The Penrose Tilings Revisited

Nicolas Bédaride (LATP, Marseille) Thomas Fernique (LIPN, Paris)

Pentagonal tilings

Thin and fat rhombi form so-called pentagonal tilings.

Pentagonal tilings

Thin and fat rhombi form so-called pentagonal tilings.

Edges can be arrowed to constrain the way tiles can match.

Edges can be arrowed to constrain the way tiles can match.

Ammann and Penrose introduced two arrowed tiles in the 70's.

Pavlovitch and Kléman added two new arrowed tiles in 1985.

What if we simplify arrows, reducing to a three tile set?

Arrowed tilings

Theorem (De Bruijn, 1981) AP-tilings digitize the slope $(\varphi, 1, -1, -\varphi, \varphi, 1, -1, \varphi, 1, \varphi)$.

Theorem (Socolar, 1990) *PK-tilings digitize the slope* $(\varphi, 1, -1, -\varphi, \varphi, 1, -1, \varphi, 1, \varphi)$.

Theorem

BF-tilings digitize the slopes $(x, 1, -1, -y, \frac{x+1}{y}, 1, -1, \frac{x+y+1}{xy}, 1, \frac{y+1}{x})$.

Arrowed tilings

Theorem (De Bruijn, 1981) AP-tilings digitize the slope $(\varphi, 1, -1, -\varphi, \varphi, 1, -1, \varphi, 1, \varphi)$.

Theorem (Socolar, 1990) *PK-tilings digitize the slope* $(\varphi, 1, -1, -\varphi, \varphi, 1, -1, \varphi, 1, \varphi)$.

Theorem

BF-tilings digitize the slopes $(x, 1, -1, -y, \frac{x+1}{y}, 1, -1, \frac{x+y+1}{xy}, 1, \frac{y+1}{x})$.

Corollary

PK-tilings are the BF-tilings of maximal thin rhombi density.

Consider the arrows crossed by travelling a *stripe* of AP-tiles.

Consider the arrows crossed by travelling a *stripe* of AP-tiles. The bi-infinite sequence they form is a path of a finite automaton.

Consider the arrows crossed by travelling a *stripe* of AP-tiles. The bi-infinite sequence they form is a path of a finite automaton. In particular, each rhombus type alternates in two orientations.

PK-tiles extend AP-tiles by allowing stripes to freely cross: PK-tilings are exactly the tilings whose rhombi alternate.

BF-tiles mimic PK-tiles but enforce only thin rhombus alternance.

Planar pentagonal tilings

Lift: homeomorphism from rhombi to 2-faces of unit cubes of \mathbb{R}^5 . Planar: lift in $E + [0, t]^5$, where E is the slope and t the thickness.

Shadow: orthogonal projection of the lift along two basis vector. Subperiod: shadow period. Rhombus alternances force simple ones. Grassmann-Plücker coordinates

Definition (Grassmann-Plücker)

The plane $\mathbb{R}\vec{u} + \mathbb{R}\vec{v}$ has GP-coordinates $(G_{ij})_{i < j} = (u_i v_j - u_j v_i)_{i < j}$.

Grassmann-Plücker coordinates

Definition (Grassmann-Plücker)

The plane $\mathbb{R}\vec{u} + \mathbb{R}\vec{v}$ has GP-coordinates $(G_{ij})_{i < j} = (u_i v_j - u_j v_i)_{i < j}$.

Proposition

Tile frequencies of a planar tiling are given by its GP-coordinates.

Example

AP/PK-tilings have a ratio of φ fat rhombi for 1 thin rhombus. This is the maximal ratio that can be achieved by a BF-tiling.

Proposition

Whenever a planar tiling admits $p\vec{e}_i + q\vec{e}_j + r\vec{e}_k$ as a subperiod, the GP-coordinates of its slope satisfy $pG_{jk} - qG_{ik} + rG_{ij} = 0$.

Proposition

Whenever a planar tiling admits $p\vec{e}_i + q\vec{e}_j + r\vec{e}_k$ as a subperiod, the GP-coordinates of its slope satisfy $pG_{jk} - qG_{ik} + rG_{ij} = 0$.

