Reconnaissance d'hyperplan discret : une approche par désubstitution

Valérie Berthé et Thomas Fernique

LIRMM - Université Montpellier II

LAIC, 15 Mars 2007

Reconnaissance d'hyperplan discret :

Étant donné un ensemble de points de \mathbb{Z}^d , peut-on le décrire comme une discrétisation d'hyperplan réel?

Reconnaissance d'hyperplan discret :

Étant donné un ensemble de points de \mathbb{Z}^d , peut-on le décrire comme une discrétisation d'hyperplan réel?

Approche de cet exposé :

Utilisation de substitutions multi-dimensionnelles pour étendre aux hyperplans des algorithmes "à la Wu" (recodages itérés de mots).

Reconnaissance d'hyperplan discret :

Étant donné un ensemble de points de \mathbb{Z}^d , peut-on le décrire comme une discrétisation d'hyperplan réel?

Approche de cet exposé :

Utilisation de substitutions multi-dimensionnelles pour étendre aux hyperplans des algorithmes "à la Wu" (recodages itérés de mots).

Par souci de clarté :

Dans ce qui suit, on suppose d=3 (i.e., hyperplan \rightsquigarrow plan). Penser au cas d=2 peut aider (mais peut masquer la difficulté).

Substitutions généralisées

Reconnaissance de plan

Euclide généralisé

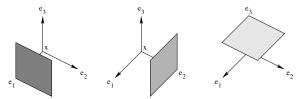
Substitutions généralisées

3 Reconnaissance de plan

4 Euclide généralisé

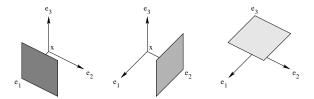
•00000 Plan plissé

 $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$ base de \mathbb{R}^3 . $\vec{x} \in \mathbb{Z}^3$ et $i \in \{1, 2, 3\} \rightsquigarrow face (\vec{x}, i^*)$:



Plan plissé

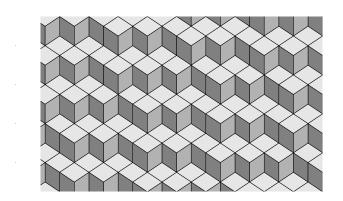
 $(\vec{e}_1,\vec{e}_2,\vec{e}_3)$ base de \mathbb{R}^3 . $\vec{x} \in \mathbb{Z}^3$ et $i \in \{1,2,3\} \leadsto \textit{face}(\vec{x},i^*)$:



Définition

Plan plissé de normale $\vec{\alpha} \in \mathbb{R}^3_+ \setminus \{0\}$ et d'intercept $\rho \in \mathbb{R}$:

$$\mathcal{P}_{\vec{\alpha},\rho} = \{ (\vec{x}, i^*) \mid 0 \le \langle \vec{x}, \vec{\alpha} \rangle + \rho < \langle \vec{e}_i, \vec{\alpha} \rangle \}.$$



Reconnaissance de plan

Sommets de $\mathcal{P}_{\vec{\alpha},\rho}$: plan discret standard de param. $(\vec{\alpha},\rho)$.

Soient $\vec{u} = \vec{e}_1 + \vec{e}_2 + \vec{e}_3$ et π la projection orthogonale selon \vec{u} .

Proposition

Un plan plissé est homéomorphe au plan réel \vec{u}^{\perp} par π .

Soient $\vec{u} = \vec{e}_1 + \vec{e}_2 + \vec{e}_3$ et π la projection orthogonale selon \vec{u} .

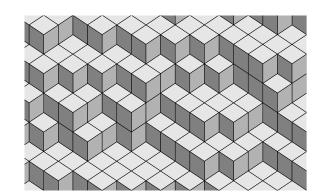
Proposition

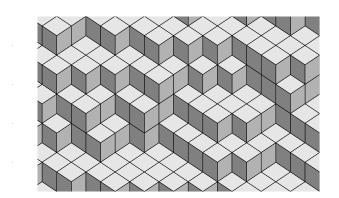
Un plan plissé est homéomorphe au plan réel \vec{u}^{\perp} par π .

Par extension:

Définition [Jamet]

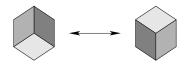
Surface plissée : ensemble de faces homéomorphe à \vec{u}^{\perp} par π .





Remarque : projection des faces \simeq pavage du plan par losanges.

Pavage par losanges → physique statistique → flip :



Reconnaissance de plan

Flip sur surface plissée \simeq ajout/retrait d'un cube unité.

