
Generation and Re
ognition of Digital Planesusing Multi-dimensional Continued Fra
tionsThomas FerniqueLIRMM, Univ. Montpellier 2, CNRS161 rue Ada 34392 Montpellier - Fran
e,fernique�lirmm.frAbstra
t. This paper extends, in a multi-dimensional framework, pat-tern re
ognition te
hni
s for generation or re
ognition of digital lines.More pre
isely, we show how the 
onne
tion between 
hain 
odes of di-gital lines and 
ontinued fra
tions 
an be generalized by a 
onne
tionbetween tilings and multi-dimensional 
ontinued fra
tions. This leads toa new approa
h for generating and re
ognizing digital hyperplanes.Introdu
tionDis
rete (or digital) geometry deals with dis
rete sets 
onsidered to be digitizedobje
ts of the Eu
lidean spa
e. A 
hallenging problem is to de
ompose a huge
ompli
ated dis
rete set into elementary ones, whi
h 
ould be easily stored andfrom whi
h one 
an easily re
onstru
t the original dis
rete set. Good 
andidatesfor su
h elementary dis
rete sets are digitizations of Eu
lidean hyperplanes, inparti
ular arithmeti
 dis
rete hyperplanes (see [1, 7, 9℄). We thus need e�
ientalgorithms whi
h generate arbitrarily big pat
hes of su
h digitizations from givenparameters and, 
onversely, re
ognize parameters from given digitizations.In the parti
ular 
ase of digitizations of lines, among other te
hni
s, so-
alledlinguisti
 te
hni
s provide a ni
e 
onne
tion with words theory and 
ontinuedfra
tions. Let us brie�y detail this. A digital line made of horizontal or verti
alunit segments 
an be 
oded by a two-letter word, 
alled 
hain 
ode or Free-man 
ode. For example, if a horizontal (resp. verti
al) unit segment is 
odedby 0 (resp. 1), then a segment of slope 1 
an be 
oded by a word of the form
10 . . . 10 = (10)k. Then, basi
 transformations on words 
orrespond to basi
 op-erations on slopes of the segments they 
ode. For example, repla
ing ea
h 0 by
01 and ea
h 1 by 0 in the previous word leads to the word (001)k, whi
h 
odesa segment of slope 1/2. Many algorithms use this approa
h for both re
ogni-tion and generation of digital lines, and 
ontinued fra
tion expansions of slopesof segments turn out to play a 
entral role there (see e.g. [11℄ or referen
es in [8℄).In higher dimensions, there are also various te
hni
s for generation or re
og-nition of digital hyperplane as, for example, linear programming, 
omputationalgeometry or preimage te
hni
s (see e.g. [4℄ and referen
es therein). However,



2these approa
hes do not extend the 
onne
tion between words theory and 
on-tinued fra
tions. The aim of this paper is to introdu
e an approa
h whi
h doesit. Su
h an approa
h extends the 
ase of so-
alled stepped surfa
es (whi
h areparti
ular in�nite digitizations), studied in [3℄.The paper is organized as follows. In Se
. 1, we introdu
e binary fun
tions,whi
h 
an be seen as unions of fa
es of unit hyper
ubes. Among them, theones 
alled stepped planes ([12℄) play for Eu
lidean hyperplanes the role playedby 
hain 
odes for Eu
lidean lines. We also introdu
e dual maps ([2, 6℄), whi
hgeneralize the basi
 transformations on 
hain 
odes mentioned above. Then,in Se
. 2, we brie�y des
ribe the Brun algorithm, whi
h is one of the existingmulti-dimensional 
ontinued fra
tion algorithms (see [10℄). The Brun algorithm
omputes so-
alled Brun expansions of real ve
tors. We also introdu
e parti
ulardual maps whi
h allow the Brun algorithm to a
t over stepped planes. This leads,in Se
. 3, to a method for obtaining a fundamental domain of a stepped plane,that is, a binary fun
tion whi
h su�
es to generate by periodi
ity the wholestepped plane (Th. 2). In Se
. 4, we des
ribe a method to 
ompute so-
alled Brunexpansions of stepped planes, by grabing information from lo
al 
on�gurations(namely runs). A
tually, the Brun expansion of a stepped plane is nothing butthe Brun expansion of its normal ve
tor. So, the interest of this method is that it
an be naturally extended to binary fun
tions, leading to de�ne, in Se
. 5, Brunexpansions of binary fun
tions. We �nally use this extended notion of Brunexpansion, in Se
. 6, to des
ribe a re
ognition algorithm whi
h de
ides whethera given binary fun
tion is a stepped plane or not (Th. 3).1 Stepped planes and dual mapsWe here �rst introdu
e our basi
 digital obje
ts, namely binary fun
tions andstepped planes. Formally, it is 
onvenient to 
onsider the set of fun
tions from
Zd × {1, . . . , d} to Z, denoted by Fd. Then, we de�ne:De�nition 1. A binary fun
tion is a fun
tion in Fd whi
h takes values in {0, 1}.The size of a binary fun
tion B, denoted by |B|, is the 
ardinality of its support,that is, the subset of Zd × {1, . . . , d} where B takes value one. We denote by Bdthe set of binary fun
tions. For x ∈ Zd and i ∈ {1, . . . , d}, we 
all fa
e of type
i lo
ated in x the binary fun
tion denoted by (x, i∗) whose support is {(x, i)}.Note that binary fun
tions (resp. fun
tions of Fd) 
an be seen as sums of fa
es(resp. weighted sums of fa
es). Let us now provide a geometri
 interpretation ofbinary fun
tions. Let (e1, . . . , ed) denote the 
anoni
al basis of Rd. The geometri
interpretation of a fa
e (x, i∗) is the 
losed subset of Rd de�ned by (see Fig. 1):

