoint we use in the
three following sections for characterizing flip-accessibility.

2. Characterization by pyramids

In this section, we give a first characterization of flip-accessibility for domino tilings of the whole plane.
Let us first introduce, using Def. 1.1, specific domino tilings of the whole plane (see Fig. 5):

Definition 2.1. Let (v, z) be an admissible point of Z
2 × Z. The pyramid ĥv,z (resp. ȟv,z) is the

infimum (resp. supremum) of all the height functions over Z
2 that are equal to z in v:

ĥv,z =
∧

{h ∈ H | h(v) = z} and ȟv,z =
∨

{h ∈ H | h(v) = z}.
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We now give an explicit formula for the value of ĥv,z (resp. ȟv,z) and, in the same time prove its
existence. For each pair (v, v′) of vertices, there exists a directed path of G from v to v′. The length of a
shortest path from v to v′ is denoted by l+(v, v′) .

Proposition 2.1. Let (v0, z) be a an admissible point of Z
2 × Z. For each v of Z

2, we have,

ȟv0,z(v) = z + l+(v0, v)

and
ĥv0,z(v) = z − l+(v, v0)

Proof. For each stepped surface h such that h(v0) = z, for each vertex v, for each directed path
(v0, v1, ..., vp) from v0 to v, we have

h(v) − h(v0) =
∑

0≤i<p

(h(vi+1) − h(vi)) ≤
∑

0≤i<p

1 = p

Thus, taking a shortest path, we have h(v)− z ≤ l+(v0, v), which gives: h(v) ≤ z + l+(v0, v). Especially,

ȟv0,z(v) ≤ z + l+(v0, v).
On the other hand, for each pair (v, v′) of neighbor vertices in the directed graph G, we have: l+(v0, v

′) ≤
l+(v0, v) + 1, since a directed path from v0 to v′ can be obtained adding one edge to a directed path from
v0 to v. One the same way, we have: l+(v0, v) ≤ l+(v0, v

′) + 3 since a directed path from v0 to v can be
obtained adding three steps to a directed path from v0 to v′. Thus we obtain :

l+(v0, v) − 3 ≤ l+(v0, v
′) ≤ l+(v0, v) + 1

Morover, remark that the length of any directed cycle of G is 0 modulo 4. Thus the lengths of two
given paths from v0 to v are equal modulo 4. This gives us that l+(v0, v

′) = l+(v0, v) + 1 modulo 4. Thus
either l+(v0, v

′) = l+(v0, v) + 1 or l+(v0, v
′) = l+(v0, v) − 3, which gives the fact that the given expressions

really are stepped surfaces, according to the characterization given in 1.1. Thus, by definition, we have
ȟv0,z(v) ≥ z + l+(v0, v), which gives the result for ȟv0,z .

The stepped surface ĥv0,z is treated on a similar way. �

Figure 5. Patches of the pyramids ĥv,z (left) and ȟv,z (right): domino tiling viewpoint
(bottom) and lifted viewpoint (top). Note that the height is extremal in v in both cases.

Note that, for any height function h such that h(v) = z, this definition yields ĥv,z ≤ h ≤ ȟv,z . Let us
now consider a height function h and an admissible point (v, z). If h(v) ≤ z, we define the following subset
of Z

2:
Sv,z,h = {u ∈ Z

2 | ĥv,z(u) ≥ h(u)}.

Similarly, if h(v) > z, we define:

Sv,z,h = {u ∈ Z
2 | ȟv,z(u) ≤ h(u)}.

Following the three-dimensional viewpoint described in the previous section, one can see the set Sv,z,h (or
more precisely the set {(u, h(u)) | u ∈ Sv,z,h}) as the vertices of the dominoes of h that are below the pyramid

ĥv,z (or above the pyramid ȟv,z, according to h(v) ≤ z or h(v) > z). Intuitively, this is the minimal set of
vertices whose height has to be changed for transforming h into a height function which is equal to z in v.
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Fig. 6 (left) illustrates this.

h’(v)

h(v)

h’(v)

h(v)

Figure 6. Three-dimensional viewpoint of a height function h, with the shaded dominoes
being those which have vertices in the set Sv,h′(v),h(v) (left). Here, there is a finite number
of shaded dominoes: any other tiling over the same set of cells can thus be obtained by
performing a finite number of flips. In particular, this holds for the restriction of the

pyramid ĥv,h′(v) to Sv,h′(v),h(v) (the shaded dominoes, right). This transforms h into a
height function that is equal to h′ in v.

