On Rhombus Tilings

Thomas Fernique CNRS & Univ. Paris 13

Колмогоровский семинар Februar 25, 2013

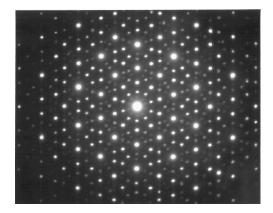
2 Random tilings

2 Random tilings

Aperiodic tilings ●○○○○○ Random tilings

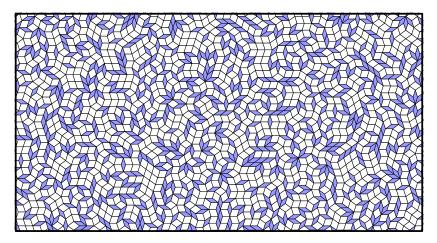
Annealed tilings

Quasicrystals (Shechtman discovery, 1982)



Material with sharp diffraction peaks but non-periodic symmetry. How short range interactions do stabilize non-periodic crystals? Aperiodic tilings ○●○○○○ Random tilings 000000

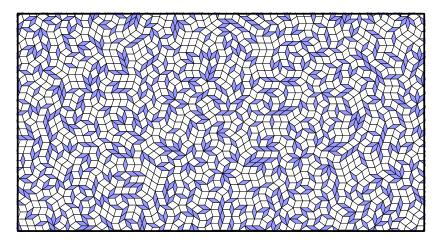
Planar rhombus tilings



n pairwise non-colinear vectors of $\mathbb{R}^2 \rightsquigarrow \text{tilings of } \mathbb{R}^2$ by $\binom{n}{2}$ rhombi.

Aperiodic tilings ○●○○○○ Random tilings 000000

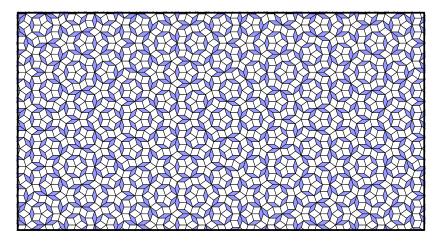
Planar rhombus tilings



Lift: homeomorphism which maps tiles on 2-faces of unit n-cubes.

Aperiodic tilings ○●○○○○ Random tilings 000000

Planar rhombus tilings



Planar: lift in $E + [0, t]^n$, where E is the *slope* and t the *thickness*.

Finite type slopes

Definition

A slope *E* has *finite type* if there is finitely many finite patterns s.t.

- slope E and thickness 1 tilings have no such patterns;
- tilings with no such patterns are planar with slope E.

Finite type slopes

Definition

A slope *E* has *finite type* if there is finitely many finite patterns s.t.

- slope E and thickness 1 tilings have no such patterns;
- tilings with no such patterns are planar with slope E.

Theorem (Levitov'88, Le'95, F.-Bédaride'13)

A slope E has finite type iff it is characterized by its subperiods.

This allows only algebraic slopes but can yield simple patterns.

Sofic slopes

Definition

A slope *E* is *sofic* if there is finitely many finite *colored* patterns s.t.

- slope *E* and thickness 1 colored tilings can avoid such patterns;
- colored tilings with no such patterns are planar with slope E.

Sofic slopes

Definition

A slope *E* is *sofic* if there are finitely many *colored* rhombi s.t.

- colors can match in planar tilings of slope *E* and thickness 1;
- rhombus tilings where colors match are planar with slope E.

Sofic slopes

Definition

A slope *E* is *sofic* if there are finitely many *colored* rhombi s.t.

- colors can match in planar tilings of slope *E* and thickness 1;
- rhombus tilings where colors match are planar with slope E.

Theorem (F.-Sablik'12)

A slope E is sofic iff it is computable.

This goes far beyond algebraic slopes but yields huge tile sets.

Substitutive tilings

Definition

A tiling is *substitutive* if it is invariant by a *group/deflate process*.

If the group process is unambiguous, then the tiling is not periodic.

Theorem (Mozes'90, Goodmann-Strauss'95, F.-Ollinger'10)

Substitutive rhombus tilings (generally) have sofic slopes.

This allows only algebraic slopes but holds beyond rhombus tilings.

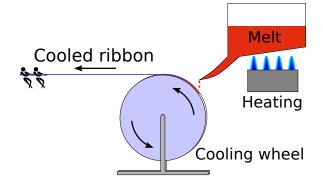
Some open questions

- What can be said on the thickness? When is it minimal?
- Which slopes can be enforced with k colored rhombi?
- How to assemble sofic or finite type tilings?