Example

Subperiods forced by BF-tiles yield $G_{13} = G_{41} = G_{24} = G_{52} = G_{35}$. AP/PK-tiles yield, in addition $G_{12} = G_{51} = G_{45} = G_{34} = G_{23}$.

Proposition

Whenever a planar tiling admits $p\vec{e}_i + q\vec{e}_j + r\vec{e}_k$ as a subperiod, the GP-coordinates of its slope satisfy $pG_{jk} - qG_{ik} + rG_{ij} = 0$.

Example

Subperiods forced by BF-tiles yield $G_{13} = G_{41} = G_{24} = G_{52} = G_{35}$. AP/PK-tiles yield, in addition $G_{12} = G_{51} = G_{45} = G_{34} = G_{23}$.

Proposition (Grassmann-Plücker)

GP-coordinates satisfy all the relations $G_{ij}G_{kl} = G_{ik}G_{jl} - G_{il}G_{jk}$.

Proposition

Whenever a planar tiling admits $p\vec{e}_i + q\vec{e}_j + r\vec{e}_k$ as a subperiod, the GP-coordinates of its slope satisfy $pG_{jk} - qG_{ik} + rG_{ij} = 0$.

Example

Subperiods forced by BF-tiles yield $G_{13} = G_{41} = G_{24} = G_{52} = G_{35}$. AP/PK-tiles yield, in addition $G_{12} = G_{51} = G_{45} = G_{34} = G_{23}$.

Proposition (Grassmann-Plücker)

GP-coordinates satisfy all the relations $G_{ij}G_{kl} = G_{ik}G_{jl} - G_{il}G_{jk}$.

Example

BF-tiles yield all the slopes $(x, 1, -1, -y, \frac{x+1}{y}, 1, -1, \frac{x+y+1}{xy}, 1, \frac{y+1}{x})$, while AP/PK-tiles yield the slope $(\varphi, 1, -1, -\varphi, \varphi, 1, -1, \phi, 1, \varphi)$.

Planarity

Lemma

Subperiods forced by BF-tiles (thus AP/PK-tiles) enforce planarity.

Planarity

Lemma

Subperiods forced by BF-tiles (thus AP/PK-tiles) enforce planarity.

Proof sketch:

- 1. Let ${\mathcal S}$ be the lift of a BF-tiling.
- 2. Let $E = (\varphi, 1, -1, -\varphi, \varphi, 1, -1, \phi, 1, \varphi)$, E' its algebraic conjugate and $\vec{u} = \sum_i \vec{e}_i$. One has $\mathbb{R}^5 = E \oplus E' \oplus \mathbb{R}\vec{u}$.
- 3. Let $\vec{p}_1, \vec{p}_2, \vec{p}_3$ be subperiods corresp. to projections π_1, π_2, π_3 , and $\vec{q}_i \in E$, $\vec{q}'_i \in E'$ s.t. $\pi_i(\vec{q}_i) = \pi_i(\vec{q}'_i) = \vec{p}_i$, for i = 1, 2, 3.
- 4. $S = \{\lambda \vec{q}_1 + \mu \vec{q}_2 + z_1(\lambda, \mu) \vec{q}'_1 + z_2(\lambda, \mu) \vec{q}'_2 + z(\lambda, \mu) \vec{u} \mid \lambda, \mu \in \mathbb{R}\}.$
- 5. $\pi_1(\mathcal{S}) \ \vec{p}_1$ -periodic $\rightsquigarrow z_2(\lambda,\mu) \simeq z_2(\mu)$ and $z(\lambda,\mu) \simeq z(\mu)$.
- 6. $\pi_2(\mathcal{S}) \vec{p}_2$ -periodic $\rightsquigarrow z_1(\lambda, \mu) \simeq z_1(\lambda)$ and $z(\mu) \simeq z(\lambda) \simeq cte$.
- 7. $\pi_3(S) \ \vec{p}_3$ -periodic $\rightsquigarrow \varphi z_2(\mu) + z_1(\lambda) \simeq h(\varphi \mu + \lambda) \rightsquigarrow h$ linear.

