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Quasicrystals
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Crystal = ordered material = periodic structure (19th).
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Quasicrystals
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Examination by diffraction of X-rays (Von Laue, 1912).
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Quasicrystals

Physical effect: at least the symmetries of its causes (Curie, 1894).
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Quasicrystals

Discovering of non-periodic ordered materials (Shechtman, 1982).
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Quasicrystals

Crystal = ordered material = discrete diffraction (IUCr, 1992).
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Aperiodicity

Tile set: finite set of compact homeomorphic to closed balls of R”.
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Aperiodicity

Tiling: covering of R"” without overlap by isometric copies of tiles.
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Tiling: covering of R"” without overlap by isometric copies i



Aperiodicity

Local constraint: specification of the way tiles can be adjacent.
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Aperiodicity
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Local constraint: specification of the way tiles can be adjacent.
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Aperiodicity
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Local constraint: specification of the way tiles can be adjacent.
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Aperiodicity
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Aperiodic tile set: admits tilings of R", but only non-periodic ones.
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Aperiodicity

Tiles ~ atom clusters, local constraints ~ finite range interactions.
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Energetically-driven growth

Randomly add one tile at time, with local constraint being satisfied.
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Energetically-driven growth

Randomly add one tile at time, with local constraint being satisfied.
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Energetically-driven growth

Often leads to deceptions (which can always be arbitrarily large).
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Energetically-driven growth

Connected with the intrinsic non-determinism of aperiodic tile sets.
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Energetically-driven growth

Endless backtracking (try yourself!) ~~ Unrealistic growth.
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Energetically-driven growth

Endless backtracking (try yourself!) ~~ Unrealistic growth.
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A bit of thermodynamics

Thermodynamical principle
Stability at temperature T < minimal free energy F

F=E—TS,

where E is the internal energy and S the entropy.
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A bit of thermodynamics

Thermodynamical principle
Stability at temperature T < minimal free energy F

F=E-TS,
where E is the internal energy and S the entropy.

In terms of tilings
Given finitely many tiles and local constraints,
the energy and the entropy of a finite tiling are defined by:

» E := number of violated local constraints;

» S := logarithm of the number of congruent tilings.

Example
Most stable tilings of {a, b}V when {ab, ba} are forbidden?

4/7



Random tilings

Cooled ribbon
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First quasicrystals have been obtained by quenching.
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Random tilings

Which tilings do maximize the entropy? What is their typical look?
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Entropically-driven growth

The growth can only be easier when local constraint are neglected!
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Entropically-driven growth

Deceptions (and backtracks) are still possible. .. but we have time!
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Entropically-driven growth

Deceptions (and backtracks) are still possible. .. but we have time!
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Entropically-driven growth

Does it yields S-maximizing tilings?
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Cooling

Temperature | — ampoule

— heater

[~ melt

Length

[~ thermocouple
| — crystal

A,
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Recent quasicrystals: slow cooling produces quasiperfect structures.
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Cooling

How S-maximizing tilings can transform into E-minimizing ones?
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Cooling
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Cooling

Model: local transformations performed with prob. exp(—AE/T).
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Cooling

Model: local transformations performed with prob. exp(—AE/T).
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Cooling
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Ergodicity? Convergence rate? Optimal cooling schedule?
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Cooling
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Ergodicity? Convergence rate? Optimal cooling schedule?



Cooling
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Ergodicity? Convergence rate? Optimal cooling schedule?
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Thank you for your attention

and let us now turn towards precise specific cases!
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