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Pentagonal tilings

Thin and fat rhombi form so-called pentagonal tilings.
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Arrowed tiles

Edges can be arrowed to constrain the way tiles can match.
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Arrowed tiles

Ammann and Penrose introduced two arrowed tiles in the 70’s.
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Arrowed tiles
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Pavlovitch and Kléman added two new arrowed tiles in 1985.
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Arrowed tiles
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What if we simplify arrows, reducing to a three tile set?
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Arrowed tilings

Theorem (De Bruijn, 1981)
AP-tilings digitize the slope (¢,1,—1,—p,¢,1,—1,¢,1,¢).

Theorem (Socolar, 1990)
PK-tilings digitize the slope (¢,1,—1,—p, 0,1, —1,¢,1, ).

Theorem

” o +1 +y+1 +1
BF-tilings digitize the slopes (x,1,-1, -y, XT’ 1,-1, %, 1,%=).
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Arrowed tilings

Theorem (De Bruijn, 1981)
AP-tilings digitize the slope (¢,1,—1,—p,¢,1,—1,¢,1,¢).

Theorem (Socolar, 1990)
PK-tilings digitize the slope (¢,1,—1,—p, 0,1, —1,¢,1, ).

Theorem
BF-tilings digitize the slopes (x,1,-1, -y, x7+1’ 1,-1, %yﬂ, 1, yTH)
Corollary

PK-tilings are the BF-tilings of maximal thin rhombi density.
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Rhombus alternance

Consider the arrows crossed by travelling a stripe of AP-tiles.
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Rhombus alternance
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Consider the arrows crossed by travelling a stripe of AP-tiles.
The bi-infinite sequence they form is a path of a finite automaton.
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Rhombus alternance

FCN LN

Consider the arrows crossed by travelling a stripe of AP-tiles.
The bi-infinite sequence they form is a path of a finite automaton.
In particular, each rhombus type alternates in two orientations.
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Rhombus alternance
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PK-tiles extend AP-tiles by allowing stripes to freely cross:
PK-tilings are exactly the tilings whose rhombi alternate.
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BF-tiles mimic PK-tiles but enforce only thin rhombus alternance.
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Planar pentagonal tilings

Lift: homeomorphism from rhombi to 2-faces of unit cubes of R5.
Planar: lift in E + [0, t]°, where E is the slope and t the thickness.
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Shadows and subperiods

Shadow: orthogonal projection of the lift along two basis vector.
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Shadows and subperiods
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Shadow: orthogonal projection of the lift along two basis vector.
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Shadows and subperiods
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Shadow: orthogonal projection of the lift along two basis vector.



Shadows and subperiods

Shadow: orthogonal projection of the lift along two basis vector.
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Shadows and subperiods
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Shadow: orthogonal projection of the lift along two basis vector.

Subperiod: shadow period. Rhombus alternances force simple ones.
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Grassmann-Plucker coordinates

Definition (Grassmann-Pliicker)
The plane Rii + RV has GP-coordinates (Gjj)i<j = (ujvj — ujv;)i<;.
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Grassmann-Plucker coordinates

Definition (Grassmann-Pliicker)
The plane Rii + RV has GP-coordinates (Gjj)i<j = (ujvj — ujv;)i<;.

Proposition

Tile frequencies of a planar tiling are given by its GP-coordinates.

Example

AP /PK-tilings have a ratio of ¢ fat rhombi for 1 thin rhombus.
This is the maximal ratio that can be achieved by a BF-tiling.
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Linear and quadratic relations

Proposition
Whenever a planar tiling admits p€; + q€; + réx as a subperiod,
the GP-coordinates of its slope satisty pGjx — qGjx + rGj; = 0.
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Example
Subperiods forced by BF-tiles yield Gi3 = Gg1 = Gog = Gsp = Gss.
AP/PK—tiIes yield, in addition Gio = Gs1 = Ggs = Gzq = Go3.
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Linear and quadratic relations

Proposition
Whenever a planar tiling admits p€; + q€; + réx as a subperiod,
the GP-coordinates of its slope satisty pGjx — qGjx + rGj; = 0.

Example
Subperiods forced by BF-tiles yield Gi3 = Gg1 = Gog = Gsp = Gss.
AP/PK—tiIes yield, in addition Gio = Gs1 = Ggs = Gzq = Go3.

Proposition (Grassmann-Pliicker)
GP-coordinates satisfy all the relations Gjj Gy = Gk Gjj — Gj1Gj.

Example
BF-tiles yield all the slopes (x, 1,-1,-y, %, 1,-1, X*{v“ 1, 2L,

y T x

while AP /PK-tiles yield the slope (go, 1,-1,—p,p,1,-1,0,1,¢p).
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Planarity

Lemma
Subperiods forced by BF-tiles (thus AP/PK-tiles) enforce planarity.
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Planarity

Lemma

Subperiods forced by BF-tiles (thus AP/PK-tiles) enforce planarity.

Proof sketch:

1.
2.

No o s

Let S be the lift of a BF-tiling.

Let E=(p,1,-1,—p,p,1,—1,¢,1,p), E' its algebraic
conjugate and i =Y, &. One has R® = E® E’ ® R

Let p1, po, B3 be subperiods corresp. to projections 71, w2, 73,
and g; € E, Efll € E'st. 71';(6;) = W,(ﬁf) =p;, fori=1,2,3.

S = {AGit+uGotzi(A 1) Gy +22(N, )G +2z(A p)d | A, p € R}

m1(S) pi-periodic ~ zp(\, p) >~ zo(p) and z(\, 1) ~ z(w).

m2(8) Po-periodic ~ z1 (A, 1) >~ z1(\) and z(u) ~ z(\) ~ cte.
m3(S) ps-periodic ~» pzo(p) + z1(N) =~ h(pp + X) ~> h linear.
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Remark

BF-tilings force thin rhombus alternance, which forces slopes

1 1 1
Ex,y:<x’1a'1a'y7H717'17X+y+ ?]"y+ >
y Xy X

But arrowed tilings form closed sets. What about /imit cases?

10/10



Remark

BF-tilings force thin rhombus alternance, which forces slopes

1 1 1
Ex,y:<x’1a'1a'y7H717'17X+y+ ?]"y+ >
y Xy X

But arrowed tilings form closed sets. What about /imit cases?

lim E1 1 = (0,0,0,0,0,0,0,1,0,0).

n—oo n’

There are only fat rhombi: thin rhombus alternance is degenerated.
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Remarks

BF-tilings force thin rhombus alternance, which forces slopes

1 1 1
Ex,y:<x’1a'1a'y7H717'17X+y+ 7]"y+ >
y Xy

But arrowed tilings form closed sets. What about /imit cases?

lim Ep,=(1,0,0,0,0,0,0,0,0,0).

n—oo

There are only fat rhombi: thin rhombus alternance is degenerated.

BF-tilings with degenerated alternance are not necessarily planar!
But one can limit the number of consecutive fat rhombi in a stripe.

What about the thickness?
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