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Introduction

main result:
Action of dual maps of free group morphisms over stepped planes
and surfaces (extends the substitutive case). Hidden tool: flip.

Application 1 (now):
Define Brun expansions of stepped planes and surfaces.

Application 2 (ask for details later):
Decide whether a given stepped surface is a stepped plane or not
(and for patches too).
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Stepped plane

(~e1, . . . ,~ed) basis of Rd . ~x ∈ Zd , i ∈ {1, . . . , d}  face (~x , i∗):
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Definition

Stepped plane of normal vector ~α ∈ Rd
+\{0}:

P~α = {(~x , i∗) | 〈~x , ~α〉 ≤ 0 < 〈~x + ~ei , ~α〉}.
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Stepped plane

A stepped plane.
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Stepped surface

Let π be the orthogonal projection along ~u = ~e1 + . . . + ~ed .

Proposition

Stepped planes are homeomorphic to ~u⊥ by π.

By extension:

Definition [Jamet]

Stepped surfaces : any set of faces homeomorphic to ~u⊥ by π.
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Stepped surface

A stepped surface.
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Definition

Morphism of the free group over {1, . . . , d} (here, d = 3):

σ :


1 7→ 3
2 7→ 3−11
3 7→ 3−12

For example: σ(1−1312) = σ(1)−1σ(3)σ(1)σ(2) = 3−221.

Incidence matrix: (Mσ)ij = |σ(i)|j − |σ(i)|j-1 . Here:

Mσ =

 0 1 0
0 0 1
1 −1 −1

 .
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Definition

σ unimodular f. g. morph.  dual map E ∗1 (σ) over weighted faces.

For σ previously defined:

E ∗1 (σ) :


(~0, 1∗) 7→ (~e1, 2

∗)

(~0, 2∗) 7→ (~e1, 3
∗)

(~0, 3∗) 7→ (~0, 1∗)− (~e1, 2
∗)− (~e1, 3

∗).

and, for λ ∈ Z, ~x ∈ Zd :

E ∗1 (σ)(λ.(~x , i∗)) = M−1
σ ~x + λ.E ∗1 (σ)(~0, i∗).
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Properties

Theorem (B. F. 2007)

For σ unimodular free group morphism and ~α ∈ Rd
+\~0:

M>
σ ~α ∈ Rd

+ ⇒ E ∗1 (σ)(P~α) = PM>
σ ~α.

E*
1
(σ  )

−1

E*
1
(σ)

Note: the action of E ∗1 (σ) depends only on Mσ (but not on σ).
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Properties

Theorem (B. F. 2007)

For σ unimodular free group morphism: if the image by E ∗1 (σ) of a
stepped surface has faces with weights in {0, 1}, then it is a
stepped surface. This holds, in particular, when Mσ ≥ 0.

E*
1
(σ  )

−1

E*
1
(σ)

Note: the action of E ∗1 (σ) depends only on Mσ (but not on σ).
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Brun expansion of a vector

Brun map T , defined for ~α = (α1, . . . , αd) ∈ Rd\{0}:

T (α1, . . . , αd) =

(
α1

αi
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αi
,
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where i = min{j | αj = ||~α||∞}. Matrix viewpoint:

(1,T (~α))> ∝


0 1

Ii−1

1 −a
Id−i

 (1, ~α)>

Brun expansion (an, in)n≥0 of ~α:

an =
⌊
||T n(~α)||−1

∞
⌋

and in = min{j | 〈T n(~α)|~ej〉 = ||T n(~α)||∞}.
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Brun expansion of a stepped plane

How to define Brun exp. of given stepped planes (unknown normal
vectors) so that P(1,~α) will have the Brun exp. of ~α?

Note: if i = min{j | αj = ||~α||∞} and a = b1/αic are known:

E ∗1 (βa,i )(P(1,~α)) = P(1,T (~α)),

where βa,i has incidence matrix Ba,i s.t. Ba,i (1, ~α) = (1,T (~α)).

Determining (a, i)  entries comparisons and floor computation.
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Brun expansion of a stepped plane

entries comparisons:

(~x , (i + 1)∗), (~x +~ej+1, (i + 1)∗)CP(1,~α) for some ~x yields αi > αj .

floor computation:

Let us introduce:

ai (P) = max{a ∈ N | (~x , (i+1)∗)CP ⇒ (~x−k~ei+1, 1
∗)0≤k<aCP}.

One shows:

ai (P(1,~α)) =

⌊
1

αi

⌋
.
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Brun expansion of a stepped plane

Stepped plane P(1,~α), with unknown ~α = (α1, α2) ∈ [0, 1]2\{0}.
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Brun expansion of a stepped plane

(~0, 2∗), (~e3, 2
∗)C P(1,~α). Thus, α1 > α2.
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Brun expansion of a stepped plane

(~x , 2∗)C P(1,~α) ⇒ (~x , 1∗), (~x − ~e2, 1
∗)C P(1,~α). Thus, b1/α1c = 2.
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Brun expansion of a stepped plane

Finally: P(1,T (~α)) = E ∗1 (β2,1)(P(1,~α)).
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Brun expansions of stepped surfaces

Dual maps and “information grabbing” defined for stepped surfaces

 natural extension of Brun expansions for stepped surfaces.

Theorem (B. F. 2007)

Stepped surfaces having the Brun expansion of ~α ∈ Rd
+\{0} are:

the stepped plane P(1,~α) (finite or infinite expansion);

some stepped surfaces almost equal to P(1,~α) (idem);

some non-plane stepped surfaces (only finite expansion).
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The stepped plane case (finite or infinite expansion)

(a, i) = (4, 1)
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The stepped plane case (finite or infinite expansion)

(a, i) = (1, 2)
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The stepped plane case (finite or infinite expansion)

a = ∞. Stepped plane recognized.
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The stepped quasi-plane case (finite or infinite expansion)

(a, i) = (4, 1)
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The stepped quasi-plane case (finite or infinite expansion)

a = ∞. Not a stepped plane. . . but almost.
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The stepped surface case (only finite expansion)

(a, i) = (4, 1)
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The stepped surface case (only finite expansion)

(a, i) = (1, 2)
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The stepped surface case (only finite expansion)

a undefined. Not at all a stepped plane.



Conclusion

Where is “digital plane recognition”?

Finite expansions  stepped planes recognized from the last
obtained stepped surface.

Patches (finite subset of stepped surfaces)  finite expansions. . .
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