Pavage par losanges → physique statistique → flip :

Reconnaissance de plan

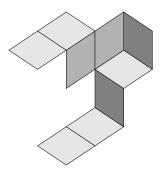
Flip sur surface plissée \simeq ajout/retrait d'un cube unité.

Théorème [Arnoux-Berthé-F.-Jamet, 2007]

Surface plissée = plan plissé (oblique) + séquence de flips.

→ deux définitions équivalentes.

Patch : ensemble fini de faces, inclus dans une surface plissée.

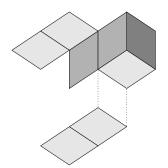


un patch

Plans et surfaces plissés

Patch : ensemble fini de faces, inclus dans une surface plissée.

Reconnaissance de plan

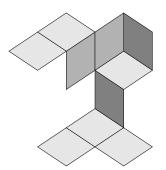


pas nécessairement connexe

Plans et surfaces plissés

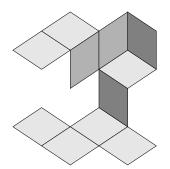
Patch : ensemble fini de faces, inclus dans une surface plissée.

Reconnaissance de plan



pas nécessairement inclus dans un plan plissé

Patch : ensemble fini de faces, inclus dans une surface plissée.



pas nécessairement un patch!

Substitutions généralisées

Alphabet $A = \{1, ..., 3\} \rightsquigarrow \text{mots } A^* \text{ (concaténations de lettres)}.$

Reconnaissance de plan

Substitution σ : morphisme non effaçant de \mathcal{A}^* ($\sigma \neq Id$).

$$\sigma: \left\{ \begin{array}{ll} 1 \rightarrow 12 \\ 2 \rightarrow 13 \\ 3 \rightarrow 1 \end{array} \right. \rightsquigarrow \sigma(1213) = \sigma(1)\sigma(2)\sigma(1)\sigma(3) = 1213121.$$

Alphabet $A = \{1, ..., 3\} \rightsquigarrow \text{mots } A^* \text{ (concaténations de lettres)}.$

Reconnaissance de plan

Substitution σ : morphisme non effaçant de \mathcal{A}^* ($\sigma \neq Id$).

$$\sigma: \left\{ \begin{array}{ll} 1 \rightarrow 12 \\ 2 \rightarrow 13 \\ 3 \rightarrow 1 \end{array} \right. \rightsquigarrow \sigma(1213) = \sigma(1)\sigma(2)\sigma(1)\sigma(3) = 1213121.$$

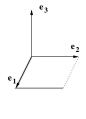
Matrice d'incidence de σ : $M_{\sigma} = (m_{ii})$, où $m_{ii} = |\sigma(i)|_i$.

$$M_{\sigma} = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right)$$

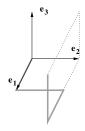
"Relèvement" d'un mot $u \in \{1, 2, 3\}^*$ en une ligne brisée $\gamma(u)$:

$$\gamma(u_1 \ldots u_k) = \{(\vec{y}_1, u_1), \ldots, (\vec{y}_k, u_k)\}, \quad \vec{y}_{i+1} = \vec{y}_i + \vec{e}_{u_i},$$

où (\vec{y}, j) est le segment $[\vec{y}, \vec{y} + \vec{e}_i], \vec{y} \in \mathbb{Z}^3, j \in \{1, 2, 3\}.$



 $\gamma(12)$



Reconnaissance de plan

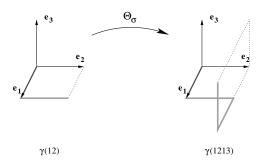
 $\gamma(1213)$

"Relèvement" de σ en une application Θ_{σ} sur les segments :

$$\Theta_{\sigma} \circ \gamma = \gamma \circ \sigma.$$

Reconnaissance de plan

Expression analytique calculable. On a $\Theta_{\sigma}(\vec{y},j) = M_{\sigma}\vec{y} + \Theta_{\sigma}(\vec{0},j)$.



