Combinatorial Substitutions and Sofic Tilings

Thomas Fernique & Nicolas Ollinger

Poncelet Lab., Moscow December 9, 2010

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Introductory example

2 General case

Introductory example

2 General case

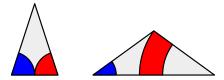
Constructive proof

Introductory	example
000000	

Constructive proof

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Penrose tiles

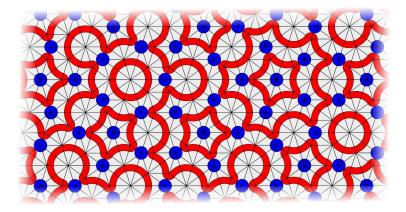


Tiles: thin and fat decorated triangles (up to isometries of \mathbb{R}^2).

Introductory	example
000000	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Penrose tiles



Tiling: covering of \mathbb{R}^2 without overlap, with matching decorations.

Introductory example

General case

Constructive proof 000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Macro-tiles

Consider a thin tile in a tiling: what is its red neighbor?

Introductory example

General case

Constructive proof 000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

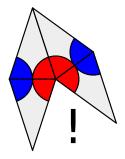
Macro-tiles

Does a thin tile suits?

Constructive proof 000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Macro-tiles

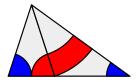


No, because symmetric tiles yield an uncompletable vertex.

Constructive proof 000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Macro-tiles

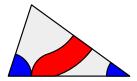


The red neighbor of a thin tile is thus always a fat tile.

Constructive proof 000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

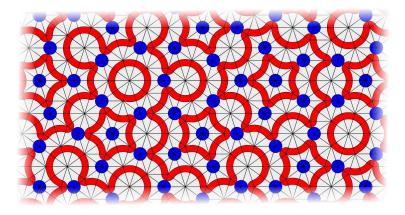
Macro-tiles



We group them into a *thin macro-tile*.

Introductory	example
000000	

Macro-tiles

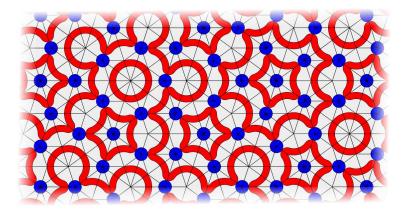


Hence, any tiling by fat and thin tiles...

Introductory	example
000000	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Macro-tiles



... can be (uniquely) seen as a tiling by fat tiles and thin macro-tiles.

Macro-tiles

General case

Constructive proof 000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

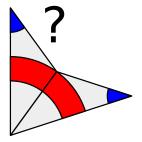
Then, consider a free (*i.e.*, ungrouped) fat tile.

Constructive proof 000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Since it has not been grouped, its red neighbor is fat.

Constructive proof 000000



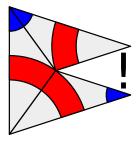
What is its *blue neighbor*?

Macro-tiles

General case

Constructive proof

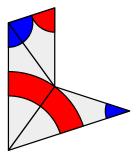
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



A fat tile would yield an uncompletable vertex.

Constructive proof

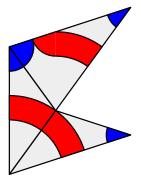
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



We thus have a thin tile...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

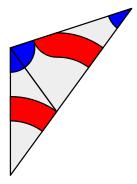
Macro-tiles



... formerly grouped into a thin macro-tile.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

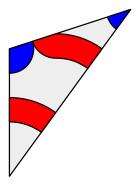
Macro-tiles



The blue neighbor of a free fat tile is thus always a thin macro-tile.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Macro-tiles

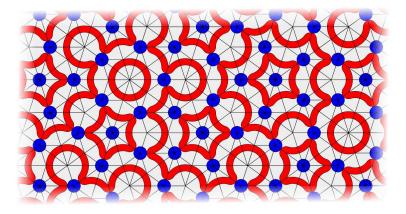


We group them into a *fat macro-tile*.

Introductory	example
000000	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Macro-tiles

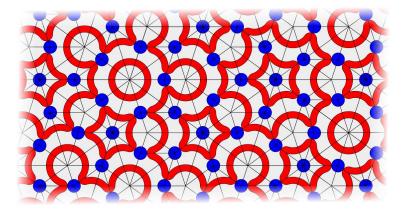


Hence, any tiling by fat tiles and thin macro-tiles...