2 Random tilings

Random tilings ●00000 Annealed tilings

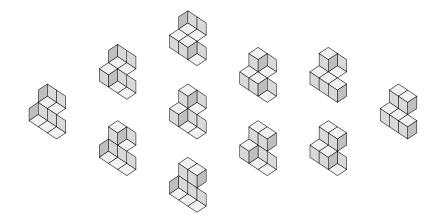
Quasicrystals (Shechtman quenching)



Entropy maximization supersede energy minimization.

Random tilings ○●○○○○ Annealed tilings

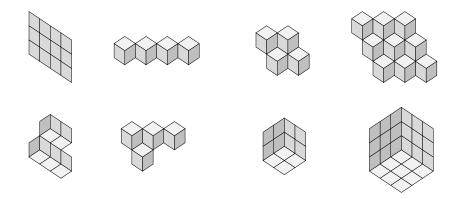
Tiling space and entropy



Tiling space: set of the tilings of a given domain.

Random tilings ○●○○○○ Annealed tilings

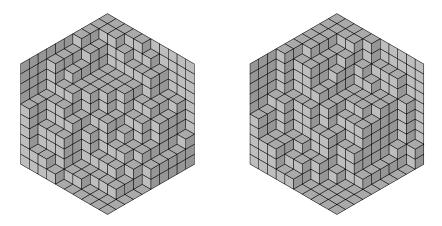
Tiling space and entropy

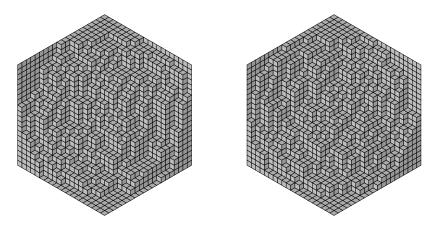


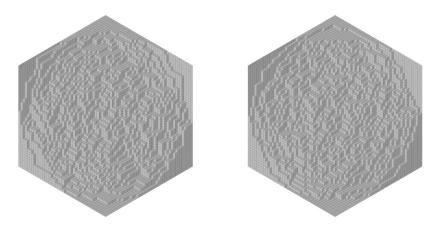
Tiling entropy: $s := \log(\text{size of the tiling space})/(\text{nb. of tiles})$.

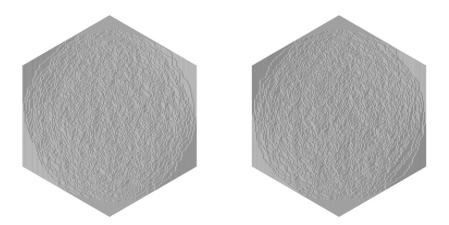
Random tilings ○○●○○○

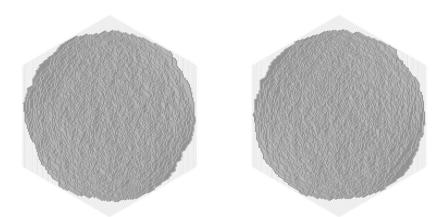
Typical aspect





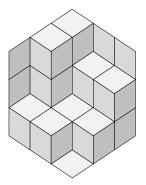


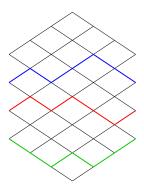




Random tilings 000●00 Annealed tilings

Dimers: Lindström-Gessel-Viennot lemma, 1985



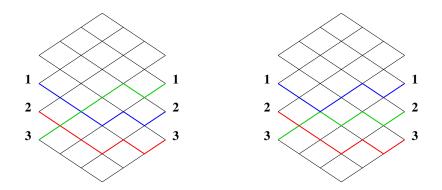


 $\mathsf{Dimer tiling} \leftrightarrow \mathsf{non-intersecting path family}.$

Aperiodic	tilings

Random tilings 000●00 Annealed tilings

Dimers: Lindström-Gessel-Viennot lemma, 1985



Path family \leftrightarrow permutation. What does count det(#paths $i \leftrightarrow j$)?

Dimers: Cohn-Kenyon-Propp variational principle, 2001

Height function of a dimer tiling: distance to x + y + z = 0.