Dualité segment-face :

$$[(\vec{y},j),(\vec{x},i^*)] = \left\{ \begin{array}{ll} 1 & \text{si } \vec{x} = \vec{y} \text{ et } i = j, \\ 0 & \text{sinon.} \end{array} \right.$$

Reconnaissance de plan

Application Θ_{σ} sur les segments \rightsquigarrow application Θ_{σ}^* sur les faces :

$$[\Theta_{\sigma}(\vec{y},j),(\vec{x},i^*)] = [(\vec{y},j),\Theta_{\sigma}^*(\vec{x},i^*)].$$

Si det $M_{\sigma}=\pm 1$, expression analytique calculable. On a :

$$\Theta_{\sigma}^*(\vec{x},i^*) = M_{\sigma}^{-1}\vec{x} + \Theta_{\sigma}^*(\vec{0},i^*).$$

Plans et surfaces plissés

$$\sigma: \left\{ egin{array}{ll} 1
ightarrow 12 \ 2
ightarrow 13 & \stackrel{ ext{rel\`ev.}}{\longrightarrow} & \Theta_\sigma: \left\{ egin{array}{ll} (ec{0},1)
ightarrow \{(ec{0},1),(ec{e}_1,2)\} \ (ec{0},2)
ightarrow \{(ec{0},1),(ec{e}_1,3)\} \ (ec{0},3)
ightarrow \{(ec{0},1)\} \end{array}
ight.$$

$$\begin{split} \sigma : \left\{ \begin{array}{l} 1 \to 12 \\ 2 \to 13 \end{array} \right. & \stackrel{\mathrm{relev.}}{\longrightarrow} \quad \Theta_{\sigma} : \left\{ \begin{array}{l} (\vec{0},1) \to \{(\vec{0},1),(\vec{e}_{1},2)\} \\ (\vec{0},2) \to \{(\vec{0},1),(\vec{e}_{1},3)\} \\ (\vec{0},3) \to \{(\vec{0},1)\} \end{array} \right. \\ & \stackrel{\mathrm{dual.}}{\longrightarrow} \quad \Theta_{\sigma}^{*} : \left\{ \begin{array}{l} (\vec{0},1^{*}) \to \{(\vec{0},1^{*}),(\vec{0},2^{*}),(\vec{0},3^{*})\} \\ (\vec{0},2^{*}) \to \{(-\vec{e}_{3},1^{*})\} \\ (\vec{0},3^{*}) \to \{(-\vec{e}_{3},2^{*})\} \end{array} \right. \end{aligned}$$

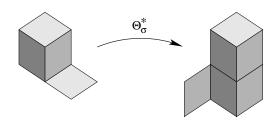
$$\sigma: \left\{ \begin{array}{ll} 1 \to 12 \\ 2 \to 13 \\ 3 \to 1 \end{array} \right. \stackrel{\text{relèv.}}{\longrightarrow} \quad \Theta_{\sigma}: \left\{ \begin{array}{ll} (\vec{0},1) \to \{(\vec{0},1),(\vec{e}_{1},2)\} \\ (\vec{0},2) \to \{(\vec{0},1),(\vec{e}_{1},3)\} \\ (\vec{0},3) \to \{(\vec{0},1)\} \end{array} \right.$$

$$\stackrel{\text{dual.}}{\longrightarrow} \quad \Theta_{\sigma}^{*}: \left\{ \begin{array}{ll} (\vec{0},1^{*}) \to \{(\vec{0},1^{*}),(\vec{0},2^{*}),(\vec{0},3^{*})\} \\ (\vec{0},2^{*}) \to \{(-\vec{e}_{3},1^{*})\} \\ (\vec{0},3^{*}) \to \{(-\vec{e}_{3},2^{*})\} \end{array} \right.$$

Reconnaissance de plan

Possibles recouvrements des images de faces distinctes :

$$\Theta_\sigma^*(\vec{e}_1,2^*) = \{(\vec{0},1^*)\} \subset \Theta_\sigma^*(\vec{0},1^*).$$



Reconnaissance de plan

 σ sur mots $\stackrel{\text{relèv.}}{\longrightarrow} \Theta_{\sigma}$ sur segments $\stackrel{\text{dual.}}{\longrightarrow} \Theta_{\sigma}^*$ sur faces.

 Θ_{σ}^{*} est la substitution généralisée associée à σ [Arnoux-Ito, 2001] :

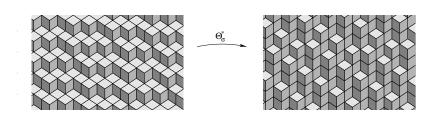
- agit sur les ensembles de faces de l'espace;
- expression analytique quand det $M_{\sigma}=\pm 1$.