{x + ei +
∑

j 6=i

λjej | 0 ≤ λj ≤ 1}.This subset is a hyperfa
e of the unit 
ube of Rd whose lowest vertex is x. Then,the geometri
 interpretation of a binary fun
tion, that is, of a sum of fa
es, is



3the union of the geometri
al interpretations of these fa
es (see Fig. 3).
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al interpretations of fa
es (x, i∗), for i = 1, 2, 3 (from left to right).Among binary fun
tions, we are espe
ially interested in so-
alled stepped planes :De�nition 2. Let α ∈ Rd
+\{0} and ρ ∈ R. The stepped plane of normal ve
tor

α and inter
ept ρ ∈ R, denoted by Pα,ρ, is the binary fun
tion de�ned by:
Pα,ρ(x, i) = 1 ⇔ 〈x|α〉 < ρ ≤ 〈x + ei|α〉,where 〈|〉 is the 
anoni
al dot produ
t. We denote by Pd the set of stepped planes.Fig. 2 depi
ts the geometri
al interpretation of a stepped plane. It is nothard to 
he
k that the verti
es of a stepped plane Pα,ρ, that is, the integers ve
-tors whi
h belong to its geometri
al interpretation, form a standard arithmeti
dis
rete plane of parameters (α, ρ) (see [1, 7, 9℄). Moreover, one 
he
ks that theorthogonal proje
tion along e1 + . . .+ed maps the geometri
al representation ofa stepped plane onto a tiling of Rd−1 whose tiles are proje
tions of geometri
alrepresentations of fa
es (see also Fig. 2).Let us now introdu
e the main tool of this paper, namely dual maps, whi
ha
t over binary fun
tions and stepped planes. First, let us re
all some basi
de�nitions and notations. We denote by Fd the free group generated by thealphabet {1, . . . , d}, with the 
on
atenation as a 
omposition rule and the emptyword as unit. An endomorphism of Fd is a substitution if it maps any letterto a non-empty 
on
atenation of letters with non-negative powers. The parikhmapping is the map f from Fd to Zd de�ned on w ∈ Fd by:

f(w) = (|w|1, . . . , |w|d),where |w|i is the sum of the powers of the o

uren
es of the letter i in w. Then,the in
iden
e matrix of an endomorphism σ of Fd, denoted by Mσ, is the d× dinteger matrix whose i-th 
olumn is the ve
tor f(σ(i)). Last, an endomorphismof Fd is said to be unimodular if its in
iden
e matrix has determinant ±1.Example 1. Let σ be the endormorphism of F3 de�ned by σ(1) = 12, σ(2) = 13and σ(3) = 1. Note that σ is a substitution (often 
alled Rauzy substitution).One 
omputes, for example, σ(1−12) = σ(1)−1σ(2) = 2−11−113 = 2−13, and
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Fig. 2. Geometri
al interpretation of the stepped plane P(24,9,10),0 (highlighted origin).This 
an be seen either as fa
es of unit 
ubes, or as a lozenge tiling of the plane.
f(2−13) = e3 − e2. This substitution is unimodular sin
e its in
iden
e matrix(below) has determinant 1:

Mσ =





1 1 1
1 0 0
0 1 0



 .We are now in a position to de�ne dual maps :De�nition 3. The dual map of a unimodular endomorphism σ of Fd, denotedby E∗
1 (σ), maps any fun
tion F ∈ Fd to the fun
tion E∗

1 (σ)(F) de�ned by:
E∗

1 (σ)(F) : (x, i) 7→
∑

j|σ(i)=p·j·s

F(Mσx + f(p), j)−
∑

j|σ(i)=p·j-1·sF(Mσx + f(p)− ej , j).Note that the value of E∗
1 (σ)(F) in (x, i) is �nite sin
e it depends only onthe values of F over a �nite subset of Zd × {1, . . . , d}. This yields that E∗

1 (σ) isan endomorphism of Fd.Example 2. The dual map of the substitution σ introdu
ed in Ex. 1 satis�es:
E∗

1 (σ) :







