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Rhombus tiling

n pairwise non-colinear vectors of R2  tiling of R2 by
(n
2

)
rhombi.
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Lift

Lift: homeomorphism which maps tiles on 2-faces of unit n-cubes.
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Planarity

Planar: lift in E + [0, t]n, where E is the slope and t the thickness.
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N-fold tiling

N-fold: same finite patterns as its image under a rotation by 2π
N .
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Weak local rules (Levitov, 1988)

Weak local rules: when patches of radius R characterize the slope.
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Stripes

Stripe: each tile is adjacent to the next one along parallel edges.
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Alternation Condition (Socolar, 1990)

AC: in each stripe, each tile must alternate with its mirror image.
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Subperiods

AC enforces the projections on three basis vectors to be periodic.
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Slope

Consider a planar tiling whose slope is generated by ~u and ~v .
Let Gij = uivj − ujvi be the Grassmann coordinates of the slope.

One proves that the AC enforces the relations

Gij = Gj ,2j−i .

Grassmann coordinates moreover always satisfy the relations

GijGkl = GikGjl − GilGjk .

One proves that this characterize the n-fold slope when n 6= 4p.
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Planarity

AC enforces straight stripes. One shows that it enforces planarity.
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Evenly even n

Tiles can be squares when n = 4p. What AC does now enforce?
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Slopes

One proves that AC characterizes a one-parameter family of slopes.
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Slopes

One proves that AC characterizes a one-parameter family of slopes.
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Slopes

Can we find a finite patch which distinguishes the 4p-fold tilings?
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Window

Window of a planar tiling of slope E : projection of [0, 1]n onto E⊥.
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Window

Projecting also the (n − 3)-faces of {0, . . . , k}n yields a partition.
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Window

One proves that its parts are in bijection with the size k patches.



Ugly settings Good rhombi Bad squares

Coincidence

Coincidence: intersection of at least n − 1 projected (n − 3)-faces.
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Sliding coincidences

One proves that AC preserves the coincidences of any 4p-fold tiling.
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Sliding coincidences

This is not necessarily the case outside the one-parameter family.



Conclusion

Theorem (Socolar 1990, Bédaride-Fernique 2014)

The N-fold tilings admit weak local rules iff N is not evenly even.

Some questions:

Does AC nevertheless enforce planarity?

Holds for N = 8p and N = 12p.

What about other planar tilings?

The slope must be algebraic.

What if tiles can be decorated?

Any computable slope can be enforced
(Sablik-Fernique 2012).
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