- Substitutions généralisées
- Reconnaissance de plan

Images de plans et surfaces plissés (substitution)

Théorème [F. 2006]

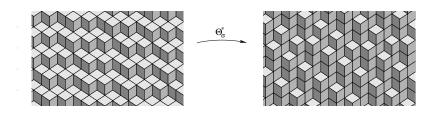
 Θ_{σ}^* envoie sans recouvrement le plan plissé $\mathcal{P}_{\vec{\alpha},\rho}$ sur $\mathcal{P}_{t_{M_{\sigma}\vec{\alpha},\rho}}$.



Plans et surfaces plissés

Théorème [F. 2006]

 Θ_{σ}^* envoie sans recouvrement le plan plissé $\mathcal{P}_{\vec{\alpha},\rho}$ sur $\mathcal{P}_{tM_{\sigma}\vec{\alpha},\rho}$.



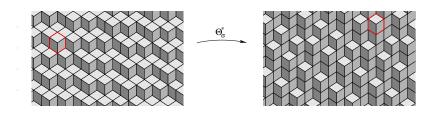
Théorème [F. 2006, Arnoux-Berthé-F.-Jamet 2007]

 Θ_{σ}^* agit sans recouvrement sur les surfaces plissées.

Théorème [F. 2006]

 Θ_{σ}^* envoie sans recouvrement le plan plissé $\mathcal{P}_{\vec{\alpha},\rho}$ sur $\mathcal{P}_{tM_{\sigma}\vec{\alpha},\rho}$.

Reconnaissance de plan



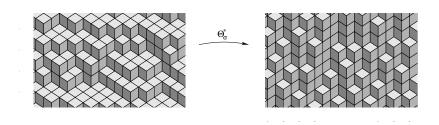
Théorème [F. 2006, Arnoux-Berthé-F.-Jamet 2007]

 Θ_{σ}^* agit sans recouvrement sur les surfaces plissées.

Théorème [F. 2006]

 Θ_{σ}^* envoie sans recouvrement le plan plissé $\mathcal{P}_{\vec{\alpha},\rho}$ sur $\mathcal{P}_{tM_{\sigma}\vec{\alpha},\rho}$.

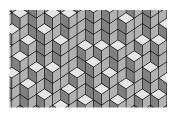
Reconnaissance de plan



Théorème [F. 2006, Arnoux-Berthé-F.-Jamet 2007]

 Θ_{σ}^* agit sans recouvrement sur les surfaces plissées.

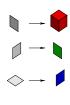
Surface plissée σ -pavable : partition par translatés de $\Theta^*_{\sigma}(\vec{0}, i^*)$.

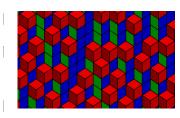


Désubstitution

Définition

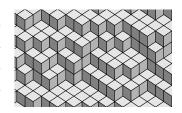
Surface plissée σ -pavable : partition par translatés de $\Theta^*_{\sigma}(\vec{0}, i^*)$.





Définition

Surface plissée σ -pavable : partition par translatés de $\Theta_{\sigma}^*(\vec{0}, i^*)$.



Reconnaissance de plan 000000

→ antécédent "propre" (pas de recouvrement).

Théorème [Berthé-F., 2007]

Une surface plissée σ -pavable admet un unique antécédent par Θ_{σ}^* . De plus, cet antécédent est aussi une surface plissée.

→ on parle de désubstituabilité d'une surface plissée.

Théorème [Berthé-F., 2007]

Une surface plissée σ -pavable admet un unique antécédent par Θ_{σ}^* . De plus, cet antécédent est aussi une surface plissée.

→ on parle de désubstituabilité d'une surface plissée.

Proposition

Seuls les plans plissés se désubstituent en plans plissés.

Proposition

Un plan plissé *non plat* est toujours désubstituable (σ bien choisi).

Schéma pour décider si une surface plissée S_0 est un plan plissé :

Reconnaissance de plan

Construire une suite $(S_n)_{n>0}$, où S_{n+1} désubstituée de S_n . Alors :

- $\exists N$ t.g. S_N plan plissé plat $\Rightarrow S_0$ plan plissé;
- $\exists N$ t.q. S_N non désubstituable $\Rightarrow S_0$ pas plan plissé;

Schéma pour décider si une surface plissée S_0 est un plan plissé :

Reconnaissance de plan

Construire une suite $(S_n)_{n>0}$, où S_{n+1} désubstituée de S_n . Alors :

- $\exists N$ t.g. S_N plan plissé plat $\Rightarrow S_0$ plan plissé;
- $\exists N$ t.g. S_N non désubstituable $\Rightarrow S_0$ pas plan plissé;

Deux problèmes :

- cas d'une suite infinie?
- choix des substitutions?