These sets are the main ingredients of the characterization of flip-accessibility provided in this section.
Before we formally state a theorem, let us sketch leading ideas. Let h and h′ be two height functions over
Z

2, and let v ∈ Z
2. Without loss of generality, suppose h′(v) ≥ h(v). Suppose now that the set Sv,h′(v),h

is finite. This yields two finite domino tilings over the same set of cells, namely the tilings corresponding

to the restrictions of h and ĥv,h′(v) to Sv,h′(v),h. In particular, the first one can be transformed into the
second one by performing a finite sequence of flips (according to a classic result recalled in Sec. 1), and this

turns out to transform h into h ∨ ĥv,h′(v) (see Fig. 6, right). Thus, by performing a finite number of flips,

we can transform h into a height function equals to h′(v) in v (namely h ∨ ĥv,h′(v)). If we can do this for

any v ∈ Z
2, it is not hard to lay end to end the obtained finite sequences of flips, thus defining a (possibly

infinite) sequence of flips that links h to h′. This is the keypoint of the following theorem:

Theorem 2.2. Let h and h′ be two height functions over Z
2. Then, h′ is flip-accessible from h if and

only if, for any v ∈ Z
2, the set Sv,h′(v),h is finite:

h
flips
−→ h′ ⇔ ∀v ∈ Z

2, Card(Sv,h′(v),h) < ∞.

Proof. First assume that h′ is accessible from h by a finite or infinite sequence (h0, h1, ..., ). Let v
be a vertex such that h′(v) < h(v). There exists an integer p such that hp(v) = h′(v), which yields that

hp ≤ ȟv,h′(v). Thus, for each v′ of Sv,h′(v),h, we have hp(v
′) ≤ ȟv,h′(v), which gives hp(v

′) ≤ h′(v) < h(v′).
In other words, for each v′ of Sv,h′(v),h, the finite sequence (h0(v

′), h1(v
′), ..., hp(v

′)) is not constant. Thus,
there exists a stepped surface hi, with i < p such that one passes from hi to hi+1 by a flip in v′. Thus, the
number of elements of Sv,h′(v),h is at most p, which gives the condition.

The h′(v) > h(v) case is similar, and Sv,h′(v),h is empty when h′(v) = h(v).

Conversely, assume that, for any v ∈ Z
2, Sv,h′(v),h is finite. We use a fixed numbering (vj)j∈N∗ of vertices

of Z
2 (i.e., for each vertex v of Z

2, there is a unique positive integer j such that vj = v′). We recursively
define a sequence of stepped surfaces by:

• h = h0,

• hi+1 = hi ∧ ȟvi+1,h′(vi+1) if h′(vi+1) ≤ h(vi+1), and hi+1 = hi ∨ ĥvi+1,h′(vi+1) if h′(vi+1) ≥ h(vi+1).

For each non negative integer i, we claim that the set Svi+1,h′(vi+1),hi
is finite: for initialization, this is

true for i = 0, by hypothesis. Now, assume that this fact is true for any k such that 0 ≤ k < i, for a fixed
i > 0. let v ∈ Svi+1,h′(vi+1),hi

.

• If hi(v) = h(v), then v ∈ Svi+1,h′(vi+1),h.
• If hi(v) 6= h(v), then there exists an integer k, with 0 ≤ k < i, such that hk(v) = h(v) and

hk+1(v) 6= h(v). Thus v is element of Svk+1,h′(vk+1),hk
.
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Therefore we have:

Svi+1,h′(vi+1),hi
⊆ ∪i−1

k=0Svk+1,h′(vk+1),hk
∪ Svi+1,h′(vi+1),h

which is a finite union of finite sets, by induction hypothesis.

Since Svi+1,h′(vi+1),hi
is finite, hi and hi+1 only differ on this finite set, and there is a finite domain Di

such that the restrictions hi|Di
and hi+1|Di

both induce domino tilings of Di and hi(v
′) = hi+1(v

′) for each
v′ ∈ Z

2 \VDi
. One then can pass from hi to hi+1 by a finite sequence of monotonic flips (by flip-accessibility

of finite domino tilings). These finite sequences can be concatenated: precisely, there exists an infinite se-
quence (h′

k)k∈N such that h0 = h′
0 the sequence (hi)i∈N is a subsequence of (h′

k)k∈N, and if hi = h′
k and

hi+1 = h′
k′ , then the finite sequence (h′

k, h′
k+1, ..., h

′
k′) is monotonic.

