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Quasicrystals (Shechtman discovery, 1982)

Material with sharp di�raction peaks but non-periodic symmetry.
How short range interactions do stabilize non-periodic crystals?
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Planar rhombus tilings

n pairwise non-colinear vectors of R2  tilings of R2 by
(n
2

)
rhombi.
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Planar rhombus tilings

Lift: homeomorphism which maps tiles on 2-faces of unit n-cubes.
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Planar rhombus tilings

Planar: lift in E + [0, t]n, where E is the slope and t the thickness.
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Finite type slopes

De�nition

A slope E has �nite type if there is �nitely many �nite patterns s.t.

slope E and thickness 1 tilings have no such patterns;

tilings with no such patterns are planar with slope E .

Theorem (Levitov'88, Le'95, F.-B�edaride'13)

A slope E has �nite type i� it is characterized by its subperiods.

This allows only algebraic slopes but can yield simple patterns.
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So�c slopes

De�nition

A slope E is so�c if there is �nitely many �nite colored patterns s.t.

slope E and thickness 1 colored tilings can avoid such patterns;

colored tilings with no such patterns are planar with slope E .

Theorem (F.-Sablik'12)

A slope E is so�c i� it is computable.

This goes far beyond algebraic slopes but yields huge tile sets.
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Substitutive tilings

De�nition

A tiling is substitutive if it is invariant by a group/de�ate process.

If the group process is unambiguous, then the tiling is not periodic.

Theorem (Mozes'90, Goodmann-Strauss'95, F.-Ollinger'10)

Substitutive rhombus tilings (generally) have so�c slopes.

This allows only algebraic slopes but holds beyond rhombus tilings.
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Some open questions

What can be said on the thickness? When is it minimal?

Which slopes can be enforced with k colored rhombi?

How to assemble so�c or �nite type tilings?
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Quasicrystals (Shechtman quenching)

Heating

Melt

Cooling wheel

Cooled ribbon

Entropy maximization supersede energy minimization.
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Tiling space and entropy

Tiling space: set of the tilings of a given domain.
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Tiling space and entropy

Tiling entropy: s := log(size of the tiling space)/(nb. of tiles).
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Typical aspect

Do random tilings a.s. satisfy some properties when the size grows?
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Dimers: Lindstr�om-Gessel-Viennot lemma, 1985

Dimer tiling ↔ non-intersecting path family.
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Dimers: Lindstr�om-Gessel-Viennot lemma, 1985
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Path family ↔ permutation. What does count det(#paths i ↔ j)?
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Dimers: Cohn-Kenyon-Propp variational principle, 2001

Height function of a dimer tiling: distance to x + y + z = 0.

Theorem

Let R ⊂ R2 be bounded by a piecewise smooth simple closed curve.
If, for n ≥ 0, Rn is a tileable domain which approximates nR , then

lim
n→∞

s(Rn) = sup
h

1

|R|

∫∫
R
ent

(
∂h

∂x
,
∂h

∂y

)
dx dy ,

where ent : R2 → R and h is any 2-Lipschitz real function on R .

Moreover, the normalized Rn's random height functions converge in
probability (exponentially fast) towards the integral-maximizing h.

ent is concave and max. in (0, 0)  �at tilings have max. entropy.

Frozen boundaries form algebraic curves (Kenyon-Okounkov, 2005).
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Some open questions

Counting rhombus tilings? Maximal entropy? Typical properties?
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Quasicrystals (Bridgman-Stockbarger technique)

From entropy maximization to energy minimization.
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Gibbs distribution

De�nition (Gibbs measure at temperature T )

Probability of the system being in state x : 1
Z(T ) exp(−E (x)/T ).

Energy of a �nite type/so�c tiling: number of forbidden patterns.

The Gibbs distribution is thus

concentrated on perfect tiling at T = 0;

uniform at T =∞ (random tilings).

What inbetween? Which dynamics for tilings?
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Flips

Theorem (Kenyon'94)

Rhombus tilings of a simply connected �nite domain are �ip-linked.

The �Metropolis� Markov chain is thus ergodic for T > 0:

draw uniformly at random a vertex of the current tiling;

if a �ip is possible, then do it with probability exp(−∆E/T ).

Its stationary distribution is the Gibbs distribution.

Mixing time?
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Markov chain mixing time

Markov chain P = (pij)ij : goes from i ∈ S to j ∈ S with proba. pij .
Example: random walk on the web.

Stationary distribution π: πj =
∑

i∈S πipij = limt∞ Pt(· , j).
Example: Google's original PageRank.

Total variation: δ(µ, ν) = maxA⊂S |µ(A)− ν(A)|.

Mixing time τ : mint≥0 maxi∈S δ(Pt(i , · ), π) ≤ 1
4 .

Example: how many time shall you shu�e your Rubik's cube?
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A simple dimer case

Forbid adjacent identical rombi. Fix a maximal entropy domain.
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A simple dimer case

Theorem (Caputo-Martinelli-Toninelli, 2011)

At T =∞ (uniform stationary distribution), τ = O(n4 log(n)12).
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Theorem (F.-Regnault, 2010)

At T = 0 (Dirac stationary distribution), τ = O(n2
√
n).
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Some open questions

Mixing time of the previous example at given T?

Mixing time for other rhombus tilings (e.g., Penrose)?

What if T varies (simulated annealing)? Optimal schedule?



Thank you for your attention.

Slides of a longer exposition (12h), with main references accessible:
http://lipn.univ-paris13.fr/~fernique/qc

Project QuasiCool (Ph.D. position open at Univ. Paris 13):
http://lipn.univ-paris13.fr/~fernique/quasicool/

http://lipn.univ-paris13.fr/~fernique/qc
http://lipn.univ-paris13.fr/~fernique/quasicool/
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