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Penrose tiles

Tiles: thin and fat decorated triangles (up to isometries of R2).
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Penrose tiles

Tiling: covering of R2 without overlap, with matching decorations.
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Macro-tiles

?

Consider a thin tile in a tiling: what is its red neighbor?
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Macro-tiles

Does a thin tile suits?
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Macro-tiles

!

No, because symmetric tiles yield an uncompletable vertex.
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Macro-tiles

The red neighbor of a thin tile is thus always a fat tile.
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Macro-tiles

We group them into a thin macro-tile.



Introductory example General case Constructive proof

Macro-tiles

Hence, any tiling by fat and thin tiles. . .
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Macro-tiles

. . . can be (uniquely) seen as a tiling by fat tiles and thin macro-tiles.
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Macro-tiles

Then, consider a free (i.e., ungrouped) fat tile.
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Macro-tiles

Since it has not been grouped, its red neighbor is fat.
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Macro-tiles

?

What is its blue neighbor?
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Macro-tiles

!

A fat tile would yield an uncompletable vertex.
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Macro-tiles

We thus have a thin tile. . .



Introductory example General case Constructive proof

Macro-tiles

. . . formerly grouped into a thin macro-tile.
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Macro-tiles

The blue neighbor of a free fat tile is thus always a thin macro-tile.
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Macro-tiles

We group them into a fat macro-tile.



Introductory example General case Constructive proof

Macro-tiles

Hence, any tiling by fat tiles and thin macro-tiles. . .
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Macro-tiles

. . . can be (uniquely) seen as a tiling by fat and thin macro-tiles.
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Self-simulation

The trick: tiles and macro-tiles have the same combinatorics!
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Self-simulation

Two tiles match along an edge iff. . .
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Self-simulation

the corresponding macro-tiles match along the corresponding edge.



Introductory example General case Constructive proof

Limit set

Hence, any tiling. . .
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Limit set

Hence, any tiling can be (uniquely) seen as a macro-tiling. . .
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Limit set

. . . which can be transformed back into a tiling.
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Limit set

This can be indefinitely iterated (notably preventing periodicity).
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Penrose tilings

Conversely, consider a single tile, say thin.
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Penrose tilings

We can group it into a thin macro-tile. . .
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Penrose tilings

. . . which can be grouped into a thin macro-macro-tile, and so on.



Introductory example General case Constructive proof

Penrose tilings

This yields a spiral-growing increasing sequence of partial tilings.
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Penrose tilings

This yields a spiral-growing increasing sequence of partial tilings.
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Penrose tilings

The union of which defines (up to multiplicity) a complete tiling.
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A generic result

We here provide a general way to find such tricky tiles.

Formally, we constructively prove:

Theorem (Fernique & Ollinger, 2010)

The limit set of a good combinatorial substitution is sofic.

Extends and (hopefully) simplifies previous similar results:

Shahar Mozes (1990);

Chaim Goodman-Strauss (1998).
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Sofic tilings

Decorated tiles and tilings:

A decorated tile is a polytope of Rd with finitely many facets,
on which is defined a real map, called decoration;

Two decorated tiles match if their intersection (if any) is
made of entire faces on which decorations are equal;

A decorated tiling is a covering of D ⊂ Rd by pairwise
matching decorated tiles. It is complete if D = Rd ;

Decorated tile set τ (+direct isometries)  decorated tilings Λτ .

Tiles and tilings: by removing decorations (map π).

Definition (Sofic tiling)

A set of tilings is sofic if it is the image under π of some set Λτ ,
with τ being finite (up to direct isometries).
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Combinatorial substitutions

We are inspired by Natalie Priebe-Frank:

Definition (Combinatorial substitution)

A combinatorial substitution is a finite set of rules (P,Q, γ), where
P is a tile, Q is a finite connected tiling, and γ : ∂P → ∂Q maps
distinct facets on disjoint sets of facets.

The tiling Q is a macro-tile.
If f is the k-th facet of P, then γ(f ) is the k-th macro-facet of Q.
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Combinatorial substitutions

Two macro-tiles match if their intersection contains only entire
macro-facets; a macro-tiling is a tiling whose tiles can be
partitioned into matching macro-tiles.

Given a combinatorial substitution σ = {(Pi ,Qi , γi )i}:

Definition (Preimage)

A tiling T by Pi ’s is the σ-preimage of a macro-tiling T ′ by Qi ’s if
there is a one-to-one correspondence between the tiles of T and
the macro-tiles of T ′ which preserves the combinatorial structure.

Definition (Limit set)

The limit set of σ, denoted by Λσ, is the set of complete tilings
which admit an infinite sequence of σ-preimages.
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Good combinatorial substitutions

A good combinatorial substitution is consistent and connecting:

Definition (Consistency)

A combinatorial substitution σ = {(Pi ,Qi , γi )i} is consistent if any
complete macro-tiling by Qi ’s admits a σ-preimage.