For each vertex v of Z
2, we study the sequence of values: |h′

j(v)−h′(v)|j∈N. We claim that this sequence

is non-increasing. It suffices to prove it for each finite subsequence |h′
j(v) − h′(v)|k≤j≤k′ , with hi = h′

k and
hi+1 = h′

k′ . Assume (without loss of generality) that h′(vi+1) ≤ hi(vi+1). The sequence of flips to pass from
hi to hi+1 is formed by downward flips (i.e., which decrease heights). If v is not element of S(vi+1,h′(vi+1),hi),
then hi(v) = hi+1(v). Thus the sequence |h′

j(v) − h′(v)|k≤j≤k′ is necessarily constant. For each vertex v of
S(vi+1,h′(vi+1),hi), we have h′(v) ≤ hmax(vi+1,h′(vi+1)(v) < hi(v). Thus each downwards flip done around v
used to pass from hi(v) to hi+1(v) reduces the value |h′

j(v)−h′(v)| (flips done around another vertex do not

change this quantity). Thus the sequence |h′
j(v) − h′(v)|k≤j≤k′ is non-increasing.

On the other hand, for each integer i of N, we have hi(vi) = h′(vi). Thus, since the sequence |h′
j(vi) −

h′(vi)|j∈N is non increasing, we have h′
j(vi) = h′(vi), for j sufficiently large. To conclude the proof, take

a finite domain D, let iD be the largest integer such that viD
is in VD, and kD be the integer such that

h′
kD

= hiD
. Clearly, for k ≥ kD, we have h′

k|D = h′|D, which gives the result. �

3. Characterization by reduction of dimension

3.1. Bicolor unidimensional tilings. Our next characterization uses unidimensional tilings. We first
need to define them and give main properties now. Informally, a bicolor tiling is a partition of R into unitary
colored (red or green) segments (the colored tiles), with the endpoints of each segment being integers. This
can be formalized as follows: a bicolor tiling is a mapping f from Z to the set {G, R}. Hence, f(i) is the
color of the segment [i; i + 1].

A flip is naturally defined as the inversion of colors of two consecutive segments: if f and f ′ are bi-
colored tilings such that f = f ′ except for two consecutive values, i0 and i0 + 1 such that f(i0) = G and
f(i0 + 1) = R, then we say that one passes from f to f ′ by a downward flip around i0 + 1. This yields a
notion of flip-accessibility for stepped lines, similarly to Def. 1.2.

Given a bicolor tiling f , stepped line associated with f is a function h from Z to Z such that:

• if f(i) = G, then h(i + 1) − h(i) = 2;
• if f(i) = R, then h(i + 1) − h(i) = −2.

As we will see later, the value 2 (instead of 1, which seems more natural) is chosen for consistence with
domino tilings. Conversely , a function h from Z to Z such that h(i + 1) − h(i) ∈ {2,−2} induces a unique
bicolored tiling. Bicolored tilings and stepped lines can be seen as unidimensional analogue of, respectively,
domino tilings of the whole plane and height functions over Z

2. Note that a flip around j ∈ Z only changes
the value of the stepped line in j.

Definition 3.1. Let (i0, z) be a pair of Z × Z. We define the stepped lines ȟi0,z and ĥi0,z by:

ȟi0,z(i) = z + 2|i − i0| and ĥi0,z(i) = z − 2|i − i0|.

It is not hard to see that, if h is a stepped line such that h(i0) = z, then one has ĥi0,z ≤ h ≤ ȟi0,z. Let
us now consider a stepped line h and two integers i, z ∈ Z such that h(i) = z mod 4. We define the set
S(i,z,h) and the stepped line hi,z,h as follows:
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• if z ≤ h(i), then Si,z,h = {i′|i′ ∈ Z, ȟi,z(i
′) < h(i′)} and hi,z,h = ȟi,z ∧ h;

• if z > h(i), then Si,z,h = {i′|i′ ∈ Z, ĥi,z(i
′) > h(i′)} and hi,z,h = ĥi,z ∨ h.

Let us now define shadows of a stepped line. Given a vertex v = (x, y), we call first shadow of v (resp.
second shadow of v) the s1(v) = {v′ ∈ Z

2 | v′ − v ∈ R(1, 2)} (resp. s2(v) = {v′ ∈ Z
2 | v′ − v ∈ R(1,−2)}).