(0, 1∗) 7→ (0, 1∗) + (0, 2∗) + (0, 3∗),
(0, 2∗) 7→ (−e3, 1

∗),
(0, 3∗) 7→ (−e3, 2

∗).The image of any fun
tion of Fd, that is, of a weighted sum of fa
es, 
an thenbe easily 
omputed by linearity. Fig. 3 illustrates this.The following theorem, proved in [3℄, 
onne
ts dual maps and stepped planes:Theorem 1 ([3℄). Let σ be a unimodular endomorphism of Fd. Let α ∈ Rd
+\{0}and ρ ∈ R. If M⊤

σ α ∈ Rd
+, then the image of the stepped plane Pα,ρ by E∗

1 (σ) isthe stepped plane PM⊤
σ α,ρ. Otherwise, this image is not a binary fun
tion1.1 See Def. 1.
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Fig. 3. A
tion of the dual map of Ex. 2 on fa
es (left) and on a binary fun
tion (right).Let us stress that the image of a binary fun
tion is not ne
essarily binary (unlike here).Note that, although the image by E∗

1 (σ) of a stepped plane is a steppedplane, the image of ea
h fa
e of this stepped plane is a weighted sum of fa
es(in parti
ular, not ne
essarily binary). Note also that if σ is a substitution, then
M⊤

σ α ∈ Rd
+ holds for any α ∈ Rd

+\{0}: the image of a stepped plane by thedual map of a substitution is thus always a stepped plane.2 Brun expansions of real ve
torsWe here re
all the Brun algorithm (see e.g. [10℄) and use dual maps to 
onne
tit with normal ve
tors of stepped planes (re
all Def. 2).De�nition 4. The Brun map T is the map from [0, 1]d\{0} to [0, 1]d de�nedon α = (α1, . . . , αd) by:
T (α1, . . . , αd) =

(

α1

αi
, . . . ,

αi−1

αi
,

1

αi
−

⌊

1

αi

⌋

,
αi+1

αi
, . . . ,

αd

αi

)

,where i = min{j | αj = ||α||∞}. Then, the Brun expansion of a ve
tor α ∈ [0, 1]dis the sequen
e (an, in)n≥0 of N∗ × {1, . . . , d} de�ned, while T n(α) 6= 0, by:
an =

⌊

||T n(α)||−1
∞

⌋ and in = min{j | 〈T n(α)|ej〉 = ||T
n(α)||∞}.Let us stress that, in the d = 1 
ase, the Brun map T is nothing but the
lassi
 Gauss map, and if (an, in)n≥0 is the Brun expansion of α ∈ [0, 1], then

(an)n is the 
ontinued fra
tion expansion of α, while, for all n, in = 1.Example 3. The Brun expansion of (3/8, 5/12) is (2, 2), (1, 1), (2, 2), (4, 1), (1, 2).Let us mention that, as in the 
ase of 
ontinued fra
tions, it turns out that ave
tor has a �nite Brun expansion if and only if it has only rational entries. Letus now give a matrix viewpoint of the Brun map T . For (a, i) ∈ N× {1, . . . , d},one introdu
es the following (d+ 1)× (d+ 1) symmetri
 matrix:
Ba,i =









a 1
Ii−1

1 0
Id−i









, (1)



6where Ip stands for the p × p identity matrix. Then, 
onsider a ve
tor α =
(α1, . . . , αd) ∈ [0, 1]d\{0}. A simple 
omputation shows that, with i = min{j | αj =
||α||∞} and a = ⌊α−1

i ⌋, one has:
(1,α) = ||α||∞Ba,i(1, T (α)), (2)where, for any ve
tor u, (1,u) stands for the ve
tor obtained by adding to ua �rst entry equal to 1. Note that Ba,i is invertible. Thus, one 
an rewrite theprevious equation as follows:
(1, T (α)) = ||α||−1

∞ B−1
a,i (1,α). (3)To 
on
lude this se
tion, let us show that this matrix viewpoint allows to
onne
t Brun expansions with the stepped planes and dual maps introdu
ed inthe previous se
tion. Let us introdu
e Brun substitutions :De�nition 5. Let a ∈ N∗ and i ∈ {1, . . . , d}. The Brun substitution βa,i is theendomorphism of Fd+1 de�ned by:

βa,i(1) = 1a· (i+ 1), βa,i(i+ 1) = 1, ∀j /∈ {1, i+ 1}, βa,i(j) = j.One 
he
ks that βa,i is unimodular and has Ba,i for in
iden
e matrix.2 Note alsothat βa,i is invertible, sin
e one 
omputes:
β−1

a,i (1) = (i+ 1), β−1
a,i (i+ 1) = (i+ 1)−a· 1, ∀j /∈ {1, i+ 1}, β−1

a,i (j) = j.

Fig. 4. A
tion on fa
es of the dual maps E∗

1 (β4,1) (top) and E∗

1 (β3,2) (bottom).One then 
an 
onsider dual maps of Brun substitutions (see Fig. 4), and onededu
es from Th. 1 that Eq. (2) and (3) respe
tively yield:
E∗

1 (βa,i)(P||α||∞(1,T (α)),ρ) = P(1,α),ρ, (4)
P||α||∞(1,T (α)),ρ = E∗

1 (β−1
a,i )(P(1,α),ρ). (5)2 Let us re
all that Ba,i is the symmetri
 matrix de�ned Eq. (1).



