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Pentagonal tilings

Thin and fat rhombi form so-called pentagonal tilings.
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Arrowed tiles

Edges can be arrowed to constrain the way tiles can match.
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Arrowed tiles

Ammann and Penrose introduced two arrowed tiles in the 70’s.
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Arrowed tiles

Pavlovitch and Kléman added two new arrowed tiles in 1985.
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Arrowed tiles

What if we simplify arrows, reducing to a three tile set?
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Arrowed tilings

Theorem (De Bruijn, 1981)

AP-tilings digitize the slope (ϕ, 1,−1,−ϕ,ϕ, 1,−1, ϕ, 1, ϕ).

Theorem (Socolar, 1990)

PK-tilings digitize the slope (ϕ, 1,−1,−ϕ,ϕ, 1,−1, ϕ, 1, ϕ).

Theorem
BF-tilings digitize the slopes (x , 1, -1, -y , x+1

y , 1, -1, x+y+1
xy , 1, y+1

x ).

Corollary

PK-tilings are the BF-tilings of maximal thin rhombi density.
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Rhombus alternance

Consider the arrows crossed by travelling a stripe of AP-tiles.
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Consider the arrows crossed by travelling a stripe of AP-tiles.
The bi-infinite sequence they form is a path of a finite automaton.
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Rhombus alternance

Consider the arrows crossed by travelling a stripe of AP-tiles.
The bi-infinite sequence they form is a path of a finite automaton.
In particular, each rhombus type alternates in two orientations.
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Rhombus alternance

PK-tiles extend AP-tiles by allowing stripes to freely cross:
PK-tilings are exactly the tilings whose rhombi alternate.
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Rhombus alternance

BF-tiles mimic PK-tiles but enforce only thin rhombus alternance.
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Planar pentagonal tilings

Lift: homeomorphism from rhombi to 2-faces of unit cubes of R5.
Planar: lift in E + [0, t]5, where E is the slope and t the thickness.
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Shadows and subperiods

Shadow: orthogonal projection of the lift along two basis vector.

Subperiod: shadow period. Rhombus alternances force simple ones.
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Grassmann-Plücker coordinates

Definition (Grassmann-Plücker)

The plane R~u + R~v has GP-coordinates (Gij)i<j = (uivj − ujvi )i<j .

Proposition

Tile frequencies of a planar tiling are given by its GP-coordinates.

Example

AP/PK-tilings have a ratio of ϕ fat rhombi for 1 thin rhombus.
This is the maximal ratio that can be achieved by a BF-tiling.
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Linear and quadratic relations

Proposition

Whenever a planar tiling admits p~ei + q~ej + r~ek as a subperiod,
the GP-coordinates of its slope satisfy pGjk − qGik + rGij = 0.

Example

Subperiods forced by BF-tiles yield G13 = G41 = G24 = G52 = G35.
AP/PK-tiles yield, in addition G12 = G51 = G45 = G34 = G23.

Proposition (Grassmann-Plücker)

GP-coordinates satisfy all the relations GijGkl = GikGjl − GilGjk .

Example

BF-tiles yield all the slopes (x , 1, -1, -y , x+1
y , 1, -1, x+y+1

xy , 1, y+1
x ),

while AP/PK-tiles yield the slope (ϕ, 1,−1,−ϕ,ϕ, 1,−1, φ, 1, ϕ).
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GP-coordinates satisfy all the relations GijGkl = GikGjl − GilGjk .

Example

BF-tiles yield all the slopes (x , 1, -1, -y , x+1
y , 1, -1, x+y+1

xy , 1, y+1
x ),

while AP/PK-tiles yield the slope (ϕ, 1,−1,−ϕ,ϕ, 1,−1, φ, 1, ϕ).

8/10



Linear and quadratic relations

Proposition

Whenever a planar tiling admits p~ei + q~ej + r~ek as a subperiod,
the GP-coordinates of its slope satisfy pGjk − qGik + rGij = 0.

Example

Subperiods forced by BF-tiles yield G13 = G41 = G24 = G52 = G35.
AP/PK-tiles yield, in addition G12 = G51 = G45 = G34 = G23.

Proposition (Grassmann-Plücker)
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Planarity

Lemma
Subperiods forced by BF-tiles (thus AP/PK-tiles) enforce planarity.

Proof sketch:

1. Let S be the lift of a BF-tiling.

2. Let E = (ϕ, 1,−1,−ϕ,ϕ, 1,−1, φ, 1, ϕ), E ′ its algebraic
conjugate and ~u =

∑
i ~ei . One has R5 = E ⊕ E ′ ⊕ R~u.

3. Let ~p1, ~p2, ~p3 be subperiods corresp. to projections π1, π2, π3,
and ~qi ∈ E , ~q′i ∈ E ′ s.t. πi (~qi ) = πi (~q

′
i ) = ~pi , for i = 1, 2, 3.

4. S = {λ~q1+µ~q2+z1(λ, µ)~q′1+z2(λ, µ)~q′2+z(λ, µ)~u | λ, µ ∈ R}.
5. π1(S) ~p1-periodic  z2(λ, µ) ' z2(µ) and z(λ, µ) ' z(µ).

6. π2(S) ~p2-periodic  z1(λ, µ) ' z1(λ) and z(µ) ' z(λ) ' cte.

7. π3(S) ~p3-periodic  ϕz2(µ) + z1(λ) ' h(ϕµ+ λ)  h linear.
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Remark

s

BF-tilings force thin rhombus alternance, which forces slopes

Ex ,y =

(
x , 1, -1, -y ,

x + 1

y
, 1, -1,

x + y + 1

xy
, 1,

y + 1

x

)
.

But arrowed tilings form closed sets. What about limit cases?

There are only fat rhombi: thin rhombus alternance is degenerated.

BF-tilings with degenerated alternance are not necessarily planar!
But one can limit the number of consecutive fat rhombi in a stripe.

What about the thickness?
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