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Aperiodic order

Periodicity and aperiodicity
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Aperiodic order

Quasicrystals (Dan Shechtman, 1982)
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Aperiodic order
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Aperiodic order

function of quasiperiodicity/recurrence

Definition
Set A~ fa : RT — Rt st :

Ix€A|PCANB(x,r) = VyeA, PCANB(y,fa(r)).
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Aperiodic order

Generation : substitutions

Tiling : partition into a finite number (up to translation/rotation)
of polygonal tiles.

Substitution : inflation of tiles + dissection into new tiles.
T ST
" | — . w ﬁ
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Aperiodic order

Cut & Project (Meyer, 1972, Katz et Duneau, 1985)

e directive space D, projective space P s.t. R =P x D;
e window Q C P (bounded open set);

@ strip S(Q) =D x Q;

@ projection 7 on P along D,

~ set m(Z9 N S(Q)) or tiling projecting the faces of Z7 N S(Q)).

Penrose : d =5, dim(P) = 2.
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Cut and project
Sturmian sequences Substitutions

Continued fractions

© Sturmian sequences
o Cut and project
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Cut and project
Continued fractions

Substitutions

Sturmian sequences

Entries of & linearly independent over Q : Sturmian plane.
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Cut and project

Substitutions

Sturmian sequences

Continued fractions
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In dimension 1 : classic Sturmian sequences.
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Cut and project
Sturmian sequences Substitutions

Continued fractions

© Sturmian sequences

@ Substitutions
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Cut and project
Sturmian sequences Substitutions

Continued fractions

Substitution : morphism o of A* s.t. |¢"(i)| — oo for i € A.
c:1—12,2+—1:

1—-12—-121 — 12112 — 12112121 — ...
o extended to A ~~ fixed-point : u € AY | u = o(u).

lim o"(1) = 12112121121121 - -+ = uy = o(ua).

n—oo
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Cut and project
Sturmian sequences Substitutions

Continued fractions

A =1{1,2,3} and (&, &, &) canonical basis of R3.

u € A* ~ broken line of segments [X,X + &] = (X,i), X € N3 :
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Cut and project
Sturmian sequences Substitutions

Continued fractions

o on A ~ linear map ©(c) on segments :

O0) : (Ri)m Mo+ > (F(p).)),

plo(i)=p:j-s

where (M,);; = |o(j)]; and F(u) = (Jul1, ..., |uln).
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Cut and project
Sturmian sequences Substitutions

Continued fractions

0:8 2—13 , M, = , 0(22331) = 13131112.

O = =
=R
o
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Cut and project
Sturmian sequences Substitutions

Continued fractions

Segment (X, i) ~» dual face (X, i*) :

€3 €3
€ ’ & 5 €
€ €

If det(M,) = %1 : linear map ©(o) ~» dual map ©*(0) :

O (o)X, ") =M%+ > (F(s).S").

JEAs|o(j)=p-i-s

€3

€
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Cut and project
Sturmian sequences Substitutions

Continued fractions

0:1—12,2+— 13,3+ 1:

T

€
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Sturmian sequences Substitutions

©*(0)(Sa) = Stm, a-

M, Po g = Po g ~» ©*(0) “discretization” of M !,
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Cut and project
Sturmian sequences Substitutions

Continued fractions

© Sturmian sequences

@ Continued fractions
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Cut and project
Sturmian sequences Substitutions
Continued fractions

A necessary condition to be substitutive

Proposition

If Sz is a fixed point of a substitution ©*(c), then the entries of &
belong to Q(\), where \ is an algebraic number of d° < n.

@*(U)(S&) = S& = Stl\/lgd‘ = 85;
= 'M,a = \a.
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Cut and project
Sturmian sequences Substitutions
Continued fractions

A sufficient condition to be substitutive

If there exists unimodular matrices M; s.t. :
a= My x My x...x Mpya,

then Sg is substitutive.
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Cut and project
Sturmian sequences Substitutions
Continued fractions

The case n = 2 : continued fractions

Gaussmap: T:a—21—|1|=1_3

(0%
Matrix viewpoint :

a1 1\ (1
“\1 o T() ] \a )’
So, if (T"(c))n is periodic, then Sy ) is substitutif.

