Cut and Project Tilings 1: Definitions and Patterns

Thomas Fernique Laboratoire d'Informatique de Paris Nord CNRS & Univ. Paris 13

Cut and project tilings

Let $\vec{v}_1, \ldots, \vec{v}_n \in \mathbb{R}^d$ and define the tiles:

$$\mathcal{T}_{i_1,...,i_d} := \left\{ \sum_{j=1}^d \lambda_{i_j} ec{v}_{i_j} \; \middle| \; 0 \leq \lambda_{i_j} \leq 1
ight\}.$$

Definition $(n \rightarrow d \text{ tiling})$

A $n \to d$ tiling is a "face-to-face" tiling of \mathbb{R}^d by such tiles.

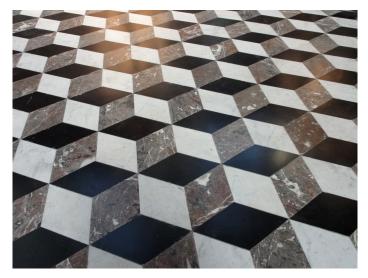
It naturally lifts onto a *d*-dim. surface of \mathbb{R}^n via $\vec{v_i} \mapsto \vec{e_i}$.

Planar tilings

Definition (Planar tiling)

A $n \to d$ tiling is said to be *planar* if it lifts into a tube $E + [0, 1]^n$, where E is an affine d-plane of \mathbb{R}^n called the *slope* of the tiling.

n	d	example
2	1	Sturmian words
3	1	Billiard words
3	2	Discrete planes
4	2	Ammann-Beenker tilings
5	2	Penrose tilings
6	3	Icosahedral tilings
:	:	÷



A rhombille tiling in Saint-Étienne de Marmoutier (Alsace).

Michael Baake's place & my chocolates: Ammann-Beenker tilings.

My place: a homemade Penrose tiling (oak & pinewood).

Grassmann coordinates

Definition (Grassmann coordinates)

The Grassmann (projective) coordinates of a *d*-plane of \mathbb{R}^n are the $d \times d$ minors $G_{i_1...i_d}$ of a matrix whose columns generate this plane.

For n - d = 1 this is the usual normal vector.

Proposition

The frequency of $T_{i_1...i_d}$ in a planar tiling is given by $\frac{1}{||\mathbf{G}||_1}|G_{i_1...i_d}|$.

For Penrose tilings, there are φ fat rhombi for 1 thin rhomb:

$$(G_{ij}) = (\varphi, 1, -1, -\varphi, \varphi, 1, -1, \phi, 1, \varphi).$$

The multigrid method

Definition (Multigrid)

The multigrid with shifts s_1, \ldots, s_n in \mathbb{R} and grid vectors $\vec{v}_1, \ldots, \vec{v}_n$ in \mathbb{R}^d is the set of *n* families of equally spaced parallel hyperplanes

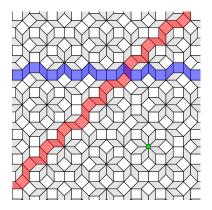
$$H_i := \{ \vec{x} \in \mathbb{R}^d \mid \langle \vec{x} | \vec{v}_i \rangle + s_i \in \mathbb{Z} \}.$$

Theorem (De Bruijn, 1981)

The planar tiling with slope $E \subset \mathbb{R}^n$ is the dualization of the multigrid "drawn" on E by intersecting it, for $1 \le i \le n$, with

$$G_i := \{ \vec{x} \in \mathbb{R}^n \mid \langle \vec{x} | \vec{e}_i \rangle \in \mathbb{Z} \}.$$





Window and patterns

Definition (window)

The window W of a planar tiling of slope $E \subset \mathbb{R}^n$ is the orthogonal projection of $[0, 1]^n$ onto E^{\perp} :

$$W:=\pi'([0,1]^n).$$

Proposition

To any pointed pattern P corresponds a subregion R of the window in which project the vertices which point this pattern in the tiling:

$$R := igcap_{\pi ec y \in \mathcal{V}(P)} \left(W - \pi' (ec y - ec x)
ight).$$

