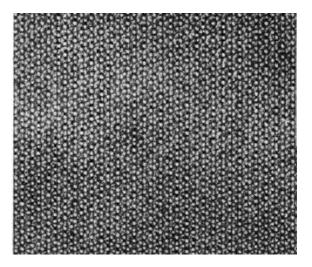
Digital Surfaces in High Codimensions: When Periodicity Enforces Aperiodicity

> Nicolas Bédaride (LATP, Marseille) Thomas Fernique (LIPN, Paris)

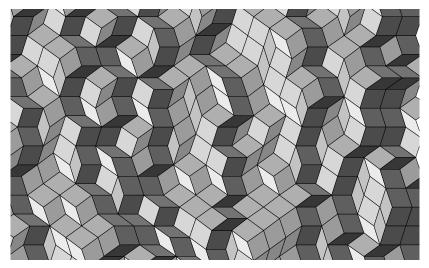
Clermont-Ferrand, October 20th, 2011

Quasicrystal



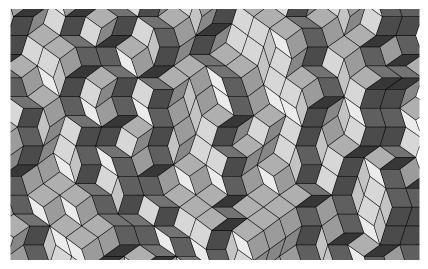
Matter with non-periodic order enforced by finite range interactions.

Rhombus tiling (Digital surface)

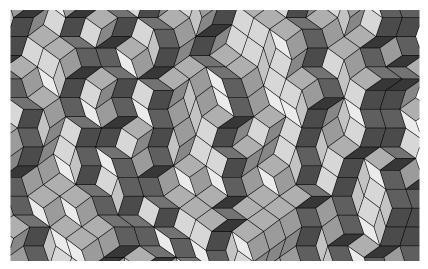


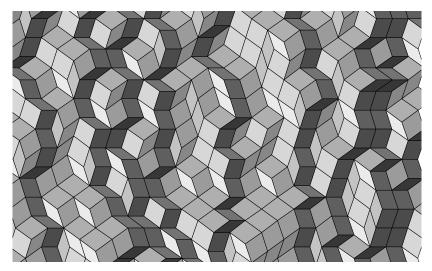
Tiling of the plane by $\binom{n}{2}$ rhombi defined over *n* non-colinear edges.

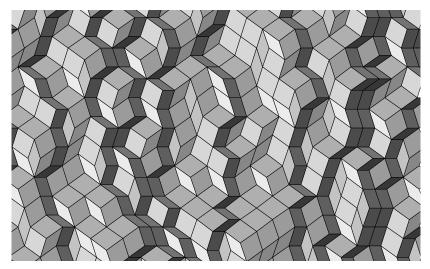
Rhombus tiling (Digital surface)

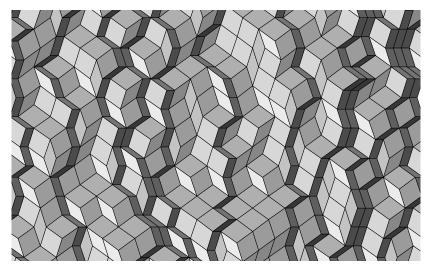


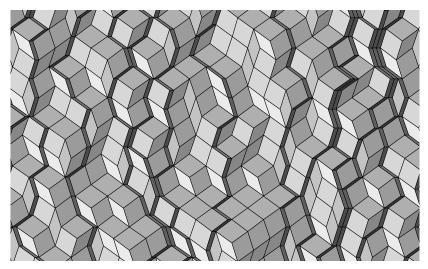
Lift: homeomorphism which maps rhombi on 2-faces of unit *n*-cubes.