73 Generation of stepped planesWe here show how dual maps and Brun expansions 
an be used to easily generatearbitrarily big pat
hes of a stepped plane (that is, binary fun
tions less or equalto it), provided that its normal ve
tor has rational entries. Indeed, one proves:Theorem 2. Let α ∈ [0, 1]d ∩Qd with the �nite Brun expansion (an, in)0≤n≤N (Proof in Appendix)and ρ ∈ R. Let ρ′ = ρ/||Ba0,i0 × . . . × BaN ,iN
e1||∞ and D(1,α),ρ be the binaryfun
tion de�ned by:

D(1,α),ρ = E∗
1 (βa0,i0) ◦ . . . ◦ E

∗
1 (βaN ,iN

)(⌊ρ′⌋e1, 1
∗),and L(1,α),ρ be the latti
e of rank d of Zd+1 de�ned by:

L(1,α),ρ = B−1
a0,i0

. . . B−1
aN ,iN

d+1
∑

k=2

Zek.Then, the geometri
al interpretation of the stepped plane P(1,α),ρ is the union ofall the translations along L(1,α),ρ of the geometri
al interpretation of D(1,α),ρ.Example 4. Fig. 5 shows the generation of the binary fun
tion D(1,3/8,5/12),0 bythe dual maps of the Brun substitutions asso
iated with the Brun expansion ofthe ve
tor (3/8, 5/12) (re
all Ex. 3). One also 
omputes:
L(1,3/8,5/12),0 = Z(e1 + 4e2 − 6e3) + Z(2e1 − 2e2 − 3e3).Thus, a

ording to Th. 2, the geometri
al interpretation of the rational steppedplane P(1,3/8,5/12),0 = P(24,9,10),0 (see Fig. 2) is the union of all the translationsalong L(1,3/8,5/12),0 of the geometri
al interpretation of D(1,3/8,5/12),0.

Fig. 5.Generation of D(1,3/8,5/12),0 by appli
ations of the dual maps E∗

1(β1,2), E∗

1 (β4,1),
E∗

1 (β2,2), E∗

1 (β1,1) and E∗

1 (β2,2) (from left ro right � highlighted origin). A

ording toTh. 2, the stepped plane P(1,3/8,5/12),0 
an be generated by translating D(1,3/8,5/12),0 .Note that, in terms of fun
tions, one has D(1,α),ρ ≤ P(1,α),ρ. This means thatthe geometri
al interpretation of D(1,α),ρ is in
luded in the one of P(1,α),ρ. To
on
lude this se
tion, let us mention that one 
an show that D(1,α),ρ has minimalsize: su
h a pie
e of P(1,α),ρ is 
alled a fundamental domain of P(1,α),ρ.



84 Brun expansions of stepped planesWe here show how Brun expansions of normal ve
tors of stepped planes 
an bedire
tly 
omputed on stepped planes relying on the notion of run:De�nition 6. An (i, j)-run of a binary fun
tion B is a maximal sequen
e of
ontiguous fa
es of type i, aligned with the dire
tion ej , whose geometri
 inter-pretation is in
luded in the one of B.For example, the stepped plane depi
ted on Fig. 2 has (1, 2)-runs and (1, 3)-runs of size 2 or 3, and (3, 2)-runs of size 1 or 2 (see also Fig. 6 in the general 
aseof a binary fun
tion). The in�mum and the supremum of the sizes (Re
all Def. 1)of the (i, j)-runs of a binary fun
tion B are respe
tively denoted by a−i,j(B) and
a+

i,j(B). The following proposition shows that runs 
ontain information aboutthe normal ve
tor of a stepped plane:Proposition 1. Let α = (α1, . . . , αd) ∈ Rd
+\{0} and ρ ∈ R. Then, for αj 6= 0:(Proof in Appendix)

a−i,j(Pα,ρ) = max(⌊αi/αj⌋, 1) and a+
i,j(Pα,ρ) = max(⌈αi/αj⌉, 1).In parti
ular, let us show that runs 
ontain enough information to 
omputeBrun expansions of normal ve
tors of so-
alled expandable stepped planes:De�nition 7. A stepped plane P ∈ Pd+1 is said to be expandable if one has:

max
1≤i≤d

a+
i+1,1(P) = 1 and min

1≤i≤d
a−1,i+1(P) <∞.In this 
ase, we de�ne:

i(P) = min
1≤i≤d

{i | max
1≤j≤d

a+
j+1,i+1(P) ≤ 1} and a(P) = a−1,i(P)+1(P).Note that one easily dedu
es from Prop. 1 that a stepped plane is expandableif and only if its normal ve
tor is of the form (1,α), with α ∈ [0, 1]d\{0}.Moreover, one then has:

i(P(1,α),ρ) = min{i | αi = ||α||∞} and a(P(1,α),ρ) = ⌊||α||−1
∞ ⌋. (6)This leads to the following de�nition:De�nition 8. Let T̃ be the map de�ned over expandable stepped planes by:

