Weak Local Rules for the N-Fold Tilings

Nicolas Bédaride & Thomas Fernique

Ugly	settings
	00

Outline

2 Good rhombi

Rhombus tiling

n pairwise non-colinear vectors of $\mathbb{R}^2 \rightsquigarrow \text{tiling of } \mathbb{R}^2$ by $\binom{n}{2}$ rhombi.

Lift

Good rhombi 00000

Lift: homeomorphism which maps tiles on 2-faces of unit *n*-cubes.

Ugly	settings
000	

Planarity

Good rhombi 00000

Planar: lift in $E + [0, t]^n$, where E is the *slope* and t the *thickness*.

N-fold tiling

N-fold: same finite patterns as its image under a rotation by $\frac{2\pi}{N}$.

Ugly settings ○○○○● Good rhombi

Bad squares

Weak local rules (Levitov, 1988)

Weak local rules: when patches of radius R characterize the slope.

Ugly settings ○○○○● Good rhombi

Bad squares

Weak local rules (Levitov, 1988)

Weak local rules: when patches of radius R characterize the slope.

Outline

Stripes

Stripe: each tile is adjacent to the next one along parallel edges.

Ugly settings 00000 Good rhombi ○●○○○ Bad squares

Alternation Condition (Socolar, 1990)

AC: in each stripe, each tile must alternate with its mirror image.

Good rhombi ○○●○○

Subperiods

Subperiods

Subperiods

Subperiods

Ugly settings	Good rhombi	Bad squares
00000	○○○●○	00000
Slope		

Consider a planar tiling whose slope is generated by \vec{u} and \vec{v} . Let $G_{ij} = u_i v_j - u_j v_i$ be the Grassmann coordinates of the slope.

• One proves that the AC enforces the relations

$$G_{ij}=G_{j,2j-i}.$$

• Grassmann coordinates moreover always satisfy the relations

$$G_{ij}G_{kl}=G_{ik}G_{jl}-G_{il}G_{jk}.$$

One proves that this characterize the *n*-fold slope when $n \neq 4p$.

Good rhombi ○○○○●

Planarity

AC enforces straight stripes. One shows that it enforces planarity.

Outline

Ugly settings

2 Good rhombi

Evenly even n

Tiles can be squares when n = 4p. What AC does now enforce?

One proves that AC characterizes a one-parameter family of slopes.

One proves that AC characterizes a one-parameter family of slopes.

Ugly	settings

One proves that AC characterizes a one-parameter family of slopes.

Can we find a finite patch which distinguishes the 4p-fold tilings?

Ugly settings 00000	Good rhombi 00000	Bad squares ○○●○○
Window		

Window of a planar tiling of slope E: projection of $[0,1]^n$ onto E^{\perp} .

Ugly	settings

Window

Projecting also the (n-3)-faces of $\{0, \ldots, k\}^n$ yields a partition.

Ugly	settings
	00

Window

One proves that its parts are in bijection with the size k patches.

Coincidence

Coincidence: intersection of at least n-1 projected (n-3)-faces.

Sliding coincidences

One proves that AC preserves the coincidences of any 4*p*-fold tiling.

Sliding coincidences

One proves that AC preserves the coincidences of any 4*p*-fold tiling.

Sliding coincidences

One proves that AC preserves the coincidences of any 4*p*-fold tiling.

Ugly settings 00000 Good rhombi 00000

Sliding coincidences

This is not necessarily the case outside the one-parameter family.

Theorem (Socolar 1990, Bédaride-Fernique 2014)

The N-fold tilings admit weak local rules iff N is not evenly even.

Theorem (Socolar 1990, Bédaride-Fernique 2014)

The N-fold tilings admit weak local rules iff N is not evenly even.

Some questions:

- Does AC nevertheless enforce planarity?
- What about other planar tilings?
- What if tiles can be *decorated*?

Theorem (Socolar 1990, Bédaride-Fernique 2014)

The N-fold tilings admit weak local rules iff N is not evenly even.

Some questions:

- Does AC nevertheless enforce planarity?
- What about other planar tilings?
- What if tiles can be *decorated*?

Holds for N = 8p and N = 12p.

The slope must be algebraic.

Any computable slope can be enforced (Sablik-Fernique 2012).

- L. S. Levitov, *Local rules for quasicrystals*, Comm. Math. Phys. **119** (1988)
- S. E. Burkov, Absence of weak local rules for the planar quasicrystalline tiling with the 8-fold rotational symmetry, Comm. Math. Phys. **119** (1988)
- J. E. S. Socolar, *Weak matching rules for quasicrystals*, Comm. Math. Phys. **129** (1990)
- N. Bédaride, Th. Fernique, *When periodicities enforce aperiodicity*, to appear in Comm. Math. Phys.
- N. Bédaride, Th. Fernique, *No weak local rules for the 4p-fold tilings*, arXiv:1409.0215 (2014)