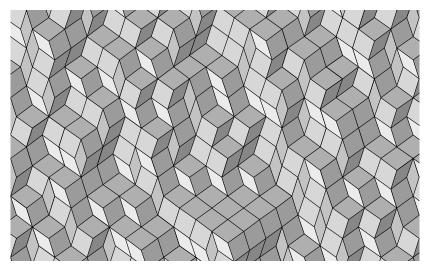


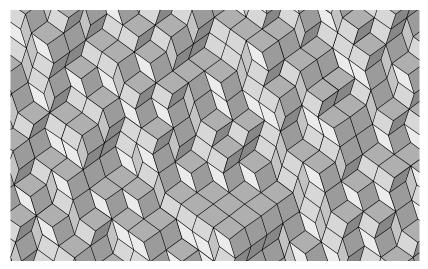


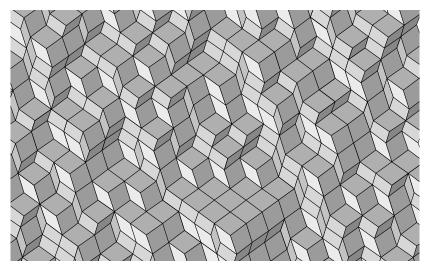


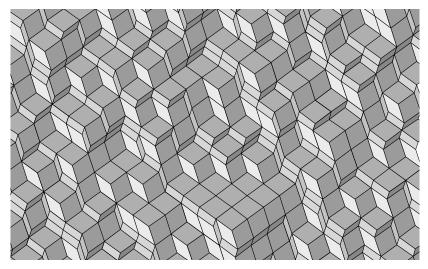


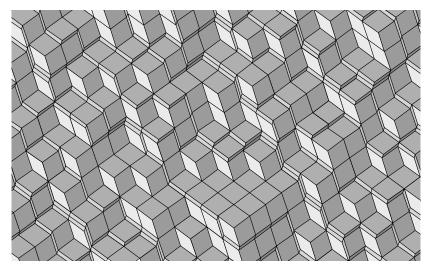


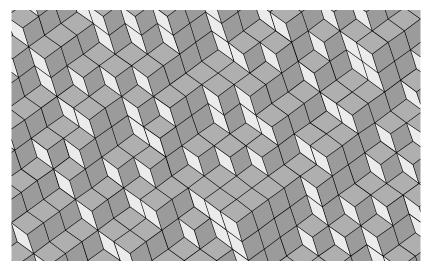




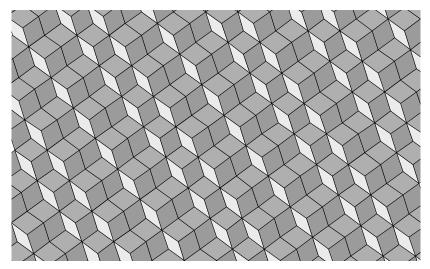






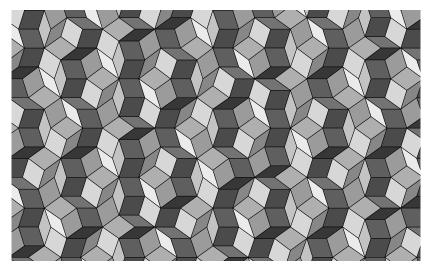


Planar rhombus tiling (Digital plane)



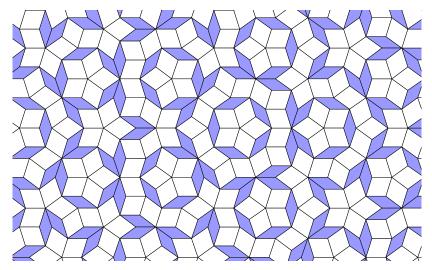
Its lift lies in $P + [0, t)^n$, where P is a plane and $t \ge 1$ the *thickness*.

Planar rhombus tiling (Digital plane)



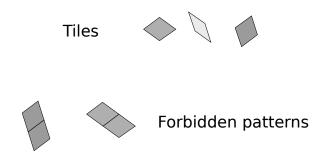
Its lift lies in $P + [0, t)^n$, where P is a plane and $t \ge 1$ the *thickness*.

Planar rhombus tiling (Digital plane)



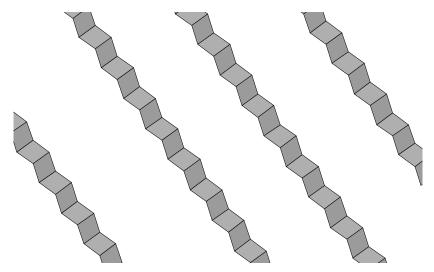
Its lift lies in $P + [0, t)^n$, where P is a plane and $t \ge 1$ the *thickness*.

Local rules



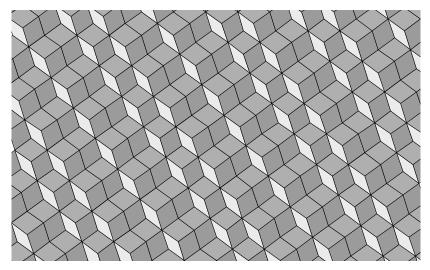
Finite set of finite forbidden patterns. Enforcing non-periodic tilings?

Local rules



Finite set of finite forbidden patterns. Enforcing non-periodic tilings?

Local rules



Finite set of finite forbidden patterns. Enforcing non-periodic tilings?

Enforcing the periodicity of a shadow by local rules

Periodic shadow: its lift is invariant by an integer translation.

Enforcing the periodicity of a shadow by local rules

Periodic shadow: its lift is invariant by an integer translation.

Let $R \ge 0$ be larger than the norm of a period vector $\vec{p} \in \mathbb{Z}^3$. Among the patterns of diameter R, forbid the non \vec{p} -periodic ones. Only a \vec{p} -periodic shadow can satisfy such local rules. Enforcing the periodicity of a shadow by local rules

Periodic shadow: its lift is invariant by an integer translation.

Let $R \ge 0$ be larger than the norm of a period vector $\vec{p} \in \mathbb{Z}^3$. Among the patterns of diameter R, forbid the non \vec{p} -periodic ones. Only a \vec{p} -periodic shadow can satisfy such local rules.

There are however local rules on shadows, not on tilings. But they can be easily extended to tilings which are *planar*.

Proposition (BF)

Periodicities of planar tiling shadows are enforceable by local rules.