Si S_N plan plissé plat, alors $\exists c \in \mathbb{Z}, i \in \{1,2,3\}$ t.q. :

$$\mathcal{S}_{\textit{N}} = \mathcal{P}_{\vec{\alpha},\rho} \; \Leftrightarrow \; \vec{\alpha} = \vec{e}_{\textit{i}} \; \mathrm{et} \; \rho \in [\textit{c},\textit{c}+1[.$$

Si S_N plan plissé plat, alors $\exists c \in \mathbb{Z}, i \in \{1,2,3\}$ t.q. :

$$\mathcal{S}_{N} = \mathcal{P}_{\vec{\alpha},\rho} \iff \vec{\alpha} = \vec{e}_{i} \text{ et } \rho \in [c,c+1[.$$

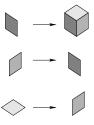
Si σ_i est la substitution t.q. $\Theta^*_{\sigma_i}(S_{i+1}) = S_i$, alors :

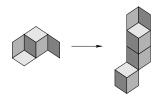
$$\mathcal{S}_0 = \mathcal{P}_{\vec{\alpha},\rho} \iff \vec{\alpha} = {}^t M \vec{e}_i \text{ et } \rho \in [c,c+1[.$$

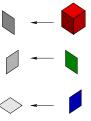
où
$$M = M_{\sigma_{N-1}} \times \ldots \times M_{\sigma_0}$$
.

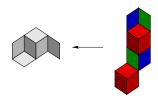
→ ensemble des paramètres acceptables d'un plan plissé reconnu.

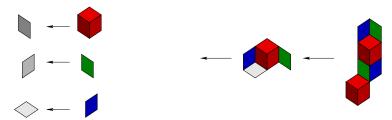
L'image d'un patch est un patch (plus grand).



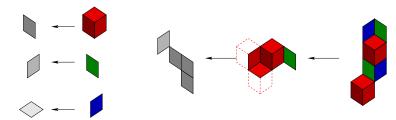


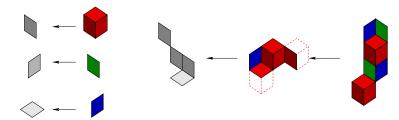


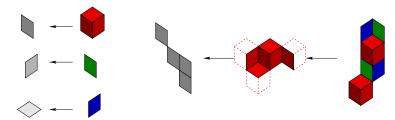






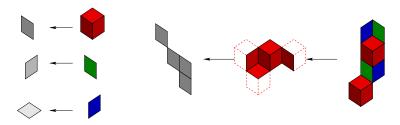






Plans et surfaces plissés

L'image d'un patch est un patch (plus grand). Désubstitution : problème des bords.



Reconnaissance de plan 000000

→ traitement des paliers extrémaux de droite discrète à généraliser.

Reconnaissance de plan

2 Substitutions généralisées

3 Reconnaissance de plan

4 Euclide généralisé

But:

Approximation simultanée d'un d-uplet de réels par des rationnels :

$$\delta>0, \ \vec{\alpha}\in[0,1]^d \ \leadsto \ (q_n,\vec{p}_n)\in\mathbb{N}^*\times\mathbb{Z}^d \ \mathrm{t.q.} \ ||q_n\vec{\alpha}-\vec{p}_n||\leq q_n^{-\delta}.$$

But:

Fractions continues d-dimensionnelles

Approximation simultanée d'un d-uplet de réels par des rationnels :

$$\delta>0, \ \vec{\alpha}\in[0,1]^d \ \leadsto \ (q_n,\vec{p}_n)\in\mathbb{N}^*\times\mathbb{Z}^d \ \mathrm{t.q.} \ ||q_n\vec{\alpha}-\vec{p}_n||\leq q_n^{-\delta}.$$

Principe général :

$$\vec{\alpha} = \vec{\alpha}_0 \xrightarrow{M_0} \vec{\alpha}_1 \xrightarrow{M_1} \dots \xrightarrow{M_{n-1}} \vec{\alpha}_n \xrightarrow{M_n} \dots$$

où
$$M_n \in GL(d+1,\mathbb{N})$$
 t.q. $(1,\vec{\alpha}_n) \propto M_n(1,\vec{\alpha}_{n+1})$.