T̃ (P) = E∗
1 (β−1

a(P),i(P))(P).In parti
ular, T̃ has values in Pd+1. More pre
isely, Eq. (4) yields:
T̃ (P(1,α),ρ) = P(1,T (α)),ρ. (7)Thus, the Brun expansion of a ve
tor α 
an be 
omputed on a stepped plane P ofnormal ve
tor (1,α), sin
e it is nothing but the sequen
e (a(T̃ n(P)), i(T̃ n(P)))n.By abuse, this Brun expansion is 
alled Brun expansion of the stepped plane P .



95 Brun expansions of binary fun
tionsHere, we show that runs allow to de�ne Brun expansions not only of steppedplanes but also of binary fun
tions, although the latter do not have normalve
tors. We �rst need to re�ne Def. 6 (see Fig. 6):De�nition 9. Let R be an (i, j)-run of a binary fun
tion B. Thus, there is ave
tor x ∈ Zd and an interval I of Z (not ne
essarily �nite) su
h that:
R =

∑

k∈I

(x + kej , i
∗).This run is right-
losed if I has a right endpoint b su
h that B(x + bej , j

∗) = 1,and left-
losed if I has a left endpoint a su
h that B(x+(a−1)ej+ei, j
∗) = 1. Theterms 
losed, open, right-open and left-open are then de�ned as for intervals.

Fig. 6. This binary fun
tion has every type of (1, 3)-runs: left-
losed, right-
losed,
losed and open (framed runs, from left to right). It is moreover re
ognizable, with
(a, i) = (2, 2) (see de�nition below).Then, as we previously de�ned Brun expansions of expandable stepped planes,we will here restri
t to re
ognizable binary fun
tions:De�nition 10. A binary fun
tion B ∈ Bd+1 is re
ognizable if it satis�es thetwo following 
onditions. First, it shall exist i ∈ {1, . . . , d} su
h that:

a+
1,i+1(B) ≥ 2 and min

1≤j≤d
a+

i+1,j+1(B) ≥ 2.Let i(B) denotes the smallest su
h i. Se
ond, B shall have 
losed (1, i(B) + 1)-runs, with the smallest one having size a+
1,i(B)+1(B) − 1. Let a(B) denotes thissize.Let us explain this de�nition. Assume that B ≤ P(1,α),ρ, for α ∈ Rd

+ and
ρ ∈ R. Then, it is not hard to dedu
e from Prop. 1 that the �rst re
ognizability
ondition ensures that the i(B)-th entry of α is smaller than 1 and greater thanall the other entries, while the se
ond re
ognizability 
ondition ensures that
P(1,α),ρ has (1, i(B))-runs of two di�erent sizes, with the smallest size being equalto a(B). In other words, re
ognizability ensures α ∈ [0, 1]d, i(B) = i(P(1,α),ρ)and a(B) = a(P(1,α),ρ). Thus, the formula de�ning T̃ over stepped planes (Def.8) 
an still be used to de�ne T̃ over re
ognizable binary fun
tions. This leads tode�ne the Brun expansion of a re
ognizable binary fun
tion B as the sequen
e
(a(T̃ n(B)), i(T̃ n(B)))n, for n su
h that T̃ n(B) is a re
ognizable binary fun
tion.



106 Re
ognition of stepped planesWe are here interested in the following re
ognition problem: given a binary fun
-tion B ∈ Bd+1 whose size |B| is �nite, de
ide whether the following 
onvexpolytope of Rd+1 is empty or not:
P (B) = {(α, ρ) ∈ [0, 1]d\{0} × R | B ≤ P(1,α),ρ}.The idea is that if the map T̃ previously de�ned would satisfy, for any B ∈ Bd+1:

0 ≤ B ≤ P ⇔ 0 ≤ T̃ (B) ≤ T̃ (P), (8)then, P (B) would be not empty if and only if 
omputing the sequen
e (T̃ n(B))n≥0would lead to a binary fun
tion of the form ∑

x∈X(x, 1∗), with the ve
tors of Xhaving all the same �rst entries (su
h a binary fun
tion is easily re
ognizable).But Eq. (8) does not always hold. The �rst problem is that T̃ is de�ned onlyover expandable stepped planes and re
ognizable binary fun
tions. However, thisproblem turns out to generally appear only for binary fun
tions whose size issmall, be
ause their runs do not 
ontain enough information. The se
ond problemseems more tedious: the image by T̃ of a re
ognizable binary fun
tion less than orequal to a stepped plane P is neither ne
essarily less than or equal to T̃ (P), noreven always a binary fun
tion. Let us �rst 
onsider this problem. We introdu
ethree rules a
ting over binary fun
tions (see Fig. 7, and also Fig. 8, left):De�nition 11. Let a ∈ N∗ and i ∈ {1, . . . , d}. The rule φa,i left-extends anyright-
losed and left-open (1, i+ 1)-run into a run of size a; the rule ψa,i right-
loses any right-open (1, i + 1)-run of size greater than a; the rule χi removesany left-
losed and right-open (1, i+ 1)-run.
χ