BF-tilings force thin rhombus alternance, which forces slopes

$$E_{x,y} = \left(x, 1, -1, -y, \frac{x+1}{y}, 1, -1, \frac{x+y+1}{xy}, 1, \frac{y+1}{x}\right).$$

But arrowed tilings form *closed* sets. What about *limit* cases?

BF-tilings force thin rhombus alternance, which forces slopes

$$E_{x,y} = \left(x, 1, -1, -y, \frac{x+1}{y}, 1, -1, \frac{x+y+1}{xy}, 1, \frac{y+1}{x}\right).$$

But arrowed tilings form *closed* sets. What about *limit* cases?

$$\lim_{n\to\infty} E_{\frac{1}{n},\frac{1}{n}} = (0,0,0,0,0,0,0,0,1,0,0).$$

BF-tilings force thin rhombus alternance, which forces slopes

$$E_{x,y} = \left(x, 1, -1, -y, \frac{x+1}{y}, 1, -1, \frac{x+y+1}{xy}, 1, \frac{y+1}{x}\right).$$

But arrowed tilings form *closed* sets. What about *limit* cases?

$$\lim_{n\to\infty} E_{\frac{1}{n},n} = (0,0,0,0,0,0,0,0,0,1).$$

BF-tilings force thin rhombus alternance, which forces slopes

$$E_{x,y} = \left(x, 1, -1, -y, \frac{x+1}{y}, 1, -1, \frac{x+y+1}{xy}, 1, \frac{y+1}{x}\right).$$

But arrowed tilings form *closed* sets. What about *limit* cases?

$$\lim_{n\to\infty} E_{n,\frac{1}{n}} = (0,0,0,0,1,0,0,0,0,0).$$

BF-tilings force thin rhombus alternance, which forces slopes

$$E_{x,y} = \left(x, 1, -1, -y, \frac{x+1}{y}, 1, -1, \frac{x+y+1}{xy}, 1, \frac{y+1}{x}\right).$$

But arrowed tilings form *closed* sets. What about *limit* cases?

$$\lim_{n\to\infty} E_{n,n^2} = (0,0,0,1,0,0,0,0,0).$$

BF-tilings force thin rhombus alternance, which forces slopes

$$E_{x,y} = \left(x, 1, -1, -y, \frac{x+1}{y}, 1, -1, \frac{x+y+1}{xy}, 1, \frac{y+1}{x}\right).$$

But arrowed tilings form *closed* sets. What about *limit* cases?

$$\lim_{n\to\infty} E_{n^2,n} = (1,0,0,0,0,0,0,0,0,0)$$

BF-tilings force thin rhombus alternance, which forces slopes

$$E_{x,y} = \left(x, 1, -1, -y, \frac{x+1}{y}, 1, -1, \frac{x+y+1}{xy}, 1, \frac{y+1}{x}\right).$$

But arrowed tilings form *closed* sets. What about *limit* cases?

$$\lim_{n\to\infty} E_{n^2,n} = (1,0,0,0,0,0,0,0,0,0).$$

There are only fat rhombi: thin rhombus alternance is *degenerated*.

BF-tilings with degenerated alternance are not necessarily planar! But one can limit the number of consecutive fat rhombi in a stripe.

BF-tilings force thin rhombus alternance, which forces slopes

$$E_{x,y} = \left(x, 1, -1, -y, \frac{x+1}{y}, 1, -1, \frac{x+y+1}{xy}, 1, \frac{y+1}{x}\right).$$

But arrowed tilings form *closed* sets. What about *limit* cases?

$$\lim_{n\to\infty} E_{n^2,n} = (1,0,0,0,0,0,0,0,0,0).$$

There are only fat rhombi: thin rhombus alternance is *degenerated*.

BF-tilings with degenerated alternance are not necessarily planar! But one can limit the number of consecutive fat rhombi in a stripe.

What about the thickness?