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@ Aperiodic tilings
© Random tilings

© Annealed tilings



Aperiodic tilings

@ Aperiodic tilings



Aperiodic tilings
°

Quasicrystals (Shechtman discovery, 1982)

Material with sharp diffraction peaks but non-periodic symmetry.
How short range interactions do stabilize non-periodic crystals?
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Aperiodic tilings
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Aperiodic tilings

Lift: homeomorphism which maps tiles on 2-faces of unit n-cubes.



Aperiodic tilings
.

Planar rhombus tilings

Planar: lift in E 4 [0, t]", where E is the slope and t the thickness.



Aperiodic tilings
°

Finite type slopes

Definition

A slope E has finite type if there is finitely many finite patterns s.t.
@ slope E and thickness 1 tilings have no such patterns;

@ tilings with no such patterns are planar with slope E.




Aperiodic tilings
°

Finite type slopes

Definition

A slope E has finite type if there is finitely many finite patterns s.t.
@ slope E and thickness 1 tilings have no such patterns;

@ tilings with no such patterns are planar with slope E.

Theorem (Levitov'88, Le'95, F.-Bédaride'13)

A slope E has finite type iff it is characterized by its subperiods.

This allows only algebraic slopes but can yield simple patterns.



Aperiodic tilings
°

Sofic slopes

Definition

A slope E is sofic if there is finitely many finite colored patterns s.t.
@ slope E and thickness 1 colored tilings can avoid such patterns;

@ colored tilings with no such patterns are planar with slope E.




Aperiodic tilings
°

Sofic slopes

Definition

A slope E is sofic if there are finitely many colored rhombi s.t.
@ colors can match in planar tilings of slope E and thickness 1;

@ rhombus tilings where colors match are planar with slope E.




Aperiodic tilings
°

Sofic slopes

Definition
A slope E is sofic if there are finitely many colored rhombi s.t.
@ colors can match in planar tilings of slope E and thickness 1;

@ rhombus tilings where colors match are planar with slope E.

Theorem (F.-Sablik'12)

A slope E is sofic iff it is computable.

This goes far beyond algebraic slopes but yields huge tile sets.



Aperiodic tilings
°

Substitutive tilings

Definition

A tiling is substitutive if it is invariant by a group/deflate process.

If the group process is unambiguous, then the tiling is not periodic.

Theorem (Mozes'90, Goodmann-Strauss'95, F.-Ollinger'10)

Substitutive rhombus tilings (generally) have sofic slopes.

This allows only algebraic slopes but holds beyond rhombus tilings.



Aperiodic tilings
°

Some open questions

@ What can be said on the thickness? When is it minimal?
@ Which slopes can be enforced with k colored rhombi?

@ How to assemble sofic or finite type tilings?



Random tilings

© Random tilings



Random tilings

Quasicrystals (Shechtman quenching)

Cooled ribbon

>

AR

Cooling wheel

Entropy maximization supersede energy minimization.



Random tilings
.

Tiling space and entropy
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Tiling space: set of the tilings of a given domain.



Random tilings
.

Tiling space and entropy
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Tiling entropy: s := log(size of the tiling space)/(nb. of tiles).
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Typical aspect

Do random tilings a.s. satisfy some properties when the size grows?
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Do random tilings a.s. satisfy some properties when the size grows?



Random tilings
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aspect

Do random tilings a.s. satisfy some properties when the size grows?
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Typical aspect

Do random tilings a.s. satisfy some properties when the size grows?



Random tilings
.

Dimers: Lindstrom-Gessel-Viennot lemma, 1985

Dimer tiling <> non-intersecting path family.



Random tilings
.

Dimers: Lindstrom-Gessel-Viennot lemma, 1985

1 1 1 1
2 2 2 2
3 3 3 3

Path family «» permutation. What does count det(#paths i <> j)7



Random tilings
°

Dimers: Cohn-Kenyon-Propp variational principle, 2001

Height function of a dimer tiling: distance to x + y + z = 0.

Let R C R? be bounded by a piecewise smooth simple closed curve.
If, forn > 0, R, is a tileable domain which approximates nR, then

. oh Oh
nIer;os(R _sup Rl // ( > dx dy,

where ent : R> — R and h is any 2-Lipschitz real function on R.

Moreover, the normalized R,'s random height functions converge in
probability (exponentially fast) towards the integral-maximizing h.

o’
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Dimers: Cohn-Kenyon-Propp variational principle, 2001

Height function of a dimer tiling: distance to x + y + z = 0.