2
ψ

2,2
φ

2,2Fig. 7. The rules φ2,2, ψ2,2 and χ2 (dashed edges represent missing fa
es).The following proposition then shows that one 
an repla
e any re
ognizablebinary fun
tion B by a re
ognizable binary fun
tion B̃ whi
h satis�es Eq. (8)under an additional hypothesis:Proposition 2. Let B ∈ Bd+1 be a re
ognizable binary fun
tion and B̃ be the(Proof in Appendix) binary fun
tion obtained by su

essively applying φa(B),i(B), ψa(B),i(B) and χi(B).Then, for any stepped plane P ∈ Pd+1, one has B ≤ P if and only if B̃ ≤ P.Moreover, if B̃ does not have open (1, i(B) + 1)-runs, then one has:
0 ≤ B̃ ≤ P ⇔ 0 ≤ T̃ (B̃) ≤ T̃ (P).
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Fig. 8. The re
ognizable binary fun
tion B of Fig. 6 is transformed by applying therules of Fig. 7 into a binary fun
tion B̃ (left) su
h that 0 ≤ B ≤ P ⇔ 0 ≤ B̃ ≤ P .Here, sin
e B̃ does not have open (1, 3)-run, its image by T̃ (right) is su
h that, for anystepped plane P , one has: 0 ≤ B̃ ≤ P ⇔ 0 ≤ T̃ (B̃) ≤ P .Thus, we still have the problem that a binary fun
tion B is not always re
og-nizable (Def. 10), while the se
ond problem is now that B̃ 
an have problemati
open runs. However, it is expe
ted that, in pra
ti
e, both not re
ognizable bi-nary fun
tions and problemati
 open runs have rather small sizes. Hen
e, it isworth 
onsidering a hybrid algorithm. Given a re
ognizable binary fun
tion B,we 
ompute B̃, remove problemati
 open runs and apply the map T̃ . We iteratethis up to obtain an unre
ognizable binary fun
tion. Then, we use an alreadyexisting algorithm (e.g. a preimage algorithm, see [4℄) to re
ognize this binaryfun
tion and, �nally, to re�ne the re
ognition by 
onsidering the previously re-moved open runs. More pre
isely, 
onsider the following algorithm, where XRe
ois an algorithm whi
h 
omputes the set P (B) and B′
a,i is the (d + 2) × (d + 2)blo
k matrix whose �rst blo
k is Ba,i and the se
ond the 1× 1 identity matrix:HybridBrunRe
o(B)1. n ← 0;2. B0 ← B;3. while Bn is re
ognizable do4. (an, in) ← (a(Bn), i(Bn));5. 
ompute B̃n;6. Ln ← open runs of B̃n;7. Bn+1 ← E∗

1 (β−1
an,in

)(B̃n − Ln);8. n ← n+ 1;9. end while;10. Pn ← XRe
o(Bn);11. for k = n− 1 downto k=0 do12. Pk ← B′
ak,ik

Pk+1;13. Pk ← Pk ∩ XRe
o(Lk);14. end for;15. return P0;One shows:Theorem 3. The algorithm HybridBrunRe
o with a binary fun
tion B of �nitesize as input returns the set P (B) in �nite time.



12 To 
on
lude, let us dis
uss the 
omputational 
ost of the above algorithm.Let us �rst fo
us on the �Brun� stage of the algorithm, that is, on lines 3�9.One 
an show that ea
h step of this stage 
an be performed in time O(|Bn|)and that the size |Bn| of Bn stri
tly de
reases. Thus, the whole stage 
an beperformed in quadrati
 time (in the size of B). However, let us stress that (|Bn|)ngenerally de
reases with an exponential rate (this is the 
ase, for example, forany stepped plane), so that this stage is expe
ted, in pra
ti
e, to be performedin near linear time. Let us now 
onsider the �
orre
tion� stage of the algorithm,that is, lines 10�14. Note that the sum of sizes of inputs of XRe
o is less than
|B|. Thus, assuming that XRe
o works in time no more than quadrati
 (thisholds; for example, for a preimage algorithm, see [4℄), the bound given for the�rst stage still holds. We also need to 
ompute interse
tions of 
onvex polytopes.The 
omplexity of su
h operations is not trivial in higher dimensions, but letus stress that the interse
tion of k 
onvex polytopes of R3 
an be 
omputed intime O(m ln k), where m stands for the total size of these polytopes (see [5℄).Moreover, let us re
all that the �rst unre
ognizable Bn as well as the sum of sizesof the Lk's are expe
ted to be mu
h smaller than B. In 
on
lusion, theoreti
altime 
omplexity bounds are probably mu
h bigger than the pra
ti
al e�
ien
y ofthis algorithm, so that further expriments shall be performed in order to betterunderstand the 
omputational 
ost of this hybrid algorithm.Referen
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13AppendixTheorem 2. Let α ∈ [0, 1]d ∩Qd with the �nite Brun expansion (an, in)0≤n≤Nand ρ ∈ R. Let D(1,α),ρ be the binary fun
tion de�ned by:
D(1,α),ρ = E∗