Then, the first shadow (resp. second shadow) of a stepped line h is the set s1(h) = {s1(i, h(i)), i ∈ Z} (resp.
s2(h) = {s2(i, h(i)), i ∈ Z}).

This allows to characterize flip-accessibility for stepped lines as follows:

Proposition 3.1. Let h and h′ be stepped lines such that h = h′ modulo 4. The following conditions
are equivalent:

• the line h′ is accessible from h;
• for each integer i, the set Si,h′(i),h is finite;
• (shadow inclusion) s1(h

′) ⊂ s1(h) and s2(h
′) ⊂ s2(h).

Proof. (sketch) The proof that the two first items are equivalent is very similar (and easier, because
of the dimension 1) of the proof of Theorem 2.2. The equivalence of the two last items follows by noting
that the set Si,z,h is finite if and only if there exists a pair (j, j′) of Z

2 such that s1(i, z) = s1(j, h(j)) and
s2(i, z) = s2(j

′, h(j′)). �

3.2. Interlaced stepped lines. We now show that a domino tiling can be seen as two interlaced sets
of stepped lines, and we obtain a characterization of flip-accessibility for domino tilings which relies on flip-
accessibility for stepped lines.

Informally, stepped lines are obtained from a height function by following diagonal directions along the
corresponding domino tiling (i.e., vectors (1, 1) and (1,−1)). There are some technical difficulties since the
origin has to be (more or less) arbitrarily chosen.

For each pair (k, i) of Z
2, there exists a unique pair (a, b) of Z

2∪(Z+1/2)2 such that (k, i) = (a+b,−a+b)
(precisely, we have (a, b) = ((k − i)/2, (k + i)/2)). Using the notations of the previous subsection, we state
f(k, i) = (a, b). Note that f is bijective from Z

2 to Z
2 ∪ (Z + 1/2)2. Let h be a height function, and (a, b)

be an element of Z
2 ∪ (Z + 1/2)2. We will especially use the fact that f(k + j, i + j) = (a, b + j) and

f(k + j, i − j) = (a + j, b). We define g(a, b) = h(k, i), with f(k, i) = (a, b).

Let us now introduce the stepped lines we are more particularly interested in:

• for a ∈ Z, let h1,a(b) = g(a, b);
• for a ∈ Z + 1/2, let h1,a(b − 1/2) = g(a, b);
• for b ∈ Z, let h2,b(a) = g(a, b);
• for b ∈ Z + 1/2, let h2,b(a − 1/2) = g(a, b).

It is easily checked that these functions are stepped lines: they are called stepped lines induced by h. Con-
versely, the height function h is characterized by such stepped lines. Fig. 7 illustrates this.

Note that to a downward flip on h around a vertex v = (i, k) such that f(i, k) = (a, b) correspond two
downward flips on the induced stepped lines h1,a and h2,b, respectively around b or b− 1/2 (according to the
parity of (k − i)) and a or a − 1/2.

We are now in a position to state our second characterization:

Theorem 3.2. Let h and h′ be two height functions over Z
2. Then, h′ is flip-accessible from h if and

only if, for each pair (x, a) of {1, 2} × 1
2Z, the stepped line h′

x,a is flip-accessible from hx,a.

Proof. The direct part of the theorem is obvious.
For the converse part, we use the characterization given by Theorem 2.2. Let v = (k, i) be a vertex such

that h′(v) ≤ h(v), and (a, b) such that f(k, i) = (a, b). By hypothesis, h′
1,a is flip-accessible from h1,a. Thus,
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Figure 7. Three-dimensional viewpoint of a height function (top) and associated domino
tiling (bottom). Three stepped lines are represented (top), with the corresponding bicolored
unidimensional tilings (bottom). The other stepped lines are “parallel” to one of those
(according to their form h1,a or h2,b), and there are two stepped lines crossing in the middle
of each cell (recall that two cells form a domino).

there is a positive integer j1 such that:

h′
1,a(b + j1) ≥ h1,a(b + j1) for (a, b) ∈ Z

2,
h′

1,a(b − 1/2 + j1) ≥ h1,a(b − 1/2 + j1) for (a, b) ∈ (Z + 1/2)2.