Theorem

Let R C R? be bounded by a piecewise smooth simple closed curve.
If, forn > 0, R, is a tileable domain which approximates nR, then

. oh Oh
nIer;Os(R _sup Rl // ( > dx dy,

where ent : R> — R and h is any 2-Lipschitz real function on R.

Moreover, the normalized R,'s random height functions converge in
probability (exponentially fast) towards the integral-maximizing h.

o’

ent is concave and max. in (0,0) ~ flat tilings have max. entropy.
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Dimers: Cohn-Kenyon-Propp variational principle, 2001

Height function of a dimer tiling: distance to x + y + z = 0.

Theorem

Let R C R? be bounded by a piecewise smooth simple closed curve.
If, forn > 0, R, is a tileable domain which approximates nR, then

. oh Oh
nIer;Os(R _sup Rl // ( > dx dy,

where ent : R> — R and h is any 2-Lipschitz real function on R.

Moreover, the normalized R,'s random height functions converge in
probability (exponentially fast) towards the integral-maximizing h.

o’

ent is concave and max. in (0,0) ~ flat tilings have max. entropy.

Frozen boundaries form algebraic curves (Kenyon-Okounkov, 2005).



Random tilings
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Some open questions

Counting rhombus tilings? Maximal entropy? Typical properties?



Annealed tilings

© Annealed tilings



Annealed tilings
.

Quasicrystals (Bridgman-Stockbarger technique)

Temperature

Length

| — ampoule
— heater
™~ melt

|~ thermocouple

| — crystal

A
™~ thermal insulation

o~

From entropy maximization to energy minimization.



Annealed tilings
°

Gibbs distribution

Definition (Gibbs measure at temperature T)

Probability of the system being in state x: ﬁ exp(—E(x)/T).

Energy of a finite type/sofic tiling: number of forbidden patterns.

The Gibbs distribution is thus
@ concentrated on perfect tiling at T = 0;

@ uniform at T = oo (random tilings).

What inbetween? Which dynamics for tilings?



Annealed tilings
°

Theorem (Kenyon'94)

Rhombus tilings of a simply connected finite domain are flip-linked.

The “Metropolis” Markov chain is thus ergodic for T > 0:

@ draw uniformly at random a vertex of the current tiling;

o if a flip is possible, then do it with probability exp(—AE/T).
Its stationary distribution is the Gibbs distribution.

Mixing time?



Annealed tilings
°

Markov chain mixing time

Markov chain P = (pj;);: goes from i € S to j € S with proba. pj;.
Example: random walk on the web.

Stationary distribution m: m; = > mipj; = limeso PY(-, ).
Example: Google's original PageRank.

Total variation: 0(u, v) = maxacs |[(A) — v(A)|.

Mixing time 7: mins>g max;es 6(P(i, ), m) < %.
Example: how many time shall you shuffle your Rubik’s cube?



Annealed tilings
°

A simple dimer case

Forbid adjacent identical rombi. Fix a maximal entropy domain.
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A simple dimer case

Theorem (Caputo-Martinelli-Toninelli, 2011)
At T = oo (uniform stationary distribution), T = O(n*log(n)*?).
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A simple dimer case

Theorem (Caputo-Martinelli-Toninelli, 2011)
At T = oo (uniform stationary distribution), T = O(n*log(n)*?).
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A simple dimer case

Theorem (Caputo-Martinelli-Toninelli, 2011)
At T = oo (uniform stationary distribution), T = O(n*log(n)*?).
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A simple dimer case

Theorem (F.-Regnault, 2010)
At T = 0 (Dirac stationary distribution), T = O(n?\/n).
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A simple dimer case

Theorem (F.-Regnault, 2010)
At T = 0 (Dirac stationary distribution), T = O(n?\/n).
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A simple dimer case

Theorem (F.-Regnault, 2010)
At T = 0 (Dirac stationary distribution), 7 = O(n?\/n).
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A simple dimer case

Theorem (F.-Regnault, 2010)
At T = 0 (Dirac stationary distribution), 7 = O(n?\/n).
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A simple dimer case

Theorem (F.-Regnault, 2010)
At T = 0 (Dirac stationary distribution), 7 = O(n?\/n).




Annealed tilings
°

Some open questions

e Mixing time of the previous example at given T7
e Mixing time for other rhombus tilings (e.g., Penrose)?

e What if T varies (simulated annealing)? Optimal schedule?



Thank you for your attention.

Slides of a longer exposition (12h), with main references accessible:
http://lipn.univ-parisi3.fr/"fernique/qc

Project QuasiCool (Ph.D. position open at Univ. Paris 13):
http://lipn.univ-parisi3.fr/“fernique/quasicool/
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