Theorem

Let $R \subset \mathbb{R}^2$ be bounded by a piecewise smooth simple closed curve. If, for $n \geq 0$, R_n is a tileable domain which approximates nR, then

$$\lim_{n\to\infty} s(R_n) = \sup_{h} \frac{1}{|R|} \iint_R \operatorname{ent}\left(\frac{\partial h}{\partial x}, \frac{\partial h}{\partial y}\right) \, dx \, dy,$$

where ent : $\mathbb{R}^2 \to \mathbb{R}$ and h is any 2-Lipschitz real function on R. Moreover, the normalized R_n 's random height functions converge in probability (exponentially fast) towards the integral-maximizing h.

Dimers: Cohn-Kenyon-Propp variational principle, 2001

Height function of a dimer tiling: distance to x + y + z = 0.

Theorem

Let $R \subset \mathbb{R}^2$ be bounded by a piecewise smooth simple closed curve. If, for $n \geq 0$, R_n is a tileable domain which approximates nR, then

$$\lim_{n\to\infty} s(R_n) = \sup_{h} \frac{1}{|R|} \iint_R \operatorname{ent}\left(\frac{\partial h}{\partial x}, \frac{\partial h}{\partial y}\right) \, dx \, dy,$$

where ent : $\mathbb{R}^2 \to \mathbb{R}$ and h is any 2-Lipschitz real function on R. Moreover, the normalized R_n 's random height functions converge in probability (exponentially fast) towards the integral-maximizing h.

ent is concave and max. in $(0,0) \rightsquigarrow$ flat tilings have max. entropy.

Dimers: Cohn-Kenyon-Propp variational principle, 2001

Height function of a dimer tiling: distance to x + y + z = 0.

Theorem

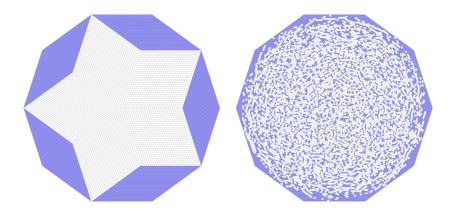
Let $R \subset \mathbb{R}^2$ be bounded by a piecewise smooth simple closed curve. If, for $n \geq 0$, R_n is a tileable domain which approximates nR, then

$$\lim_{n\to\infty} s(R_n) = \sup_{h} \frac{1}{|R|} \iint_R \operatorname{ent}\left(\frac{\partial h}{\partial x}, \frac{\partial h}{\partial y}\right) \, dx \, dy,$$

where ent : $\mathbb{R}^2 \to \mathbb{R}$ and h is any 2-Lipschitz real function on R. Moreover, the normalized R_n 's random height functions converge in probability (exponentially fast) towards the integral-maximizing h.

ent is concave and max. in $(0,0) \rightsquigarrow$ flat tilings have max. entropy. Frozen boundaries form algebraic curves (Kenyon-Okounkov, 2005). Random tilings 00000●

Some open questions



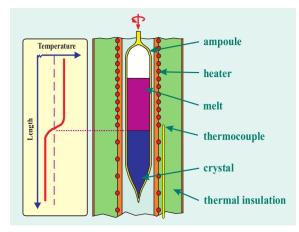
Counting rhombus tilings? Maximal entropy? Typical properties?

2 Random tilings

Aperiodic	tilings

Random tilings 000000 Annealed tilings ●○○○○○

Quasicrystals (Bridgman-Stockbarger technique)



From entropy maximization to energy minimization.

Gibbs distribution

Definition (Gibbs measure at temperature T)

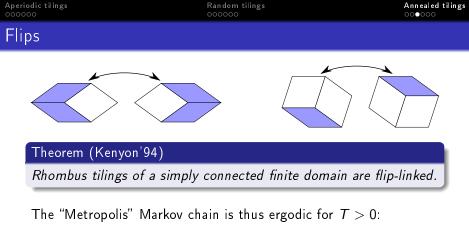
Probability of the system being in state x: $\frac{1}{Z(T)} \exp(-E(x)/T)$.

Energy of a finite type/sofic tiling: number of forbidden patterns.

The Gibbs distribution is thus

- concentrated on perfect tiling at T = 0;
- uniform at $T = \infty$ (random tilings).

What inbetween? Which dynamics for tilings?



• draw uniformly at random a vertex of the current tiling;

• if a flip is possible, then do it with probability $\exp(-\Delta E/T)$. Its stationary distribution is the Gibbs distribution.

Markov chain mixing time

Markov chain $P = (p_{ij})_{ij}$: goes from $i \in S$ to $j \in S$ with proba. p_{ij} . Example: random walk on the web.