Lagrange : a quadratic has a periodic expansion (T"(«)),. Thus :

S(1,a) substitutif iff a has a periodic continued fraction expansion.
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Cut and project
Sturmian sequences Substitutions
Continued fractions

The case n > 2 : Brun's expansion

a=(ag,...,an) €[0,1)"\{0} :
T(on... . an) = (al =N Ma)

9 )
Q; ap &7 Q; Q;j

where a; = maxa;.

1
a(@) = {maxajJ and (@) =min{i | aj = mjaxaj}.

~ Brun expansion (ap,e,) = (a(T"(&)), e(T"(&)))
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Cut and project
Sturmian sequences Substitutions

Continued fractions

Matrix viewpoint : a:A, 1(1, T(&@)) = *(1,d), where :

a 1

In—c

If @ has a periodic Brun expansion, then S(1 &) is substitutif.

Lagrange?
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1D sequences

. . nD sequences
Minimal complexity 1

© Minimal complexity
@ 1D sequences
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1D sequences

. . nD sequences
Minimal complexity 1

For u = (uj)iez, pu(n) : number of different factor of length nin wu.

pu bounded iff 3n | py(n) < n iff u is periodic.

Vn, py(n) = n+1: u aperiodic sequence of minimal complexity.
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1D sequences

. . nD sequences
Minimal complexity 1

Let u s.t. Vn, py(n) = n+ 1. Three cases :

@ u is sturmian,
Q Joe<l,rye> | u=o(¥010%),
Q@ Joe<l,rye> | u=0c(¥01%),

where :

/- 0—0 .- 0—20 o 0—1
"l 1—01" | 1—10 ° | 1—0
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1D sequences

. . nD sequences
Minimal complexity 1

Geometric viewpoint
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1D sequences

. . nD sequences
Minimal complexity a

© Minimal complexity

@ nD sequences
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1D sequences
nD sequences

Minimal complexity

nD sequence : u = (ujy, i)z

A C Z" ~» A-complexity : p,(A) denotes the number of different
factors of shape A in u.

rectangular complexity : A= {(i,j) | 1 <i<m, 1 <j<n}. One
writes p,(m, n).

Question : u periodic iff p,(A) <?
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1D sequences

. . nD sequences
Minimal complexity a

nD Sequence u : r-periodic, 0 < r < n.

proposition

u n-periodic iff p,(m1,..., m,) bounded.

Limit 1-periodicity/aperiodicity ?
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1D sequences

. . nD sequences
Minimal complexity a

Conjecture (Nivat, 1997)

For a 2D sequence u :

I(mg, no) | pu(mo, ng) < mony = u periodic.
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1D sequences

. . nD sequences
Minimal complexity a

Conjecture (Nivat, 1997)

For a 2D sequence u :

I(mg, no) | pu(mo, ng) < mony = u periodic.

@ sequences of complexity mn + 1 : characterized 2D sequences
over {0,1};
e proved for p,(mo, ny) < 1—16m0n0;
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1D sequences
nD sequences

Minimal complexity

Conjecture (Nivat, 1997)

For a 2D sequence u :

I(mg, no) | pu(mo, ng) < mony = u periodic.

@ sequences of complexity mn + 1 : characterized 2D sequences
over {0,1};

e proved for p,(mo, ny) < 1—16m0n0;
@ converse is false (rectangle = bad shape?);

@ extensions for d > 2 do not hold.
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1D sequences
nD sequences

Minimal complexity

Geometric viewpoint

sequence 1D over {0,1} ~» “curve” of the plane.
sequence 2D over {0,1} ~~7?

“stepped surface” can be encoded by 2D sequences over {1,2, 3}
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1D sequences

. . nD sequences
Minimal complexity a

Stepped planes are stepped surfaces. So :

Sturmian planes = aperiodic nD sequences of minimal complexity
among stepped surfaces ?

Proposition

If this conjecture holds, then the Nivat conjecture also holds.

Converse ?
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1D sequences

. . nD sequences
Minimal complexity a

Proposition

If uis a 2D sequence which encodes a sturmian stepped plane,
then p,(m,n) = mn+ m+ n.

Characterization of the 2D sequence of complexity mn+ m+n?

Notice that ©*(o) acts on stepped surfaces as well.
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