Introductory	example
000000	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Macro-tiles

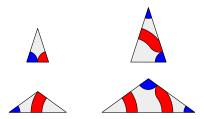


... can be (uniquely) seen as a tiling by fat and thin macro-tiles.

Constructive proof 000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Self-simulation



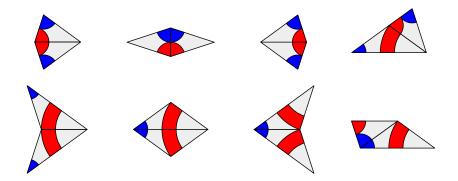
The trick: tiles and macro-tiles have the same combinatorics!

Introductory	example
000000	

Constructive proof

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

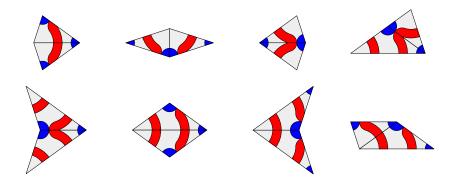
Self-simulation



Two tiles match along an edge iff...

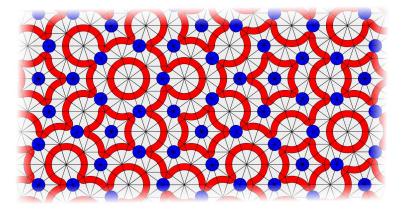
Introductory	example
000000	

Self-simulation



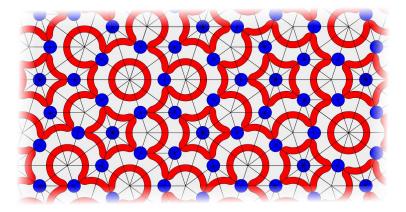
the corresponding macro-tiles match along the corresponding edge.

Introductory	example
000000	



Hence, any tiling...

Introductory	example
000000	

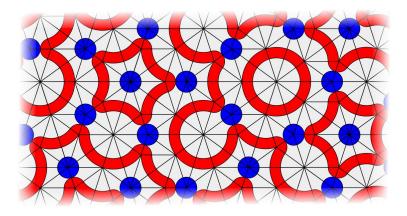


Hence, any tiling can be (uniquely) seen as a macro-tiling...

Introductory	example
000000	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

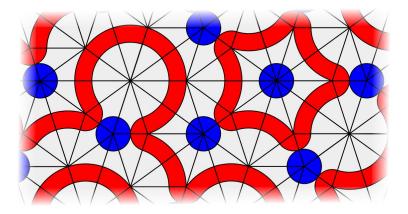
Limit set



... which can be transformed back into a tiling.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Limit set



This can be indefinitely iterated (notably preventing periodicity).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Penrose tilings

Conversely, consider a single tile, say thin.

Penrose tilings

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We can group it into a thin macro-tile...

Constructive proof 000000

Penrose tilings

... which can be grouped into a thin macro-macro-tile, and so on.

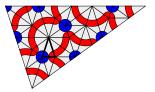
Constructive proof

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Penrose tilings

This yields a spiral-growing increasing sequence of partial tilings.

Penrose tilings



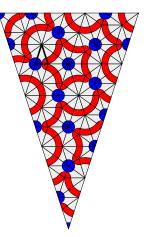
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

This yields a spiral-growing increasing sequence of partial tilings.

Penrose tilings

General case

Constructive proof



▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

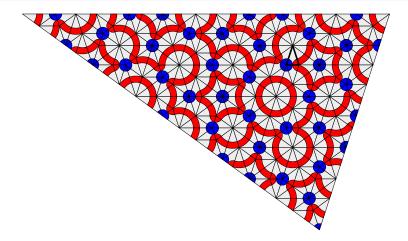
This yields a spiral-growing increasing sequence of partial tilings.

Introductory	example
000000	

Constructive proof

<ロ> (四) (四) (三) (三) (三)

Penrose tilings



The union of which defines (up to multiplicity) a complete tiling.

Introductory example

A generic result

We here provide a general way to find such tricky tiles.

Formally, we constructively prove:

Theorem (Fernique & Ollinger, 2010)

The limit set of a good combinatorial substitution is sofic.

Extends and (hopefully) simplifies previous similar results:

- Shahar Mozes (1990);
- Chaim Goodman-Strauss (1998).