1 (βa0,i0) ◦ . . . ◦ E
∗
1 (βaN ,iN

)(⌈ρ⌉e1, 1
∗),and L(1,α),ρ be the latti
e of rank d of Zd+1 de�ned by:

L(1,α),ρ = B−1
a0,i0

. . . B−1
aN ,iN

d+1
∑

k=2

Zek.Then, the geometri
al interpretation of the stepped plane P(1,α),ρ is the union ofall the translations along L(1,α),ρ of the geometri
al interpretation of D(1,α),ρ.Proof. On the one hand, one easily 
he
ks that translations of the geometri
alinterpretation of (⌈ρ⌉e1, e
∗
1) along the latti
e Ze2 + . . . + Zed+1 yield the geo-metri
al interpretation of the stepped plane P(1,0),ρ. On the other hand, if D isa binary fun
tion su
h that the translations along a latti
e L of its geometri
alinterpretation yield the geometri
al interpretation of a stepped plane P , then,for any unimodular substitution σ, Th.1 yields that E∗

1 (σ)(D) is a binary fun
-tion whose geometri
al interpretation, translated along the latti
e M−1
σ L, yieldsthe geometri
al interpretation of the stepped plane E∗

1 (σ)(P). The result followsby 
onsidering the unimodular substitution σ = βaN ,iN
◦ . . . ◦ βa0,i0 . ⊓⊔Proposition 1. Let α = (α1, . . . , αd) ∈ Rd

+\{0} and ρ ∈ R. Then, for αj 6= 0:
a−i,j(Pα,ρ) = max(⌊αi/αj⌋, 1) and a+

i,j(Pα,ρ) = max(⌈αi/αj⌉, 1),where the �oor and the 
eiling of x ∈ R are respe
tively denoted by ⌊x⌋ and ⌈x⌉.Proof. Let x ∈ Zd and I ⊂ Z su
h that the following binary fun
tion is an
(i, j)-run of Pα,ρ:

R =
∑

k∈I

(x + kej , i
∗).Assume that I 
ontains an interval [a, b], of length b− a+ 1. Then, one has:

Pα,ρ(x + aej , i) = 1 ⇒ 〈x|α〉+ aαj < ρ ≤ 〈x|α〉+ aαj + αi,

Pα,ρ(x + bej , i) = 1 ⇒ 〈x|α〉+ bαj < ρ ≤ 〈x|α〉+ bαj + αi.One dedu
es:
(b− a)αj < ρ− 〈x|α〉 ≤ αi,that is, for αj 6= 0:

b− a+ 1 <
αi

αj
+ 1.



14This thus gives an upper bounds of the length of I. Let us now assume that
I = [a, b]. Then, one has:

Pα,ρ(x + aej , i) = 1 ⇒ 〈x|α〉+ (a− 1)αj < 〈x|α〉+ aαj < ρ,and one dedu
es:
Pα,ρ(x + (a− 1)ej , i) = 0 ⇒ ρ > 〈x|α〉+ (a− 1)αj + αi.Similarly, one shows:

ρ ≤ 〈x|α〉+ (b+ 1)αj + αi.Finally, one has:
(a− 1)αj + αi < ρ− 〈x|α〉 ≤ (b + 1)αj ,that is, for αj 6= 0:

b− a+ 1 >
αi

αj
− 1.This thus gives a lower bounds of the length of I. In 
on
lusion, we shown:

αi

αj
− 1 < a−i,j(Pα,ρ) ≤ a

+
i,j(Pα,ρ) <

αi

αj
+ 1.The result follows (re
all that, by de�nition, runs are non-empty). ⊓⊔Proposition 2. Let B be a re
ognizable binary fun
tion of Bd+1 and B̃ thebinary fun
tion obtained by su

essively applying φa(B),i(B), ψa(B),i(B) and χi(B).Then, for any stepped plane P ∈ Pd+1, one has B ≤ P if and only if B̃ ≤ P.Moreover, if B̃ does not have open (1, i(B) + 1)-run, then one has :

0 ≤ B̃ ≤ P ⇔ 0 ≤ T̃ (B̃) ≤ T̃ (P).Proof. Let B be a re
ognizable binary fun
tion. Assume that there is a steppedplane P su
h that B ≤ P . Thus, any left-open and right-
losed (1, i+1)-run of Bis less or equal to a 
losed (1, i+1)-run of P . Sin
e su
h a run has length at least
a(P) = a(B), this yields that φa(B),i(B)(B) is still less or equal to P . Conversely,if φa(B),i(B)(B) is less or equal to P , then B also sin
e B ≤ φa(B),i(B)(B). Thisshows that B ≤ P if and only if φa(B),i(B)(B) ≤ P . One similarly pro
eeds for
ψa,i et χi, so that, �nally, B ≤ P if and only if B̃ ≤ P .Let us now assume that B̃ does not have open (1, i(B)+1)-run. It is not hardto see that B̃ 
an be written as the image by E∗

