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Introductory example
°

Penrose tiles

P AN

Tiles: thin and fat decorated triangles (up to isometries of R?).
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Penrose tiles
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Tiling: covering of R? without overlap, with matching decorations.
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Macro-tiles

Consider a thin tile in a tiling: what is its red neighbor?
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Macro-tiles

Does a thin tile suits?
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Macro-tiles

No, because symmetric tiles yield an uncompletable vertex.
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Macro-tiles

The red neighbor of a thin tile is thus always a fat tile.
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Macro-tiles

We group them into a thin macro-tile.
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Macro-tiles
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Hence, any tiling by fat and thin tiles. ..
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Macro-tiles

Then, consider a free (i.e., ungrouped) fat tile.
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Macro-tiles

Since it has not been grouped, its red neighbor is fat.
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Macro-tiles

What is its blue neighbor?
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Macro-tiles

A fat tile would yield an uncompletable vertex.
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Macro-tiles

We thus have a thin tile. ..
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Macro-tiles

... formerly grouped into a thin macro-tile.
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Macro-tiles

The blue neighbor of a free fat tile is thus always a thin macro-tile.
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Macro-tiles

We group them into a fat macro-tile.
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Hence, any tiling by fat tiles and thin macro-tiles. ..
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...can be (uniquely) seen as a tiling by fat and thin macro-tiles.
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Self-simulation
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The trick: tiles and macro-tiles have the same combinatorics!
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Self-simulation
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Two tiles match along an edge iff. ..



Introductory example
°

Self-simulation

the corresponding macro-tiles match along the corresponding edge.
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Limit set
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Hence, any tiling. ..



Limit set
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Hence, any tiling can be (uniquely) seen as a macro-tiling. . .
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Penrose tilings

Conversely, consider a single tile, say thin.
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Penrose tilings

We can group it into a thin macro-tile. ..
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Penrose tilings

...which can be grouped into a thin macro-macro-tile, and so on.



Introductory example
°

Penrose tilings

This yields a spiral-growing increasing sequence of partial tilings.
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Penrose tilings

This yields a spiral-growing increasing sequence of partial tilings.
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This yields a spiral-growing increasing sequence of partial tilings.
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Penrose tilings
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The union of which defines (up to multiplicity) a complete tiling.
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General case
.

A generic result

We here provide a general way to find such tricky tiles.

Formally, we constructively prove:

Theorem (Fernique & Ollinger, 2010)

The limit set of a good combinatorial substitution is sofic.

Extends and (hopefully) simplifies previous similar results:
@ Shahar Mozes (1990);
@ Chaim Goodman-Strauss (1998).
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Sofic tilings

Decorated tiles and tilings:

@ A decorated tile is a polytope of R? with finitely many facets,
on which is defined a real map, called decoration;

e Two decorated tiles match if their intersection (if any) is
made of entire faces on which decorations are equal;

o A decorated tiling is a covering of D C RY by pairwise
matching decorated tiles. It is complete if D = RY;

@ Decorated tile set 7 (+direct isometries) ~> decorated tilings A
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on which is defined a real map, called decoration;

e Two decorated tiles match if their intersection (if any) is
made of entire faces on which decorations are equal;

o A decorated tiling is a covering of D C RY by pairwise
matching decorated tiles. It is complete if D = RY;

@ Decorated tile set 7 (+direct isometries) ~> decorated tilings A

Tiles and tilings: by removing decorations (map 7).



General case
°

Sofic tilings

Decorated tiles and tilings:

@ A decorated tile is a polytope of R? with finitely many facets,
on which is defined a real map, called decoration;

e Two decorated tiles match if their intersection (if any) is
made of entire faces on which decorations are equal;

o A decorated tiling is a covering of D C RY by pairwise
matching decorated tiles. It is complete if D = RY;

@ Decorated tile set 7 (+direct isometries) ~> decorated tilings A

Tiles and tilings: by removing decorations (map 7).

Definition (Sofic tiling)

A set of tilings is sofic if it is the image under 7 of some set A,
with 7 being finite (up to direct isometries).
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Combinatorial substitutions

We are inspired by Natalie Priebe-Frank:

Definition (Combinatorial substitution)

A combinatorial substitution is a finite set of rules (P, @, ), where
P is a tile, Q is a finite connected tiling, and v : 9P — dQ maps
distinct facets on disjoint sets of facets.