Sofic tilings

Decorated tiles and tilings:

- A decorated tile is a polytope of \mathbb{R}^d with finitely many *facets*, on which is defined a real map, called *decoration*;
- Two decorated tiles match if their intersection (if any) is made of entire faces on which decorations are equal;
- A decorated tiling is a covering of D ⊂ ℝ^d by pairwise matching decorated tiles. It is complete if D = ℝ^d;
- Decorated tile set τ (+direct isometries) \rightsquigarrow decorated tilings Λ_{τ} .

Sofic tilings

Decorated tiles and tilings:

- A decorated tile is a polytope of \mathbb{R}^d with finitely many *facets*, on which is defined a real map, called *decoration*;
- Two decorated tiles match if their intersection (if any) is made of entire faces on which decorations are equal;
- A decorated tiling is a covering of D ⊂ ℝ^d by pairwise matching decorated tiles. It is complete if D = ℝ^d;
- Decorated tile set τ (+direct isometries) \rightsquigarrow decorated tilings Λ_{τ} .

Tiles and tilings: by removing decorations (map π).

Sofic tilings

Decorated tiles and tilings:

- A decorated tile is a polytope of \mathbb{R}^d with finitely many *facets*, on which is defined a real map, called *decoration*;
- Two decorated tiles match if their intersection (if any) is made of entire faces on which decorations are equal;
- A decorated tiling is a covering of D ⊂ ℝ^d by pairwise matching decorated tiles. It is complete if D = ℝ^d;
- Decorated tile set τ (+direct isometries) \rightsquigarrow decorated tilings Λ_{τ} .

Tiles and tilings: by removing decorations (map π).

Definition (Sofic tiling)

A set of tilings is sofic if it is the image under π of some set Λ_{τ} , with τ being <u>finite</u> (up to direct isometries).

Combinatorial substitutions

We are inspired by Natalie Priebe-Frank:

Definition (Combinatorial substitution)

A combinatorial substitution is a finite set of rules (P, Q, γ) , where P is a tile, Q is a finite connected tiling, and $\gamma : \partial P \to \partial Q$ maps distinct facets on disjoint sets of facets.

The tiling Q is a macro-tile. If f is the k-th facet of P, then $\gamma(f)$ is the k-th macro-facet of Q.

Combinatorial substitutions

Two macro-tiles match if their intersection contains only entire macro-facets; a macro-tiling is a tiling whose tiles can be partitioned into matching macro-tiles.

Given a combinatorial substitution $\sigma = \{(P_i, Q_i, \gamma_i)_i\}$:

Definition (Preimage)

A tiling T by P_i 's is the σ -preimage of a macro-tiling T' by Q_i 's if there is a one-to-one correspondence between the tiles of T and the macro-tiles of T' which preserves the combinatorial structure.

Definition (Limit set)

The limit set of σ , denoted by Λ_{σ} , is the set of complete tilings which admit an infinite sequence of σ -preimages.

Good combinatorial substitutions

A good combinatorial substitution is consistent and connecting:

Definition (Consistency)

A combinatorial substitution $\sigma = \{(P_i, Q_i, \gamma_i)_i\}$ is consistent if any complete macro-tiling by Q_i 's admits a σ -preimage.

Definition (Connectivity)

A combinatorial substitution $\sigma = \{(P_i, Q_i, \gamma_i)_i\}$ is connecting if the dual graph of any Q_i has a subgraph N_i , called its network, s.t.

- N_i is a star connecting macro-facets through ports;
- 2 removing N_i -edges yields a graph connecting macro-facets;
- **③** the center of N_i , called central tile, is in the interior of Q_i ;

Self-simulation

Let $\sigma = \{(P_i, Q_i, \gamma_i)_i\}$ be a combinatorial substitution.

Definition (Self-simulation)

A decorated tile set τ self-simulates for σ if there are τ -tilings, called τ -macro-tiles, and a map ϕ from those to τ , such that

- $\forall \tau$ -macro-tile Q, $\exists i$ t.q. $\pi(Q) = Q_i$ and $\pi(\phi(Q)) = P_i$;
- 2 any complete τ -tiling is also a τ -macro-tiling;
- **3** any τ -macro-tile Q is combinatorially equivalent to $\phi(Q)$.

Self-simulation

Let $\sigma = \{(P_i, Q_i, \gamma_i)_i\}$ be a combinatorial substitution.