1 (βa,i) of a binary fun
tion, say
B̃′ (a
tually, this is what led the de�nition of rules φa,i, ψa,i and χi). It is alsoeasily seen that B̃ is, as B, re
ognizable. In parti
ular, T̃ (B̃) = E∗

1 (β−1
a(B),i(B))(B̃)is a binary fun
tion. Now, assume that there is a stepped plane P su
h that

B̃ ≤ P and T̃ (P) ≥ 0. Let us introdu
e the binary fun
tion C = P − B̃. The fa
tthat both P and B̃ are images by E∗
1 (βa,i) of binary fun
tions yields that it is



15also the 
ase for C. So, one has: C = E∗
1 (βa,i)(C

′), for some binary fun
tion C′.Hen
e, by applying T̃ = E∗
1 (β−1

a(P),i(P)) on P , one obtains:
T̃ (P) = T̃ (B̃) + T̃ (C) = T̃ (B̃) + C′ ≥ T̃ (B̃) = B̃′ ≥ 0.Thus, we shown that one has, for any stepped plane P :

0 ≤ B̃ ≤ P ⇒ 0 ≤ T̃ (B̃) ≤ T̃ (P).Conversely, assume that 0 ≤ T̃ (B̃) ≤ T̃ (P) for some stepped plane P . It iseasily seen that the subset of positive fun
tions of F is stable under dual mapsof substitutions. Thus, sin
e βa(P),i(P) is a subsitution, applying E∗
1 (βa(P),i(P))yields 0 ≤ B̃ ≤ P . This 
on
ludes the proof. ⊓⊔Theorem 3. The algorithm HybridBrunRe
o with a binary fun
tion B as inputreturns the set P (B) in �nite time.Proof. Let us �rst shows that the algorithm �nishes, by proving that |Bn+1| isless than |Bn| (so that, eventually, Bn is not a re
ognizable binary fun
tion).Let us respe
tively denote f(Bn), f(B̃n − Ln) and f(Bn+1) by (x1, . . . , xd+1),

(y1, . . . , yd+1) and (z1, . . . , zd+1), where f maps any binary fun
tion of �nite sizeonto the integer ve
tor whose i-th entry 
ounts the number of fa
es of type i inthis binary fun
tion. One 
he
ks that the a
tion of dual maps yields:






z1 = yin+1,
zin+1 = y1 − anyin+1,
zj = yj .We also easily dedu
e from the de�nition of B̃:







y1 = x1 + axin+1 − x
′
1,

yin+1 = xin+1 + 1
an+1x

′′
1 ,

yj = xj ,where x′1 (resp. x′′1 ) is the sum of the sizes of the (1, in + 1)-runs extended by
φan,in

(resp. ψan,in
). One then 
omputes:

|Bn+1| =

d+1
∑

j=1

zj =

d+1
∑

j=1

xj +
1− an

an + 1
x′′1 − x

′
1 = |Bn|+

1− an

an + 1
x′′1 − x

′
1.Sin
e an ≥ 1, one has |Bn+1| ≤ |Bn|, with the inegality being stri
t ex
ept if

x′1 = 0. But x′1 = 0 would mean that there is no right-
losed (1, in +1)-run, andthus that Bn would not be re
ognizable. Thus, x′1 6= 0, and one has |Bn+1| < |Bn|.Let us now prove the 
orre
tion of the algorithm. We pro
eed by indu
tionon the number of steps of the �Brun� stage, that is, lines 3�9. If n = 0, this



16follows from the (assumed) 
orre
tion of XRe
o. Assume that the result holdsfor n. One 
he
ks:
((1,α), ρ) ∈ P (B0)⇔ 0 ≤ B0 ≤ P(1,α),ρ

⇔ 0 ≤ B̃0 ≤ P(1,α),ρ

⇔ 0 ≤ B̃0 − L0 ≤ P(1,α),ρ et 0 ≤ L0 ≤ P(1,α),ρ

⇔ 0 ≤ B1 ≤ PB−1

a0,i0
(1,α),ρ et ((1,α), ρ) ∈ XRe
o(L0)

⇔ (B−1
a0,i0

(1,α), ρ) ∈ P (B1) et ((1,α), ρ) ∈ XRe
o(L0)Note that this is Prop. 2 whi
h ensures that we 
an go from the �rst to these
ond lines and from the third one to the fourth one (by applying E∗
1 (β−1

a0,i0
)).Finally, one has:

P (B0) = B′
a0,i0P (B1) ∩ XRe
o(L0).The 
orre
tion of the algorithm follows by indu
tion. ⊓⊔