The tiling @ is a macro-tile.
If f is the k-th facet of P, then ~(f) is the k-th macro-facet of Q.
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Combinatorial substitutions

Two macro-tiles match if their intersection contains only entire
macro-facets; a macro-tiling is a tiling whose tiles can be
partitioned into matching macro-tiles.

Given a combinatorial substitution o = {(P;, Q;,vi)i}:

Definition (Preimage)

A tiling T by P;'s is the o-preimage of a macro-tiling T’ by Q;'s if
there is a one-to-one correspondence between the tiles of T and
the macro-tiles of T’ which preserves the combinatorial structure.

Definition (Limit set)

The limit set of o, denoted by A, is the set of complete tilings
which admit an infinite sequence of o-preimages.
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°

Good combinatorial substitutions

A good combinatorial substitution is consistent and connecting:

Definition (Consistency)

A combinatorial substitution o = {(P;, Q;,vi)i} is consistent if any
complete macro-tiling by Q;'s admits a o-preimage.

Definition (Connectivity)

A combinatorial substitution o = {(P;, Q;,~i)i} is connecting if the
dual graph of any Q; has a subgraph N, called its network, s.t.

@ N is a star connecting macro-facets through ports;
@ removing N;-edges yields a graph connecting macro-facets;

© the center of N;, called central tile, is in the interior of Q;;
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Self-simulation

Let o0 = {(P;, Qi,7i)i} be a combinatorial substitution.

Definition (Self-simulation)

A decorated tile set 7 self-simulates for o if there are 7-tilings,
called 7-macro-tiles, and a map ¢ from those to 7, such that

@ V m-macro-tile Q, Ji t.q. 7(Q) = Q; and 7($(Q)) = Pi;

© any complete 7-tiling is also a 7-macro-tiling;

@ any 7-macro-tile Q is combinatorially equivalent to ¢(Q).




General case

Self-simulation

Let o0 = {(P;, Qi,7i)i} be a combinatorial substitution.

Definition (Self-simulation)

A decorated tile set 7 self-simulates for o if there are 7-tilings,
called 7-macro-tiles, and a map ¢ from those to 7, such that

@ V m-macro-tile Q, Ji t.q. 7(Q) = Q; and w(¢(Q)) = Pj;

© any complete 7-tiling is also a 7-macro-tiling;

@ any 7-macro-tile Q is combinatorially equivalent to ¢(Q).

A\

Proposition

If o is consistent and 7 self-simulates for o, then w(A;) C A,.
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°

Settings

Let o = {(P;, Qi,7i)i} be a good combinatorial substitution.
Tiles and internal facets of the Q;'s: (T;)i<i<n and (f;)1<j<m.

N, (i, k) denotes the index of the k-th facet of T; if it is internal,
or a special value “port”, “macro-facet” or “boundary” otherwise.
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Settings

Let o = {(P;, Qi,7i)i} be a good combinatorial substitution.
Tiles and internal facets of the Q;'s: (T;)i<i<n and (f;)1<j<m.

N, (i, k) denotes the index of the k-th facet of T; if it is internal,
or a special value “port”, “macro-facet” or “boundary” otherwise.

T-tiles will be decorated T;'s. On each facet will be encoded:
@ a facet-index (or special value), called macro-index;
@ a tile-index (or 0), called parent-index;
@ a facet-index (or special value), called neighbor-index.

Clearly, 7 is necessarily finite (but possibly huge).
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Steps 1-3 of 5

We define 7 step by step by allowing/forbidding indices on facets.

Step 1 specifies all the macro-indices:
@ macro-index of the k-th facet of a decorated T;: N,(j, k).
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Steps 1-3 of 5

We define 7 step by step by allowing/forbidding indices on facets.

Step 1 specifies all the macro-indices:
@ macro-index of the k-th facet of a decorated T;: N,(j, k).

