Quasiperiodic Tilings and Quasicrystals

Thomas Fernique Université Paris 13

Isfahan University of Technology April 22, 2014

ヘロト ヘロト ヘヨト ヘヨト

1/20

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

2 Local rules

3 Quasicrystals

Quasiperiodic	tilings
00000	

Tiling

Overlap-free covering of the plane by compact sets called *tiles*.

Quasiperiodic	tilings
00000	

Periodic tiling

Invariant by two independant translations.

Quasiperiodic	tilings
00000	

Periodic tiling

Invariant by two independant translations.

Quasiperiodic	tilings
00000	

Periodic tiling

Invariant by two independant translations. Simple description!

Local rules

Quasicrystals 00000

Periodic tiling

Invariant by two independant translations. Simple description!

Quasiperiodic	tilings
00000	

Periodic tiling

Invariant by two independant translations. Simple description!

Local rules

Quasiperiodic tiling

Any pattern P reoccurs at distance at most d(P) from any point.

Local rules

Quasicrystals 00000

Quasiperiodic tiling

Any pattern P reoccurs at distance at most d(P) from any point.

Quasiperiodic tiling

Any pattern P reoccurs at distance at most d(P) from any point.

Substitutions

Substitutions

Quasiperiodic	tilings
00000	

Substitutions

Quasiperiodic	tilings
00000	

Substitutions

Quasicrystals 00000

Cut and projection (DeBruijn 1981)

Quasiperiodic tilings ○○○○● Local rules

Quasicrystals 00000

Cut and projection (DeBruijn 1981)

Quasicrystals 00000

Cut and projection (DeBruijn 1981)

Quasicrystals 00000

Cut and projection (DeBruijn 1981)

Quasicrystals 00000

Cut and projection (DeBruijn 1981)

Quasicrystals 00000

Cut and projection (DeBruijn 1981)

Local rules ●○○○○ Quasicrystals 00000

Periodic tilings

Alternative description by finitely many allowed/forbidden patterns.

Local rules ●○○○○ Quasicrystals 00000

Periodic tilings

Alternative description by finitely many notched/decorated tiles.

Local rules ○●○○○ Quasicrystals 00000

Non-periodic tiling

Theorem (Berger 1964)

Decorated tile sets that form only non-periodic tilings do exist.

Local rules

Quasicrystals 00000

Substitutive tiling

Theorem (Mozes 1990, Goodmann-Strauss 1998, F.-Ollinger 2010)

Substitutive tilings can (generally) be enforced by decorated tiles.

Local rules ○○○●○ Quasicrystals 00000

Cut and project tiling (1/2)

Cuts enforced by allowed patterns are algebraic.

Local rules ○○○●○

Cut and project tiling (1/2)

Cuts enforced by allowed patterns are algebraic.

Local rules ○○○●○

Cut and project tiling (1/2)

Cuts enforced by allowed patterns are algebraic. More precisely?

Local rules ○○○○● Quasicrystals 00000

Cut and project tiling (2/2)

Theorem (F.-Sablik 2012)

A cut is enforced by decorated tiles if and only if it is computable.

2 Local rules

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Crystals (18th century)

8			8		2	S.		8	1		8		8	3		8	1	
\leq	2	$^{\circ}$	22		5	2	8	\mathbf{S}	×.	\geq	22		s	2	8	\mathbf{S}	×.	2
22	9	ġ,	2	2	2	13	5	2	1	2	2	2	20	12	5	22	1	4
C.	2	\mathcal{C}	5	\mathbf{x}	13	13	\mathbf{x}	\mathbf{C}	3	82	5	\mathbf{x}	83	\mathcal{A}	\mathbf{x}	<	3	82
\odot	2		\sim		55	8		52	0		\mathbb{C}^{2}		53	12		\mathbb{S}^{2}	0	
÷	Ċ.	ē.	÷.	9	23	12	9	2			8	2	23	23	ų.	22		
	3	\sim	12	8	83	13	\sim		8	83		$^{\circ}$	83	23	\sim	-	8	2
55		9	1			1		$\mathbb{N}_{\mathbb{N}}$			2		5			$\mathbb{N}_{\mathbb{N}}$	ġ.	
1		1	÷.	2	10	3		18		3	8		10	0		18		
12		2	21		50			12		2	24		50			12		
2			1		<u>(</u>)	14		2			2		20	14		2	1	
	2	÷	-	×	83	13	8	82	3	÷	39 A	8	83	23	÷	82		8
12	1	0	1	10	8	8		12	÷	0		15	86	12		12	•	0
	9	÷	84 1		23	15			4		8		1	14			4	1
	1	85	8				1	1	2	8	2		87		1	1	2	1
20	2	2	ं			13		10	2	2	2	3	[0]	13		10	ŝ.	81
6	1				10	3	1	65	1		15		i.	3	1	12	1	1
1	2	2			8	3		12	1	2	22		8	3		12	1	2
				÷.		1						÷.		1				÷

Periodic atom arrangement ~> sharp peaks diffraction. Conversely?

The crystallographic restriction

Theorem

If a lattice is invariant under a rotation by $\frac{2\pi}{n}$, then $n \in \{2, 3, 4, 6\}$.

Proof:

- the rotation has an integer matrix in any lattice base;
- the trace of a rotation by θ is $2\cos(\theta)$, in any base;
- $2\cos(\theta) \in \mathbb{Z} \Rightarrow \theta \in \{0, \frac{2\pi}{2}, \frac{2\pi}{3}, \frac{2\pi}{4}, \frac{2\pi}{6}\}.$

Local rules

Shechtmanite (1982)

Sharp peaks diffraction but non-periodic rotational symmetry!!?

Quasicrystals (1992)

As quasiperiodic tilings!

Quasicrystals (1992)

As quasiperiodic tilings! With local rules aiming to explain stability.

Open questions

The 7-fold tilings admit local rules.

Open questions

The 7-fold tilings admit local rules.

Open questions

The 7-fold tilings admit local rules.

Open questions

The 7-fold tilings admit local rules. Where are 7-fold quasicrystals?