Sturmian Sequences

Thomas Fernique

LIRMM - Université Montpellier II

12/19/2005

- Aperiodic order
- 2 Sturmian sequences
 - Cut and project
 - Substitutions
 - Continued fractions
- Minimal complexity
 - 1D sequences
 - nD sequences

Periodicity and aperiodicity

Quasicrystals (Dan Shechtman, 1982)

Not so new (Penrose, 1972, Bohr, 1925)

function of quasiperiodicity/recurrence

Definition

Set
$$A \rightsquigarrow f_A : \mathbb{R}^+ \to \mathbb{R}^+$$
 s.t. :

$$\exists x \in A \mid P \subset A \cap B(x,r) \quad \Rightarrow \quad \forall y \in A, \quad P \subset A \cap B(y,f_A(r)).$$

Generation: substitutions

Tiling: partition into a finite number (up to translation/rotation) of polygonal tiles.

Substitution: inflation of tiles + dissection into new tiles.

Cut & Project (Meyer, 1972, Katz et Duneau, 1985)

- directive space D, projective space P s.t. $\mathbb{R}^d = P \times D$;
- window $\Omega \subset P$ (bounded open set);
- strip $S(\Omega) = D \times \Omega$;
- projection π on P along D,

 \leadsto set $\pi(\mathbb{Z}^d \cap S(\Omega))$ or tiling projecting the faces of $\mathbb{Z}^d \cap S(\Omega)$).

Penrose : d = 5, dim(P) = 2.

- Aperiodic order
- 2 Sturmian sequences
 - Cut and project
 - Substitutions
 - Continued fractions
- 3 Minimal complexity
 - 1D sequences
 - nD sequences

Cut & Project in codimension 1 : stepped plane

 $\vec{\alpha} \in \mathbb{R}^n_+ \leadsto \mathcal{S}_{\vec{\alpha}}.$

Entries of $\vec{\alpha}$ linearly independent over $\mathbb Q$: Sturmian plane.

Stepped plane → tiling → sequence

In dimension 1: classic Sturmian sequences.

- Aperiodic order
- 2 Sturmian sequences
 - Cut and project
 - Substitutions
 - Continued fractions
- 3 Minimal complexity
 - 1D sequences
 - nD sequences

Substitution : morphism σ of \mathcal{A}^* s.t. $|\sigma^n(i)| \to \infty$ for $i \in \mathcal{A}$.

$$\sigma: 1 \mapsto 12, 2 \mapsto 1$$
:

$$1 \rightarrow 12 \rightarrow 121 \rightarrow 12112 \rightarrow 12112121 \rightarrow \dots$$

$$\sigma$$
 extended to $\mathcal{A}^{\omega} \rightsquigarrow$ fixed-point : $u \in \mathcal{A}^{\omega} \mid u = \sigma(u)$.

$$\lim_{n \to \infty} \sigma^n(1) = 12112121121121 \cdots = u_{\alpha} = \sigma(u_{\alpha}).$$

 $\mathcal{A} = \{1,2,3\}$ and $(\vec{e}_1,\vec{e}_2,\vec{e}_3)$ canonical basis of $\mathbb{R}^3.$

 $u \in \mathcal{A}^* \leadsto \text{broken line of segments } [\vec{x}, \vec{x} + \vec{e}_i] = (\vec{x}, i), \ \vec{x} \in \mathbb{N}^3$:

 σ on $\mathcal{A} \rightsquigarrow$ linear map $\Theta(\sigma)$ on segments :

$$\Theta(\sigma) : (\vec{x}, i) \mapsto M_{\sigma}\vec{x} + \sum_{p \mid \sigma(i) = p \cdot j \cdot s} (\vec{f}(p), j),$$

where
$$(M_{\sigma})_{i,j} = |\sigma(j)|_i$$
 and $\vec{f}(u) = (|u|_1, \dots, |u|_n)$.

$$\sigma: \left\{ \begin{array}{l} 1 \mapsto 12 \\ 2 \mapsto 13 \\ 3 \mapsto 1 \end{array} \right., \quad M_{\sigma} = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right), \quad \sigma(22331) = 13131112.$$

Segment $(\vec{x}, i) \rightsquigarrow \text{dual face } (\vec{x}, i^*)$:

If $\det(M_{\sigma}) = \pm 1$: linear map $\Theta(\sigma) \rightsquigarrow$ dual map $\Theta^*(\sigma)$:

$$\Theta^*(\sigma)(\vec{x}, i^*) = M_{\sigma}^{-1} \vec{x} + \sum_{j \in \mathcal{A}} \sum_{s \mid \sigma(j) = \rho \cdot i \cdot s} (\vec{f}(s), j^*).$$

$$\sigma: 1 \mapsto 12, 2 \mapsto 13, 3 \mapsto 1:$$

Theorem

$$\Theta^*(\sigma)(\mathcal{S}_{\vec{\alpha}}) = \mathcal{S}_{{}^tM_{\sigma}\vec{\alpha}}.$$

 \mapsto

$$M_{\sigma}^{-1}\mathcal{P}_{\alpha,\beta} = \mathcal{P}_{\alpha',\beta'} \leadsto \Theta^*(\sigma)$$
 "discretization" of M_{σ}^{-1} .

- Aperiodic order
- 2 Sturmian sequences
 - Cut and project
 - Substitutions
 - Continued fractions
- 3 Minimal complexity
 - 1D sequences
 - nD sequences

A necessary condition to be substitutive

Proposition

If $S_{\vec{\alpha}}$ is a fixed point of a substitution $\Theta^*(\sigma)$, then the entries of $\vec{\alpha}$ belong to $\mathbb{Q}(\lambda)$, where λ is an algebraic number of $d^{\circ} \leq n$.

$$\Theta^*(\sigma)(\mathcal{S}_{\vec{\alpha}}) = \mathcal{S}_{\vec{\alpha}} \quad \Rightarrow \quad \mathcal{S}_{{}^tM_{\sigma}\vec{\alpha}} = \mathcal{S}_{\vec{\alpha}} \\ \Rightarrow \quad {}^tM_{\sigma}\vec{\alpha} = \lambda\vec{\alpha}.$$

A sufficient condition to be substitutive

If there exists unimodular matrices M_i s.t. :

$$\vec{\alpha} = \lambda M_1 \times M_2 \times \ldots \times M_p \vec{\alpha},$$

then $\mathcal{S}_{\vec{lpha}}$ is substitutive.

The case n = 2: continued fractions

Gauss map : $T: \alpha \mapsto \frac{1}{\alpha} - \lfloor \frac{1}{\alpha} \rfloor = \frac{1}{\alpha} - a$.

Matrix viewpoint :

$$\alpha \left(\begin{array}{cc} a & 1 \\ 1 & 0 \end{array} \right) \left(\begin{array}{c} 1 \\ T(\alpha) \end{array} \right) = \left(\begin{array}{c} 1 \\ \alpha \end{array} \right).$$

So, if $(T^n(\alpha))_n$ is periodic, then $S_{(1,\alpha)}$ is substitutif.

Lagrange : α quadratic has a periodic expansion $(T^n(\alpha))_n$. Thus :

Theorem

 $\mathcal{S}_{(1,lpha)}$ substitutif iff lpha has a periodic continued fraction expansion.

The case n > 2: Brun's expansion

$$\vec{\alpha} = (\alpha_1, \dots, \alpha_n) \in [0, 1)^n \setminus \{0\}$$
:

$$T(\alpha_1,\ldots,\alpha_n) = \left(\frac{\alpha_1}{\alpha_i},\ldots,\frac{\alpha_{i-1}}{\alpha_i},\frac{1}{\alpha_i} - \left\lfloor \frac{1}{\alpha_i} \right\rfloor,\frac{\alpha_{i+1}}{\alpha_i},\ldots,\frac{\alpha_n}{\alpha_i} \right),\,$$

where $\alpha_i = \max \alpha_j$.

$$a(\vec{\alpha}) = \left\lfloor \frac{1}{\max \alpha_j} \right\rfloor \quad \text{and} \quad \varepsilon(\vec{\alpha}) = \min\{i \mid \alpha_i = \max_j \alpha_j\}.$$

$$\rightsquigarrow$$
 Brun expansion $(a_n, \varepsilon_n) = (a(T^n(\vec{\alpha})), \varepsilon(T^n(\vec{\alpha})))$

Matrix viewpoint : $\alpha_{\varepsilon} A_{a,\varepsilon}^{t}(1, T(\vec{\alpha})) = {}^{t}(1, \vec{\alpha})$, where :

$$A_{a,\varepsilon} = \left(\begin{array}{ccc} a & & 1 & \\ & I_{\varepsilon-1} & \\ 1 & & 0 & \\ & & & I_{n-\varepsilon} \end{array}\right),$$

Theorem

If $\vec{\alpha}$ has a periodic Brun expansion, then $\mathcal{S}_{t(1,\vec{\alpha})}$ is substitutif.