Grassmann coordinates

Grassmann coordinates $(G_{ij})_{i < j} \in \mathbb{RP}^{\binom{n}{2} - 1}$ of $P = \mathbb{R}\vec{u} + \mathbb{R}\vec{v} \subset \mathbb{R}^n$

$$G_{ij} := u_i v_j - u_j v_i.$$

Theorem (Good ol' algebraic geometry)

Planes are uniquely characterized by their Grassmann coordinates.

Grassmann coordinates & Plücker relations

Grassmann coordinates $(G_{ij})_{i < j} \in \mathbb{RP}^{\binom{n}{2}-1}$ of $P = \mathbb{R}\vec{u} + \mathbb{R}\vec{v} \subset \mathbb{R}^n$

$$G_{ij} := u_i v_j - u_j v_i.$$

Theorem (Good ol' algebraic geometry) Planes are uniquely characterized by their Grassmann coordinates.

Plücker relations on $(G_{ij})_{i < j} \in \mathbb{RP}^{\binom{n}{2}-1}$: the $\binom{n}{4}$ quadratic relations

$$G_{ij}G_{kl}=G_{ik}G_{jl}-G_{il}G_{jk}$$

Theorem (Good ol' algebraic geometry) Only Grassmann coordinates satisfy all the Plücker relations.

Periodicity relations

Proposition (BF)

If the (i, j, k)-shadow of a planar tiling is (p, q, r)-periodic, then the Grassmann coordinates of the digitalized plane satisfy

$$pG_{jk}-qG_{ik}+rG_{ij}=0$$

Local rules enforcing a periodicity relation are said to be associated.

Periodicity relations

Proposition (BF)

If the (i, j, k)-shadow of a planar tiling is (p, q, r)-periodic, then the Grassmann coordinates of the digitalized plane satisfy

$$pG_{jk}-qG_{ik}+rG_{ij}=0$$

Local rules enforcing a periodicity relation are said to be associated.

Proposition (BF)

If Plücker and periodicity relations characterize a unique plane P, then the planar tilings satisfying associated local rules digitalize P.

In particular, such tilings are non-periodic when P is irrational.

Periodicity relations

Proposition (BF)

If the (i, j, k)-shadow of a planar tiling is (p, q, r)-periodic, then the Grassmann coordinates of the digitalized plane satisfy

$$pG_{jk}-qG_{ik}+rG_{ij}=0$$

Local rules enforcing a periodicity relation are said to be associated.

Proposition (BF)

If Plücker and periodicity relations characterize a unique plane P, then the planar tilings satisfying associated local rules digitalize P.

In particular, such tilings are non-periodic when P is irrational.

Can this be achieved? What about non-planar tilings?

Enforce by local rules the 10 periodicity relations $G_{i,j} = G_{2i-j,i}$, *i.e.*,

$$G_{12} = G_{51} = G_{45} = G_{34} = G_{23} =: x,$$

 $G_{13} = G_{41} = G_{23} = G_{52} = G_{35} =: y.$

Enforce by local rules the 10 periodicity relations $G_{i,j} = G_{2i-j,i}$, *i.e.*,

$$G_{12} = G_{51} = G_{45} = G_{34} = G_{23} =: x,$$

 $G_{13} = G_{41} = G_{23} = G_{52} = G_{35} =: y.$

The 5 Plücker relations reduce to the single relation

$$xy = x^2 - y^2.$$

Enforce by local rules the 10 periodicity relations $G_{i,j} = G_{2i-j,i}$, *i.e.*,

$$G_{12} = G_{51} = G_{45} = G_{34} = G_{23} =: x,$$

 $G_{13} = G_{41} = G_{23} = G_{52} = G_{35} =: y.$

The 5 Plücker relations reduce to the single relation

$$xy = x^2 - y^2$$

Up to algebraic conjugation, there is one solution in \mathbb{RP}^9 :

$$(x,y) = (arphi,1) \quad ext{or, equivalently}, \quad G_{ij} = \sin\left(rac{2(j-i)\pi}{5}
ight),$$

Enforce by local rules the 10 periodicity relations $G_{i,j} = G_{2i-j,i}$, *i.e.*,

$$G_{12} = G_{51} = G_{45} = G_{34} = G_{23} =: x,$$

 $G_{13} = G_{41} = G_{23} = G_{52} = G_{35} =: y.$

The 5 Plücker relations reduce to the single relation

$$xy = x^2 - y^2$$

Up to algebraic conjugation, there is one solution in \mathbb{RP}^9 :

$$(x,y) = (\varphi,1)$$
 or, equivalently, $G_{ij} = \sin\left(\frac{2(j-i)\pi}{5}\right)$.

They are the Grassmann coordinates of $\mathbb{R}\cos(\frac{2i\pi}{5})_i + \mathbb{R}\sin(\frac{2i\pi}{5})_i$.

Generalized Levitov theorem

Theorem (BF)

If Plücker and periodicity relations characterize a unique plane, then the tilings satisfying the associated local rules are planar.

The thickness is moreover uniformly (but not precisely) bounded.

The plane has algebraic Grassmann coordinate of degree $d \leq 2^{\binom{n}{4}}$.

Tedious proof, but much easier analogue "continuous" statement.

Thank you for your attention