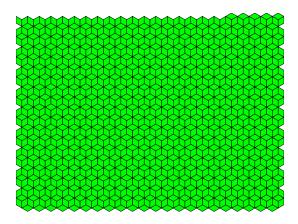
Stationary distribution π : $\pi_j = \sum_{i \in S} \pi_i p_{ij} = \lim_{t \infty} P^t(\cdot, j)$. Example: Google's original PageRank.

Total variation: $\delta(\mu, \nu) = \max_{A \subset S} |\mu(A) - \nu(A)|$.

Mixing time τ : min_{t≥0} max_{i∈S} $\delta(P^t(i, \cdot), \pi) \leq \frac{1}{4}$. Example: how many time shall you shuffle your Rubik's cube?

Random tilings 000000 Annealed tilings ○○○○●○

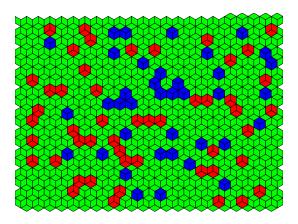
A simple dimer case



Forbid adjacent identical rombi. Fix a maximal entropy domain.

Random tilings 000000 Annealed tilings ○○○○●○

A simple dimer case

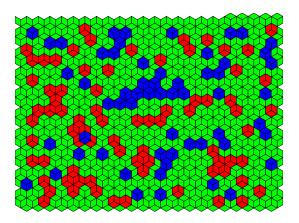


Theorem (Caputo-Martinelli-Toninelli, 2011)

At $T = \infty$ (uniform stationary distribution), $\tau = O(n^4 \log(n)^{12})$.

Random tilings 000000 Annealed tilings ○○○○●○

A simple dimer case

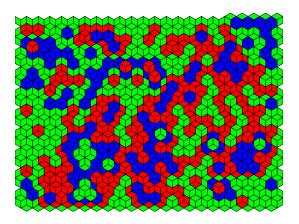


Theorem (Caputo-Martinelli-Toninelli, 2011)

At $T = \infty$ (uniform stationary distribution), $\tau = O(n^4 \log(n)^{12})$.

Random tilings 000000 Annealed tilings ○○○○●○

A simple dimer case

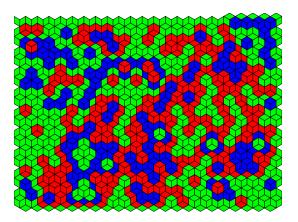


Theorem (Caputo-Martinelli-Toninelli, 2011)

At $T = \infty$ (uniform stationary distribution), $\tau = O(n^4 \log(n)^{12})$.

Random tilings 000000 Annealed tilings ○○○○●○

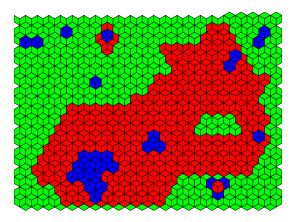
A simple dimer case



Theorem (F.-Regnault, 2010)

Random tilings 000000 Annealed tilings ○○○○●○

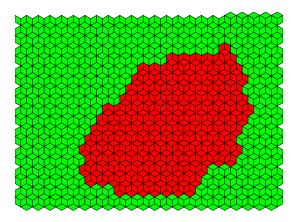
A simple dimer case



Theorem (F.-Regnault, 2010)

Random tilings 000000 Annealed tilings ○○○○●○

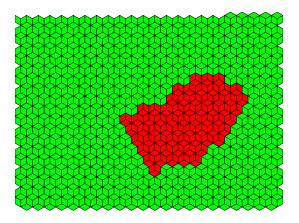
A simple dimer case



Theorem (F.-Regnault, 2010)

Random tilings 000000 Annealed tilings ○○○○●○

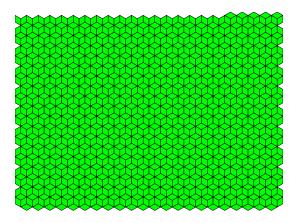
A simple dimer case



Theorem (F.-Regnault, 2010)

Random tilings 000000 Annealed tilings ○○○○●○

A simple dimer case



Theorem (F.-Regnault, 2010)

Some open questions

- Mixing time of the previous example at given T?
- Mixing time for other rhombus tilings (e.g., Penrose)?
- What if T varies (simulated annealing)? Optimal schedule?

Thank you for your attention.

Slides of a longer exposition (12h), with main references accessible: http://lipn.univ-paris13.fr/~fernique/qc

Project QuasiCool (Ph.D. position open at Univ. Paris 13): http://lipn.univ-paris13.fr/~fernique/quasicool/