But:

Approximation simultanée d'un d-uplet de réels par des rationnels :

$$\delta > 0, \ \vec{\alpha} \in [0,1]^d \ \leadsto \ (q_n, \vec{p}_n) \in \mathbb{N}^* \times \mathbb{Z}^d \ \text{t.q.} \ ||q_n \vec{\alpha} - \vec{p}_n|| \le q_n^{-\delta}.$$

Principe général :

$$\vec{\alpha} = \vec{\alpha}_0 \xrightarrow{M_0} \vec{\alpha}_1 \xrightarrow{M_1} \dots \xrightarrow{M_{n-1}} \vec{\alpha}_n \xrightarrow{M_n} \dots$$

où $M_n \in \mathit{GL}(d+1,\mathbb{N})$ t.q. $(1,\vec{\alpha}_n) \propto M_n(1,\vec{\alpha}_{n+1})$. Convergents :

$$(1, \vec{\alpha}) \propto M_0 \times \ldots \times M_n (1, \vec{\alpha}_{n+1})$$

 $(q_n, \vec{p}_n) \propto M_0 \times \ldots \times M_n (1, \vec{0}).$

Algorithme d'Euclide (d = 1)

$$\alpha_{n+1} = \frac{1}{\alpha_n} - \left\lfloor \frac{1}{\alpha_n} \right\rfloor = T(\alpha_n).$$

Reconnaissance de plan

On a : $(1, \alpha_n) \propto E_{a_n}(1, \alpha_{n+1})$, avec :

$$a_n = \lfloor \alpha_n^{-1} \rfloor$$
 et $E_a = \begin{pmatrix} a & 1 \\ 1 & 0 \end{pmatrix}$.

Plans et surfaces plissés

$$\alpha_{n+1} = \frac{1}{\alpha_n} - \left\lfloor \frac{1}{\alpha_n} \right\rfloor = T(\alpha_n).$$

Reconnaissance de plan

On a : $(1, \alpha_n) \propto E_{a_n}(1, \alpha_{n+1})$, avec :

$$a_n = \lfloor \alpha_n^{-1} \rfloor$$
 et $E_a = \begin{pmatrix} a & 1 \\ 1 & 0 \end{pmatrix}$.

Convergence en $\delta = 1$:

$$(q_n, p_n) \propto E_{a_0} \times \ldots \times E_{a_n}(1, 0) \Leftrightarrow \frac{p_n}{q_n} = \frac{1}{a_0 + \frac{1}{a_1 + \cdots}}.$$

$$(\alpha_{n+1},\beta_{n+1}) = \begin{cases} (T(\alpha_n),\frac{\beta_n}{\alpha_n}) & \text{si } \alpha_n \geq \beta_n \\ (\frac{\alpha_n}{\beta_n},T(\beta_n)) & \text{sinon.} \end{cases}$$

Reconnaissance de plan

On a : $(1, \alpha_n, \beta_n) \propto B_{a_n, \varepsilon_n}(1, \alpha_{n+1}, \beta_{n+1})$, avec :

$$(a_n, \varepsilon_n) = \begin{cases} (\lfloor \alpha_n^{-1} \rfloor, 1) & \text{si } \alpha_n \ge \beta_n \\ (\lfloor \beta_n^{-1} \rfloor, 2) & \text{sinon.} \end{cases}$$

$$B_{a,1} = \left(egin{array}{ccc} a & 1 & 0 \ 1 & 0 & 0 \ 0 & 0 & 1 \end{array}
ight) \quad {
m et} \quad B_{a,2} = \left(egin{array}{ccc} a & 0 & 1 \ 0 & 1 & 0 \ 1 & 0 & 0 \end{array}
ight)$$

Convergence en $\delta > 0$ presque partout.

Euclide:

$$\frac{\pi}{4} \rightsquigarrow (a_n)_n = (1, 3, 1, 1, 1, 15, \ldots) \qquad \frac{e}{3} \rightsquigarrow (a_n)_n = (1, 9, 1, 1, 1, 5, \ldots)$$

$$\frac{p_7}{q_7} = \frac{355}{452} = 0.7853982\dots$$

$$\frac{p_9}{q_9} = \frac{550}{607} = 0.906095\dots$$

Euclide:

$$\frac{\pi}{4} \rightsquigarrow (a_n)_n = (1, 3, 1, 1, 1, 15, \dots) \qquad \frac{e}{3} \rightsquigarrow (a_n)_n = (1, 9, 1, 1, 1, 5, \dots)$$
$$\frac{p_7}{q_7} = \frac{355}{452} = 0.7853982\dots \qquad \frac{p_9}{q_9} = \frac{550}{607} = 0.906095\dots$$