Lagrange?

- Aperiodic order
- 2 Sturmian sequences
 - Cut and project
 - Substitutions
 - Continued fractions
- Minimal complexity
 - 1D sequences
 - nD sequences

For $u = (u_i)_{i \in \mathbb{Z}}$, $p_u(n)$: number of different factor of length n in u.

Theorem

 p_u bounded iff $\exists n \mid p_u(n) \leq n$ iff u is periodic.

 $\forall n, p_u(n) = n + 1 : u$ aperiodic sequence of minimal complexity.

Theorem

Let u s.t. $\forall n, p_u(n) = n + 1$. Three cases :

- u is sturmian,
- $\exists \sigma \in \langle I, r, e \rangle \mid u = \sigma(^{\omega}010^{\omega}),$
- $\exists \sigma \in \langle I, r, e \rangle \mid u = \sigma(^{\omega}01^{\omega}),$

where:

$$I: \left\{ \begin{array}{l} 0 \mapsto 0 \\ 1 \mapsto 01 \end{array} \right., \qquad r: \left\{ \begin{array}{l} 0 \mapsto 0 \\ 1 \mapsto 10 \end{array} \right., \qquad e: \left\{ \begin{array}{l} 0 \mapsto 1 \\ 1 \mapsto 0 \end{array} \right..$$

Geometric viewpoint

- Aperiodic order
- 2 Sturmian sequences
 - Cut and project
 - Substitutions
 - Continued fractions
- Minimal complexity
 - 1D sequences
 - nD sequences

nD sequence : $u = (u_{i_1,...,i_n})_{i_j \in \mathbb{Z}}$.

 $A \subset \mathbb{Z}^n \rightsquigarrow A$ -complexity : $p_u(A)$ denotes the number of different factors of shape A in u.

rectangular complexity : $A = \{(i,j) \mid 1 \le i \le m, \ 1 \le j \le n\}$. One writes $p_u(m,n)$.

Question : u periodic iff $p_u(A) \leq ?$

nD Sequence u : r-periodic, $0 \le r \le n$.

proposition

u n-periodic iff $p_u(m_1, ..., m_n)$ bounded.

Limit 1-periodicity/aperiodicity?

Conjecture (Nivat, 1997)

For a 2D sequence u:

$$\exists (m_0, n_0) \mid p_u(m_0, n_0) \leq m_0 n_0 \Rightarrow u \text{ periodic.}$$

- sequences of complexity mn + 1 : characterized 2D sequences over $\{0,1\}$;
- proved for $p_u(m_0, n_0) \leq \frac{1}{16} m_0 n_0$;
- converse is false (rectangle = bad shape?);
- extensions for d > 2 do not hold.

Conjecture (Nivat, 1997)

For a 2D sequence u:

$$\exists (m_0, n_0) \mid p_u(m_0, n_0) \leq m_0 n_0 \Rightarrow u \text{ periodic.}$$

- sequences of complexity mn+1 : characterized 2D sequences over $\{0,1\}$;
- proved for $p_u(m_0, n_0) \leq \frac{1}{16} m_0 n_0$;
- converse is false (rectangle = bad shape?);
- extensions for d > 2 do not hold.

Conjecture (Nivat, 1997)

For a 2D sequence u:

$$\exists (m_0, n_0) \mid p_u(m_0, n_0) \leq m_0 n_0 \Rightarrow u \text{ periodic.}$$

- sequences of complexity mn + 1 : characterized 2D sequences over $\{0,1\}$;
- proved for $p_u(m_0, n_0) \leq \frac{1}{16} m_0 n_0$;
- converse is false (rectangle = bad shape?);
- extensions for d > 2 do not hold.

Geometric viewpoint

sequence 1D over $\{0,1\} \rightsquigarrow$ "curve" of the plane. sequence 2D over $\{0,1\} \rightsquigarrow$?

"stepped surface" can be encoded by 2D sequences over $\{1,2,3\}$

Stepped planes are stepped surfaces. So :

Conjecture

Sturmian planes = aperiodic nD sequences of minimal complexity *among* stepped surfaces?

Proposition

If this conjecture holds, then the Nivat conjecture also holds.

Converse?

Proposition

If u is a 2D sequence which encodes a sturmian stepped plane, then $p_u(m, n) = mn + m + n$.

Characterization of the 2D sequence of complexity mn + m + n?

Notice that $\Theta^*(\sigma)$ acts on stepped surfaces as well.

1D sequences nD sequences

1D sequences nD sequences

1D sequences nD sequences