Definition (Self-simulation)

A decorated tile set τ self-simulates for σ if there are τ -tilings, called τ -macro-tiles, and a map ϕ from those to τ , such that

- $\forall \tau$ -macro-tile Q, $\exists i$ t.q. $\pi(Q) = Q_i$ and $\pi(\phi(Q)) = P_i$;
- 2 any complete τ -tiling is also a τ -macro-tiling;
- **3** any τ -macro-tile Q is combinatorially equivalent to $\phi(Q)$.

Proposition

If σ is consistent and τ self-simulates for σ , then $\pi(\Lambda_{\tau}) \subset \Lambda_{\sigma}$.

Introductory example

2 General case

Introductory example 000000	General case 000000	Constructive

Settings

proof

Let $\sigma = \{(P_i, Q_i, \gamma_i)_i\}$ be a good combinatorial substitution. Tiles and internal facets of the Q_i 's: $(T_i)_{1 \le i \le n}$ and $(f_j)_{1 \le j \le m}$. $N_{\sigma}(i, k)$ denotes the index of the *k*-th facet of T_i if it is internal, or a special value "port", "macro-facet" or "boundary" otherwise.

Settings

Let $\sigma = \{(P_i, Q_i, \gamma_i)_i\}$ be a good combinatorial substitution. Tiles and internal facets of the Q_i 's: $(T_i)_{1 \le i \le n}$ and $(f_j)_{1 \le j \le m}$. $N_{\sigma}(i, k)$ denotes the index of the k-th facet of T_i if it is internal, or a special value "port", "macro-facet" or "boundary" otherwise.

 τ -tiles will be decorated T_i 's. On each facet will be encoded:

- a facet-index (or special value), called macro-index;
- a tile-index (or 0), called parent-index;
- a facet-index (or special value), called neighbor-index. Clearly, τ is necessarily finite (but possibly huge).

Steps 1–3 of 5

We define τ step by step by allowing/forbidding indices on facets.

Step 1 specifies all the macro-indices:

1 macro-index of the *k*-th facet of a decorated T_j : $N_{\sigma}(j, k)$.

Steps 1–3 of 5

We define τ step by step by allowing/forbidding indices on facets.

Step 1 specifies all the macro-indices:

1 macro-index of the *k*-th facet of a decorated T_i : $N_{\sigma}(j, k)$.

Steps 2–3 specify non-port facets crossed by no network:

- **②** parent-index of such a facet in a Q_i : 0 if external, any j with $T_j = P_i$ otherwise, with uniform indices within each τ -tile;
- neighbor-index of such a facet in a k-th macro-facet: N_σ(j, k), where j is the parent-index within the corresponding τ-tile; neighbor-index of other such facets: copy of the macro-index.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Steps 4–5 of 5

Steps 4–5 specify parent/neighbor pairs on networks and ports:

 on the k-th branch (strictly) and k-th port of a macro-tile: any pair not forbidden on the k-th facet of its parent-tile, with uniform pairs within each τ-tile;

Steps 4–5 of 5

Steps 4–5 specify parent/neighbor pairs on networks and ports:

- on the k-th branch (strictly) and k-th port of a macro-tile: any pair not forbidden on the k-th facet of its parent-tile, with uniform pairs within each τ-tile;
- on the facets of a <u>central</u> τ-tile T: copy all the pairs of any non-central decorated tile which has as many facets as T (one says that T derives from this non-central decorated tile).

Steps 4–5 of 5

Steps 4–5 specify parent/neighbor pairs on networks and ports:

- on the k-th branch (strictly) and k-th port of a macro-tile: any pair not forbidden on the k-th facet of its parent-tile, with uniform pairs within each τ-tile;
- on the facets of a <u>central</u> τ-tile T: copy all the pairs of any non-central decorated tile which has as many facets as T (one says that T derives from this non-central decorated tile).

This completly defines the decorated tile set τ .

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

First inclusion: $\pi(\Lambda_{\tau}) \subset \Lambda_{\sigma}$

Let Q be a τ -macro-tile with parent-index j and central τ -tile \mathcal{T}' . We define $\phi(Q)$ as the tile T_j endowed with the decorations of \mathcal{T}' . This easily yields that τ self-simulates for σ , whence $\pi(\Lambda_{\tau}) \subset \Lambda_{\sigma}$. General case

First inclusion: $\pi(\Lambda_{\tau}) \subset \Lambda_{\sigma}$

Let Q be a τ -macro-tile with parent-index j and central τ -tile T'. We define $\phi(Q)$ as the tile T_j endowed with the decorations of T'. This easily yields that τ self-simulates for σ , whence $\pi(\Lambda_{\tau}) \subset \Lambda_{\sigma}$.

