Quasicrystal Cooling

(Introductory talk)

Thomas Fernique CNRS & Univ. Paris 13

Univ. Roma 3, Januar 10th 2012

Crystal = ordered material = periodic structure (19th).

4-Circle Gonoimeter (Eulerian or Kappa Geometry)

Examination by diffraction of X-rays (Von Laue, 1912).

Physical effect: at least the symmetries of its causes (Curie, 1894).

Discovering of non-periodic ordered materials (Shechtman, 1982).

Crystal = ordered material = discrete diffraction (IUCr, 1992).

Tile set: finite set of compact homeomorphic to closed balls of \mathbb{R}^n .

Tiling: covering of \mathbb{R}^n without overlap by isometric copies of tiles.

Tiling: covering of \mathbb{R}^n without overlap by isometric copies of tiles.

Local constraint: specification of the way tiles can be adjacent.

Local constraint: specification of the way tiles can be adjacent.

Local constraint: specification of the way tiles can be adjacent.

Aperiodic tile set: admits tilings of \mathbb{R}^n , but only non-periodic ones.

Tiles \sim atom clusters, local constraints \sim finite range interactions.

Often leads to *deceptions* (which can always be arbitrarily large).

Connected with the intrinsic non-determinism of aperiodic tile sets.

A bit of thermodynamics

Thermodynamical principle

Stability at temperature $T \Leftrightarrow$ minimal free energy F

$$F = E - TS$$
,

where E is the internal energy and S the entropy.

A bit of thermodynamics

Thermodynamical principle

Stability at temperature $T \Leftrightarrow$ minimal free energy F

F = E - TS,

where E is the internal energy and S the entropy.

In terms of tilings

Given finitely many tiles and local constraints, the energy and the entropy of a <u>finite</u> tiling are defined by:

- *E* := number of violated local constraints;
- ► *S* := logarithm of the number of *congruent* tilings.

Example

Most stable tilings of $\{a, b\}^N$ when $\{ab, ba\}$ are forbidden?

Random tilings

First quasicrystals have been obtained by quenching.

Random tilings

Which tilings do maximize the entropy? What is their typical look?

Random tilings

Which tilings do maximize the entropy? What is their typical look?

Does it yields S-maximizing tilings?

Recent quasicrystals: slow cooling produces quasiperfect structures.

How S-maximizing tilings can transform into E-minimizing ones?

How S-maximizing tilings can transform into E-minimizing ones?

Model: local transformations performed with prob. $\exp(-\Delta E/T)$.

Model: local transformations performed with prob. $\exp(-\Delta E/T)$.

Ergodicity? Convergence rate? Optimal cooling schedule?

Ergodicity? Convergence rate? Optimal cooling schedule?

Ergodicity? Convergence rate? Optimal cooling schedule?

Thank you for your attention and let us now turn towards precise specific cases!