Stepped Planes, Stepped Surfaces and Generalized Substitutions

Thomas Fernique

LIRMM (Montpellier, France)

CANT'06, 8-19 May 2006

Introduction (1/3): Sturmian words

word: concatenation of letters (finite alphabet);

complexity: number p(n) of factors of size n;

Sturmian words: aperiodic words of minimal complexity.

$$u = 1211212112112112121121 \dots \rightsquigarrow p(n) = n + 1.$$

Introduction (2/3): Stepped lines

Straight half-line (red) → stepped line (blue) → 2-letter word:

Morse&Hedlund: Sturmian words ≡ irrational slopes

Introduction (3/3): Stepped curves

funct. curve (red) \leadsto stepped curve (blue) \equiv 2-letter word:

Sturmian words: aperiodic stepped curves of minimal complexity

- Stepped planes
 - Digitizations of real planes
 - Sturmian 2-dim. words
- Stepped surfaces
 - Digitizations of real surfaces
 - Flips and shadows
- 3 Substitutions
 - Sturmian substitutions
 - Generalized substitutions

- Stepped planes
 - Digitizations of real planes
 - Sturmian 2-dim. words
- 2 Stepped surfaces
 - Digitizations of real surfaces
 - Flips and shadows
- 3 Substitutions
 - Sturmian substitutions
 - Generalized substitutions

- ullet real plane normal to $ec{lpha}$
- union of unit cubes (below)
- stepped plane (boundary)
- lattice of rank 2
- 3-letter 2-dim. word

- ullet real plane normal to $ec{lpha}$
- union of unit cubes (below)
- stepped plane (boundary)
- lattice of rank 2
- 3-letter 2-dim. word

- ullet real plane normal to $ec{lpha}$
- union of unit cubes (below)
- stepped plane (boundary)
- lattice of rank 2
- 3-letter 2-dim, word

- ullet real plane normal to $ec{lpha}$
- union of unit cubes (below)
- stepped plane (boundary)
- lattice of rank 2
- 3-letter 2-dim. word

- ullet real plane normal to $ec{lpha}$
- union of unit cubes (below)
- stepped plane (boundary)
- lattice of rank 2
- 3-letter 2-dim. word

- Stepped planes
 - Digitizations of real planes
 - Sturmian 2-dim. words
- Stepped surfaces
 - Digitizations of real surfaces
 - Flips and shadows
- Substitutions
 - Sturmian substitutions
 - Generalized substitutions

Recall: aperiodic digitizations of lines \equiv Sturmian words.

Definition (Vuillon, 98)

Sturmian 2-dim. words \equiv aperiodic digitizations of planes

Recall: Sturmian words ≡ aperiodic words of minimal complexity.

But: aperiodic 2-dim. words of minimal "complexity": 2 letters

→ restriction to a subset of the 2-dim. words?

Recall: aperiodic digitizations of lines \equiv Sturmian words.

Definition (Vuillon, 98)

Sturmian 2-dim. words \equiv aperiodic digitizations of planes

Recall: Sturmian words \equiv aperiodic words of minimal complexity.

But: aperiodic 2-dim. words of minimal "complexity": 2 letters

→ restriction to a subset of the 2-dim. words?

Recall: aperiodic digitizations of lines \equiv Sturmian words.

Definition (Vuillon,98)

Sturmian 2-dim. words \equiv aperiodic digitizations of planes

Recall: Sturmian words \equiv aperiodic words of minimal complexity.

But: aperiodic 2-dim. words of minimal "complexity": 2 letters

→ restriction to a subset of the 2-dim. words?

- Stepped planes
 - Digitizations of real planes
 - Sturmian 2-dim. words
- 2 Stepped surfaces
 - Digitizations of real surfaces
 - Flips and shadows
- Substitutions
 - Sturmian substitutions
 - Generalized substitutions

funct. surface → stepped surface → 3-letter 2-dim. word (not all):

Note: stepped surfaces \equiv lozenge tiling of \mathbb{R}^2 + origin

funct. surface → stepped surface → 3-letter 2-dim. word (not all):

Note: stepped surfaces \equiv lozenge tiling of \mathbb{R}^2 + origin

Recall: lozenge tilings of a finite domain are connected by flips:

For stepped surfaces: flips \equiv adding/removing unit cubes.

Connectivity?

- Stepped planes
 - Digitizations of real planes
 - Sturmian 2-dim. words
- 2 Stepped surfaces
 - Digitizations of real surfaces
 - Flips and shadows
- Substitutions
 - Sturmian substitutions
 - Generalized substitutions

Note: invariant by performing flips finitely many times!

Theorem (Arnoux, Berthé, Jamet, F.)

 $\mathcal{S} \leadsto \mathcal{S}'$ by a sequence of flips iff, $\forall i, \pi_i(\mathcal{S}') \subset \pi_i(\mathcal{S})$.

Corollary

Stepped surface \equiv stepped plane + flips.

proof. (non-degenerated) stepped planes have shadows \mathbb{R}^2 .

Theorem (Arnoux, Berthé, Jamet, F.)

 $\mathcal{S} \leadsto \mathcal{S}'$ by a sequence of flips iff, $\forall i, \pi_i(\mathcal{S}') \subset \pi_i(\mathcal{S})$.

Corollary

Stepped surface \equiv stepped plane + flips.

proof. (non-degenerated) stepped planes have shadows \mathbb{R}^2 .

- Stepped planes
 - Digitizations of real planes
 - Sturmian 2-dim. words
- 2 Stepped surfaces
 - Digitizations of real surfaces
 - Flips and shadows
- 3 Substitutions
 - Sturmian substitutions
 - Generalized substitutions

substitution: non-erasing morphism: $\sigma(u \cdot v) = \sigma(u) \cdot \sigma(v)$;

Sturmian substitution: maps Sturmian words to Sturmian words.

$$\sigma: \begin{array}{ccc} 1 \to 12 \\ 2 \to 1 \end{array} \quad \rightsquigarrow \quad \sigma(12112\ldots) = 12112121\ldots$$

→ useful for generating and classifying

- Stepped planes
 - Digitizations of real planes
 - Sturmian 2-dim. words
- Stepped surfaces
 - Digitizations of real surfaces
 - Flips and shadows
- 3 Substitutions
 - Sturmian substitutions
 - Generalized substitutions

Generalized substitution: map on unit faces of \mathbb{R}^3 (Arnoux-Ito).

Theorem

Generalized substitions map stepped planes to stepped planes.

proof: relies on the analytic expression of a stepped plane.

$\mathsf{Theorem}$

Generalized substitions map stepped surfaces to stepped surfaces.

proof:

- stepped surface = stepped plane + flips;
- flips are just "moved".

Generalized substitution: map on unit faces of \mathbb{R}^3 (Arnoux-Ito).

Theorem

Generalized substitions map stepped planes to stepped planes.

proof: relies on the analytic expression of a stepped plane.

Theorem

Generalized substitions map stepped surfaces to stepped surfaces.

proof:

- stepped surface = stepped plane + flips;
- flips are just "moved".

Conclusion