Provided that $\phi(\mathcal{Q}) \in \tau$ holds!

First inclusion: $\pi(\Lambda_{\tau}) \subset \Lambda_{\sigma}$

Let \mathcal{Q} be a τ -macro-tile with parent-index j and central τ -tile \mathcal{T}' . We define $\phi(\mathcal{Q})$ as the tile \mathcal{T}_j endowed with the decorations of \mathcal{T}' . This easily yields that τ self-simulates for σ , whence $\pi(\Lambda_{\tau}) \subset \Lambda_{\sigma}$.

Provided that $\phi(\mathcal{Q}) \in \tau$ holds!

Let \mathcal{T} be the non-central τ -tile from which derives \mathcal{T}' (step 5):

- if T_j is central, then $\phi(Q)$ also derives from T;
- otherwise, neighbor-indices of *T*-facets crossed by no network are copies of macro-indices allowed only on a decorated *T_j*. This yields π(*T*) = *T_j*, and thus φ(*Q*) = *T*.

General case

Converse inclusion: $\Lambda_{\sigma} \subset \pi(\Lambda_{\tau})$

Let $P_0 \in \Lambda_{\sigma}$ and, for any $n \ge 1$, P_n be a preimage of P_{n-1} .

Converse inclusion: $\Lambda_{\sigma} \subset \pi(\Lambda_{\tau})$

Let $P_0 \in \Lambda_{\sigma}$ and, for any $n \ge 1$, P_n be a preimage of P_{n-1} .

Let τ' extend τ by allowing a decoration "undefined" on facets. We fix *n* and inductively define τ' -tiling $(\mathcal{P}_k)_{n \geq k \geq 0}$ as follows:

- \mathcal{P}_n : endow uniformly \mathcal{P}_n with "undefined" decorations;
- *P*_{k-1}: endow each macro-tile of *P*_{k-1} as in steps 1–3 and copy decorations of the corresponding τ'-tile of *P*_k on its network.

The "undefined" decorations appear in the \mathcal{P}_k 's on sort of grids whose cells grow when k decreases.

Converse inclusion: $\Lambda_{\sigma} \subset \pi(\Lambda_{\tau})$

Let $P_0 \in \Lambda_{\sigma}$ and, for any $n \ge 1$, P_n be a preimage of P_{n-1} .

Let τ' extend τ by allowing a decoration "undefined" on facets. We fix *n* and inductively define τ' -tiling $(\mathcal{P}_k)_{n \ge k \ge 0}$ as follows:

- \mathcal{P}_n : endow uniformly \mathcal{P}_n with "undefined" decorations;
- *P*_{k-1}: endow each macro-tile of *P*_{k-1} as in steps 1–3 and copy decorations of the corresponding τ'-tile of *P*_k on its network.

The "undefined" decorations appear in the \mathcal{P}_k 's on sort of grids whose cells grow when k decreases.

Taking $n \to \infty$ yields a τ' -tiling \mathcal{P}_0 whose "undefined" decorations appear only on a star or a line – easily tranformed into a τ -tiling. This yields $P_0 = \pi(\mathcal{P}_0) \in \pi(\Lambda_{\tau})$, and thus $\Lambda_{\sigma} \subset \pi(\Lambda_{\tau})$.

Bringing all together

Given any good combinatorial substitution $\sigma,$ we are thus able to defined a finite decorated tile set τ such that

$$\Lambda_{\sigma} = \pi(\Lambda_{\tau}).$$

This yields the claimed result:

Theorem (Fernique & Ollinger, 2010)

The limit set of a good combinatorial substitution is sofic.

Bringing all together

Given any good combinatorial substitution $\sigma,$ we are thus able to defined a finite decorated tile set τ such that

$$\Lambda_{\sigma} = \pi(\Lambda_{\tau}).$$

This yields the claimed result:

Theorem (Fernique & Ollinger, 2010)

The limit set of a good combinatorial substitution is sofic.

Unfortunately τ is rather huge (up to millions of tiles!). Can we achieve a much lighter generic construction?

Thank you for your attention

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