In both case, this yields g′(a, b) + 2j1 ≥ g(a, b + j1). Then, according to Def. 1.1, we have g(a, b + j1) =
h(k+j1, i+j1) and g′(a, b)+2j1 = h′(k, i)+2j1 = ȟv,h′(v)(k+j1, i+j1). This leads to ȟv,h′(v)(k+j1, i+j1) ≥
h(k + j1, i + j1), that is:

ȟv,h′(v)(v + (j1, j1)) ≥ h(v + (j1, j1)).

Simarly, one shows that there is positive integers j2, j3 and j4 such that:

ȟv,h′(v)(v + (−j2, j2)) ≥ h(v + (−j2, j2));

ȟv,h′(v)(v + (−j3,−j3)) ≥ h(v + (−j3,−j3));

ȟv,h′(v)(v + (j4,−j4)) ≥ h(v + (j4,−j4)).

We then set v1 = v + (j1, j1), v2 = v + (−j2, j2), v3 = v + (−j3,−j3), v4 = v + (j4,−j4), and we define the
following height function:

h′′ =
∧

k=1→4

ȟvk,ȟv,h′(v)(vk).

By Lemma 3.3, stated and proved below, we can deduce from this that h′′ = ȟv,h′(v) except on a finite
domain, thus that the set Sv,h′(v),h′′ is finite. Since h ≤ h′′ (this follows from Def. 1.1), we deduce that
Sv,h′(v),h is finite, and applying Theorem 2.2 then ends the proof. �

Lemma 3.3. Let (v0, z0) = ((x0, y0), z0) be an admissible point and j be a positive integer. For each
vertex v = (x, y) such that x + y ≥ x0 + y0 + 2j, we have: ȟv0,z(v) = ȟv0+(j,j),z+2j(v).

Proof. First remark that the equality of this lemma is equivalent to z + l+(v0, v) = z + 2j + l+(v0 +
(j, j), v). We have l+(v0, v0 + (j, j)) = 2j: there exists a directed path of length 2j and this is a lower bound
since the path necessarily contains at least j upwards steps and j rightwards steps. so we have to prove that
l+(v0, v) = l+(v0, v +(j, j))+ l+(v0 +(j, j), v), i. e. there exists a shortest directed path from v0 to v passing
through (v0 + (j, j)).

If v = (x, y) with x + y > x0 + y0 + 2j, each directed path (and, in particular, a shortest path) from v0

to v passes through a vertex v1 = (x1, y1) such that x1 + y1 = x0 + y0 + 2j.
We claim that

l+(v0, v1) = l+(v0, v0 + (j, j)) + l+(v0 + (j, j), v1)
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This equality proves the result. We have seen that l+(v0, v0 + (j, j)) = 2j. Moreover, we can state
v1 = v0 + (j, j) + (j′,−j′) with j′ ∈ Z. There is no loss of generality to assume j′ positive, up to symmetry.
With the same argument, we have l+(v0 + (j, j), v1) = 2j′.

On the other hand we have l+(v0, v1) = 2(j+j′) since there exists a path from v0 to v1 of length 2(j+j′)
(by concatenation of the previous ones), and each path from v0 to v1 contains at least (j + j′) rightwards
steps, not pairwise consecutive (and the path cannot simultaneously start and finish by a horizontal step,
because mod4(v) − mod4(v0) is even). This proves the equality, and therefore the result. �

4. Characterization by inclusions of shadows

In the previous section, we defined shadows for stepped lines and use it for characterizing flip-accessibility
of stepped lines. Here, we obtaine a similar characterization by extending the notion of shadows to domino
tilings.

Let (v, z) be an element of Z
2 × Z. For u ∈ R

3, the shadow of v(v, z) along u is the set defined by:

pu(v, z) = {(v′, z′) ∈ Z
2 × Z | (v′, z′) − (v, z) ∈ Ru}.

Then, the shadow along u of a height function h is the set pu(h). Here, we are especially interested in the
shadows along the four following vectors:

u1 = (1, 1, 2) u2 = (1, 1,−2) u3 = (1,−1, 2) u4 = (1,−1,−2).

In what follows, we respectively denote by p1(h), p2(h), p3(h) and p4(h) these shadows. They allow to state
our third characterization:

Theorem 4.1. Let h and h′ be two height functions over Z
2. Then, h′ is flip-accessible from h if and

only if the shadows of h′ are included in the shadows of h:

h
flips
−→ h′ ⇔ ∀i ∈ {1, 2, 3, 4}, pi(h

′) ⊂ pi(h).