Reconnaissance de plan

Brun:

$$\left(\frac{\pi}{4}, \frac{e}{3}\right) \rightsquigarrow (a_n, \varepsilon_n)_n = ((1, 2), (1, 1), (6, 1), (1, 2), (1, 1), (1, 1), \ldots)$$

$$\left(\frac{p_{17}^{(1)}}{q_{17}}, \frac{p_{17}^{(2)}}{q_{17}}\right) = \left(\frac{65990}{84021}, \frac{76131}{84021}\right) = (0.7853988..., 0.906094...)$$

Numération	Géométrie
d -uplet $ec{lpha} \in [0,1]^d$	plan plissé $\mathcal{P}_{(1,ec{lpha})}$
$(1,\vec{\alpha}_n)=M_n(1,\vec{\alpha}_{n+1})$	$\mathcal{P}_{(1,ec{lpha}_n)} = \Theta^*_{\sigma_n}(\mathcal{P}_{(1,ec{lpha}_{n+1})})$ avec tM_n matrice d'incidence de σ_n

Numération	Géométrie
d -uplet $ec{lpha} \in [0,1]^d$	plan plissé $\mathcal{P}_{(1,ec{lpha})}$
$(1,\vec{\alpha}_n)=M_n(1,\vec{\alpha}_{n+1})$	$\mathcal{P}_{(1,\vec{lpha}_n)} = \Theta^*_{\sigma_n}(\mathcal{P}_{(1,\vec{lpha}_{n+1})})$ avec tM_n matrice d'incidence de σ_n
	avec m_n matrice difficience de σ_n
$(1, \alpha_0, \beta_0) = (1, \frac{11}{14}, \frac{19}{21})$	

Numération	Géométrie
d -uplet $ec{lpha} \in [0,1]^d$	plan plissé $\mathcal{P}_{(1,ec{lpha})}$
$(1,\vec{\alpha}_n)=M_n(1,\vec{\alpha}_{n+1})$	$\mathcal{P}_{(1,ec{lpha}_n)} = \Theta^*_{\sigma_n}(\mathcal{P}_{(1,ec{lpha}_{n+1})})$
	avec tM_n matrice d'incidence de σ_n
$(1, \frac{11}{14}, \frac{19}{21}) \propto B_{1,2}(1, \frac{33}{38}, \frac{2}{19})$	

Numération	Géométrie
d -uplet $ec{lpha} \in [0,1]^d$	plan plissé $\mathcal{P}_{(1,ec{lpha})}$
$(1,\vec{\alpha}_n)=M_n(1,\vec{\alpha}_{n+1})$	$\mathcal{P}_{(1,ec{lpha}_n)} = \Theta^*_{\sigma_n}(\mathcal{P}_{(1,ec{lpha}_{n+1})})$ avec tM_n matrice d'incidence de σ_n
$(1,rac{33}{38},rac{2}{19}) \propto B_{1,1}(1,rac{5}{33},rac{4}{33})$	

Numération	Géométrie
d -uplet $ec{lpha} \in [0,1]^d$	plan plissé $\mathcal{P}_{(1,ec{lpha})}$
$(1,\vec{\alpha}_n)=M_n(1,\vec{\alpha}_{n+1})$	$\mathcal{P}_{(1,ec{lpha}_n)} = \Theta_{\sigma_n}^*(\mathcal{P}_{(1,ec{lpha}_{n+1})})$ avec tM_n matrice d'incidence de σ_n
$(1,rac{5}{33},rac{4}{33}) \propto B_{6,1}(1,rac{3}{4},rac{4}{5})$	

Numération	Géométrie
d -uplet $ec{lpha} \in [0,1]^d$	plan plissé $\mathcal{P}_{(1,ec{lpha})}$
$(1,\vec{\alpha}_n)=M_n(1,\vec{\alpha}_{n+1})$	$\mathcal{P}_{(1,ec{lpha}_n)} = \Theta^*_{\sigma_n}(\mathcal{P}_{(1,ec{lpha}_{n+1})})$
	avec tM_n matrice d'incidence de σ_n
$(1,rac{3}{4},rac{4}{5}) \propto B_{1,2}(1,rac{3}{4},rac{1}{4})$	