Steps 2-3 specify non-port facets crossed by no network:
@ parent-index of such a facet in a Q;: 0 if external, any j with
T; = P; otherwise, with uniform indices within each 7-tile;
© neighbor-index of such a facet in a k-th macro-facet: N,(j, k),
where j is the parent-index within the corresponding 7-tile;
neighbor-index of other such facets: copy of the macro-index.
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Steps 4-5 of 5

Steps 4-5 specify parent/neighbor pairs on networks and ports:

© on the k-th branch (strictly) and k-th port of a macro-tile:
any pair not forbidden on the k-th facet of its parent-tile,
with uniform pairs within each 7-tile;
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© on the k-th branch (strictly) and k-th port of a macro-tile:
any pair not forbidden on the k-th facet of its parent-tile,
with uniform pairs within each 7-tile;

© on the facets of a central 7-tile 7: copy all the pairs of any
non-central decorated tile which has as many facets as 7
(one says that 7 derives from this non-central decorated tile).
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Steps 4-5 of 5

Steps 4-5 specify parent/neighbor pairs on networks and ports:

© on the k-th branch (strictly) and k-th port of a macro-tile:
any pair not forbidden on the k-th facet of its parent-tile,
with uniform pairs within each 7-tile;

© on the facets of a central 7-tile 7: copy all the pairs of any
non-central decorated tile which has as many facets as 7
(one says that 7 derives from this non-central decorated tile).

This completly defines the decorated tile set 7.
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°

First inclusion: 7(A;) C A,

Let Q be a T-macro-tile with parent-index j and central 7-tile 7".
We define ¢(Q) as the tile T; endowed with the decorations of 7.

This easily yields that 7 self-simulates for o, whence m(A;) C A,.
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Provided that ¢(Q) € 7 holds!
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First inclusion: 7(A;) C A,

Let Q be a T-macro-tile with parent-index j and central 7-tile 7".
We define ¢(Q) as the tile T; endowed with the decorations of 7.

This easily yields that 7 self-simulates for o, whence m(A;) C A,.
Provided that ¢(Q) € 7 holds!

Let 7 be the non-central 7-tile from which derives 7' (step 5):
o if T; is central, then ¢(Q) also derives from T

@ otherwise, neighbor-indices of 7-facets crossed by no network
are copies of macro-indices allowed only on a decorated T;.
This yields (7)) = T;, and thus ¢(Q) = 7.
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Converse inclusion: A, C m(A;)

Let Py € A, and, for any n > 1, P, be a preimage of P,_1.



Constructive proof
°

Converse inclusion: A, C 7(A\;)

Let Py € A, and, for any n > 1, P, be a preimage of P,_1.

Let 7/ extend 7 by allowing a decoration “undefined” on facets.
We fix n and inductively define 7/-tiling (Px)n>k>0 as follows:

@ P,: endow uniformly P, with “undefined” decorations;

@ Pi_1: endow each macro-tile of P,_; as in steps 1-3 and copy
decorations of the corresponding 7'-tile of Py on its network.

The “undefined” decorations appear in the Py's on sort of grids
whose cells grow when k decreases.
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Converse inclusion: A, C 7(A\;)

Let Py € A, and, for any n > 1, P, be a preimage of P,_1.

Let 7/ extend 7 by allowing a decoration “undefined” on facets.
We fix n and inductively define 7/-tiling (Px)n>k>0 as follows:
@ P,: endow uniformly P, with “undefined” decorations;
@ Pi_1: endow each macro-tile of P,_; as in steps 1-3 and copy
decorations of the corresponding 7'-tile of Py on its network.

The “undefined” decorations appear in the Py's on sort of grids
whose cells grow when k decreases.

Taking n — oo yields a 7/-tiling Py whose “undefined” decorations
appear only on a star or a line — easily tranformed into a 7-tiling.
This yields Py = w(Po) € w(A;), and thus A, C w(A;).
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Bringing all together

Given any good combinatorial substitution o, we are thus able to
defined a finite decorated tile set 7 such that

Ao = w(A;).

This yields the claimed result:

Theorem (Fernique & Ollinger, 2010)

The limit set of a good combinatorial substitution is sofic.
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Bringing all together

Given any good combinatorial substitution o, we are thus able to
defined a finite decorated tile set 7 such that

Ao = w(A;).

This yields the claimed result:

Theorem (Fernique & Ollinger, 2010)

The limit set of a good combinatorial substitution is sofic.

Unfortunately 7 is rather huge (up to millions of tiles!).
Can we achieve a much lighter generic construction?



Thank you for your attention
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