Proof. We rely on the previous characterization (Th. 3.2) and the corresponding notations. First,
note that, for any 6-uple (k, k′, i, j, z, z′) of Z

6, we have p1(k, i, z′) = p1(k + j, i + j, z) if and only if
s1(k

′, z′) = s1(k
′ + j, z).

Suppose now that h′ is flip-accessible from h. Let (k, i) in Z
2 and (a, b) = f(k, i). By Theorem 3.2, h′

1,a is
flip-accessible from h1,a. In particular, there exists and integer j such that s1(b, h

′
1,a(b)) = s1(b+j, h1,a(b+j)).

According to the above preliminary remark, this yields p1(k, i, h′(k, i)) = p1(k+ j, i+ j, h(k+ j, i+ j)). Thus,
p1(h

′) ⊂ p1(h). Inclusions for the three other shadows are proved similarly.

Conversely, suppose that pi(h
′) ⊂ pi(h) for i = 1, . . . , 4. Let (a, b) ∈ Z

2 and (k, i) such that (a, b) =
f(k, i). There exists an integer j of Z such that p1(k, i, h′(k, i)) = p1(k + j, i + j, h(k + j, i + j)). Thus,
s1(b, h

′
1,a(b)) = s1(b+j, h1,a(b+j)) According to the above preliminary remark, this yields s1(h

′
1,a) ⊂ s1(h1,a).

Similarly, si(h
′
1,a) ⊂ si(h1,a) for i = 1, . . . , 4. The result then follows from Theorem 3.2. �

5. From stepped surfaces to tilings

We know have conditions for accessibility for stepped surfaces. How can they be used for the accessibility
for tilings? A problem arises from the fact that a stepped surface induced by a tiling is defined up to a constant
integer.

5.1. One dimensional tilings. We say that a one dimensional tiling is ultimately monotonic in +∞
(respectively −∞) if only one color appears in a semi-infinite interval of the form [a, +∞) (respectively
(−∞, a]). These definitions are naturally extended to stepped lines. Clearly, from our conditions, each
stepped line is accessible from a fixed non ultimately monotonic stepped line. Thus, each tiling is accessible
from a non ultimately fixed monotonic tiling.

Moreover, if a stepped line h′ is accessible from a fixed ultimately monotonic in +∞ stepped line h,
then h′ is also ultimately monotonic in +∞, and moreover h and h′ are ultimately equal, i. e there exists a
semi-infinite interval [a, +∞) on which h = h′. This fact allows us to fix a convenient constant to study the
accessibility for tilings: let (T ′, T ) be a pair of tilings, with T ultimately monotonic in +∞. If there exists
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no semi-infinite interval [a, +∞) on which T = T ′, then T ′ is not accessible from T . Otherwise, consider
two stepped lines hT ′ and hT , respectively induced by T ′ and T , such that hT ′(a) = hT (a). The tiling T ′ is
accessible from T if and only if hT ′ is accessible from hT .

5.2. Two dimensional tilings. It is easy to extend the previous study to dimension 2. We say that
a stepped surface is ultimately broken if at least one of the induced stepped lines is ultimately monotonic,
and we say that a 2-dimensional tiling is ultimately broken if one (and therefore all) of the stepped surfaces
induced is monotonic. Each stepped surface is accessible from a fixed non ultimately broken stepped surface,
thus, each tiling is accessible from a fixed non ultimately broken tiling.

Moreover, if a stepped surface h′ is accessible from a fixed ultimately broken stepped surface h then h′ is
also ultimately broken. Precisely, there necessarily exists two corresponding induced stepped lines h′

i,x and
hi,x which are ultimately monotonic, and, moreover, ultimately equal.

Let T be a (2 dimensional) tiling, with T ultimately broken. Let h be a stepped surface induced by T ,
and hi,x be an ultimately monotonic stepped line induced by h, in +∞ (which can be assumed without loss
of generality, up to symmetry). Let T ′ be another tiling and h′ be one of its induced stepped surfaces.

If the difference hi,x − h′
i,x is not ultimately constant then T ′ is s not accessible from T (since, for each

integer c, h′
i,x + c is not accessible from hi,x, and for each stepped surface h′′ induced by T ′, there exists an

integer c such that h′′ = h′ + c).
If hi,x − h′

i,x is is ultimately equal to a constant c, then h′′ = h′ + c is a stepped surface induced by T ′.

The stepped surface h′′ is accessible from h if and only if T ′ is accessible from T .
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