Numération	Géométrie
d -uplet $ec{lpha} \in [0,1]^d$	plan plissé $\mathcal{P}_{(1,ec{lpha})}$
$(1,\vec{\alpha}_n)=M_n(1,\vec{\alpha}_{n+1})$	$\mathcal{P}_{(1,ec{lpha}_n)} = \Theta^*_{\sigma_n}(\mathcal{P}_{(1,ec{lpha}_{n+1})})$ avec tM_n matrice d'incidence de σ_n
$(1,rac{3}{4},rac{1}{4}) \propto B_{1,1}(1,rac{1}{3},rac{1}{3})$	

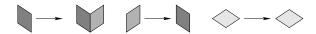
Numération	Géométrie
d -uplet $ec{lpha} \in [0,1]^d$	plan plissé $\mathcal{P}_{(1,ec{lpha})}$
$(1,\vec{\alpha}_n)=M_n(1,\vec{\alpha}_{n+1})$	$\mathcal{P}_{(1,ec{lpha}_n)} = \Theta^*_{\sigma_n}(\mathcal{P}_{(1,ec{lpha}_{n+1})})$ avec tM_n matrice d'incidence de σ_n
$(1,rac{1}{3},rac{1}{3}) \propto B_{3,1}(1,0,1)$	

Numération	Géométrie
d -uplet $ec{lpha} \in [0,1]^d$	plan plissé $\mathcal{P}_{(1,ec{lpha})}$
$(1,\vec{\alpha}_n)=M_n(1,\vec{\alpha}_{n+1})$	$\mathcal{P}_{(1,ec{lpha}_n)} = \Theta^*_{\sigma_n}(\mathcal{P}_{(1,ec{lpha}_{n+1})})$ avec tM_n matrice d'incidence de σ_n
$(1,0,1) \propto B_{1,2}(1,0,0)$	

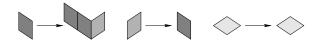
- développement fini (plan plat) ⇔ plan rationnel;
- développement infini ⇔ plan irrationnel;
- erreur de désubstitution \Leftrightarrow surface non plane ($\delta > 0$).

Reconnaissance de plan

- développement fini (plan plat) ⇔ plan rationnel;
- développement infini ⇔ plan irrationnel;
- erreur de désubstitution \Leftrightarrow surface non plane ($\delta > 0$).

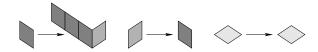


- développement fini (plan plat) ⇔ plan rationnel;
- développement infini ⇔ plan irrationnel;
- erreur de désubstitution \Leftrightarrow surface non plane ($\delta > 0$).

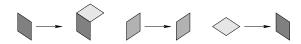


Reconnaissance de plan

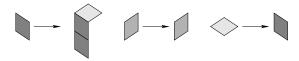
- développement fini (plan plat) ⇔ plan rationnel;
- développement infini ⇔ plan irrationnel;
- erreur de désubstitution \Leftrightarrow surface non plane ($\delta > 0$).



- développement fini (plan plat) ⇔ plan rationnel;
- développement infini ⇔ plan irrationnel;
- erreur de désubstitution \Leftrightarrow surface non plane ($\delta > 0$).

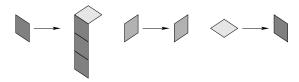


- développement fini (plan plat) ⇔ plan rationnel;
- développement infini ⇔ plan irrationnel;
- erreur de désubstitution \Leftrightarrow surface non plane ($\delta > 0$).



Reconnaissance de plan

- développement fini (plan plat) ⇔ plan rationnel;
- développement infini ⇔ plan irrationnel;
- erreur de désubstitution \Leftrightarrow surface non plane ($\delta > 0$).



Dans cet exposé :

- Schéma de reconnaissance d'hyperplan discret (infini).
- Lien avec les fractions continues multidimensionnelles.

Dans cet exposé :

- Schéma de reconnaissance d'hyperplan discret (infini).
- Lien avec les fractions continues multidimensionnelles.

Pas dans cet exposé :

- Algorithme dans le cas fini (problème des bords).
- Polygonalisation, version incrémentale...

Dans cet exposé :

- Schéma de reconnaissance d'hyperplan discret (infini).
- Lien avec les fractions continues multidimensionnelles.

Pas dans cet exposé :

- Algorithme dans le cas fini (problème des bords).
- Polygonalisation, version incrémentale...

Pas dans cet exposé non plus :

- Codimensions supérieures (pavage de Penrose. . .).
- Génération de domaines fondamentaux (motifs fractals).