Definition (Connectivity)

A combinatorial substitution σ = {(Pi ,Qi , γi )i} is connecting if the
dual graph of any Qi has a subgraph Ni , called its network, s.t.

1 Ni is a star connecting macro-facets through ports;

2 removing Ni -edges yields a graph connecting macro-facets;

3 the center of Ni , called central tile, is in the interior of Qi ;
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Self-simulation

Let σ = {(Pi ,Qi , γi )i} be a combinatorial substitution.

Definition (Self-simulation)

A decorated tile set τ self-simulates for σ if there are τ -tilings,
called τ -macro-tiles, and a map φ from those to τ , such that

1 ∀ τ -macro-tile Q, ∃i t.q. π(Q) = Qi and π(φ(Q)) = Pi ;

2 any complete τ -tiling is also a τ -macro-tiling;

3 any τ -macro-tile Q is combinatorially equivalent to φ(Q).

Proposition

If σ is consistent and τ self-simulates for σ, then π(Λτ ) ⊂ Λσ.
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Settings

Let σ = {(Pi ,Qi , γi )i} be a good combinatorial substitution.

Tiles and internal facets of the Qi ’s: (Ti )1≤i≤n and (fj)1≤j≤m.

Nσ(i , k) denotes the index of the k-th facet of Ti if it is internal,
or a special value “port”, “macro-facet” or “boundary” otherwise.

τ -tiles will be decorated Ti ’s. On each facet will be encoded:

a facet-index (or special value), called macro-index;

a tile-index (or 0), called parent-index;

a facet-index (or special value), called neighbor-index.

Clearly, τ is necessarily finite (but possibly huge).
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Steps 1–3 of 5

We define τ step by step by allowing/forbidding indices on facets.

Step 1 specifies all the macro-indices:

1 macro-index of the k-th facet of a decorated Tj : Nσ(j , k).

Steps 2–3 specify non-port facets crossed by no network:

2 parent-index of such a facet in a Qi : 0 if external, any j with
Tj = Pi otherwise, with uniform indices within each τ -tile;

3 neighbor-index of such a facet in a k-th macro-facet: Nσ(j , k),
where j is the parent-index within the corresponding τ -tile;
neighbor-index of other such facets: copy of the macro-index.
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Steps 4–5 of 5

Steps 4–5 specify parent/neighbor pairs on networks and ports:

4 on the k-th branch (strictly) and k-th port of a macro-tile:
any pair not forbidden on the k-th facet of its parent-tile,
with uniform pairs within each τ -tile;

5 on the facets of a central τ -tile T : copy all the pairs of any
non-central decorated tile which has as many facets as T
(one says that T derives from this non-central decorated tile).

This completly defines the decorated tile set τ .
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First inclusion: π(Λτ) ⊂ Λσ

Let Q be a τ -macro-tile with parent-index j and central τ -tile T ′.
We define φ(Q) as the tile Tj endowed with the decorations of T ′.

This easily yields that τ self-simulates for σ, whence π(Λτ ) ⊂ Λσ.

Provided that φ(Q) ∈ τ holds!

Let T be the non-central τ -tile from which derives T ′ (step 5):

if Tj is central, then φ(Q) also derives from T ;

otherwise, neighbor-indices of T -facets crossed by no network
are copies of macro-indices allowed only on a decorated Tj .
This yields π(T ) = Tj , and thus φ(Q) = T .
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Converse inclusion: Λσ ⊂ π(Λτ)

Let P0 ∈ Λσ and, for any n ≥ 1, Pn be a preimage of Pn−1.

Let τ ′ extend τ by allowing a decoration “undefined” on facets.
We fix n and inductively define τ ′-tiling (Pk)n≥k≥0 as follows:

Pn: endow uniformly Pn with “undefined” decorations;

Pk−1: endow each macro-tile of Pk−1 as in steps 1–3 and copy
decorations of the corresponding τ ′-tile of Pk on its network.

The “undefined” decorations appear in the Pk ’s on sort of grids
whose cells grow when k decreases.

Taking n→∞ yields a τ ′-tiling P0 whose “undefined” decorations
appear only on a star or a line – easily tranformed into a τ -tiling.
This yields P0 = π(P0) ∈ π(Λτ ), and thus Λσ ⊂ π(Λτ ).
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Bringing all together

Given any good combinatorial substitution σ, we are thus able to
defined a finite decorated tile set τ such that

Λσ = π(Λτ ).

This yields the claimed result:

Theorem (Fernique & Ollinger, 2010)

The limit set of a good combinatorial substitution is sofic.

Unfortunately τ is rather huge (up to millions of tiles!).
Can we achieve a much lighter generic construction?
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