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Planar polycell

Definition
A planar polycell (C, I, v*) is defined by :
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Planar polycell

A planar polycell (C, I, v*) is defined by :

@ a set of circuits (called cells) C = { G,
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Planar polycell

Definition

A planar polycell (C, I, v*) is defined by :
@ a set of circuits (called cells) C = { G, G,
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Planar polycell

Definition

A planar polycell (C, I, v*) is defined by :

@ a set of circuits (called cells) C = {G, G, ..., Cx} such that
the graph U;C; is planar ;
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Planar polycell

Definition

A planar polycell (C, I, v*) is defined by :

@ a set of circuits (called cells) C = {G, G, ..., Cx} such that
the graph U;C; is planar ;
@ a subset / of the edges within C (called inner edges).

/\\\\/\

) AN

\

Bodini, Fernique Tilings of a polycell : algorithmic and structural aspects



Basic notions
Tilings of a polycell
Tools : counters and height functions

Planar polycell

Definition

A planar polycell (C, I, v*) is defined by :
@ a set of circuits (called cells) C = {G, G, ..., Cx} such that
the graph U;C; is planar ;
@ a subset / of the edges within C (called inner edges).

@ any one distinguished vertex v*.
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Graph of a planar polycell

The edges not in | form the set B of boundary edges.

Bodini, Fernique Tilings of a polycell : algorithmic and structural aspects



Basic notions

Tilings of a polycell
Tools : counters and height functions

Graph of a planar polycell

The edges not in | form the set B of boundary edges.

Definition
The graph Gc j) of a polycell (C,/) is formed by the graph U;C;
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Graph of a planar polycell

The edges not in | form the set B of boundary edges.

Definition

The graph Gc j) of a polycell (C,/) is formed by the graph U;C;
and, for each boundary edge (a, b) € B, the reverse edge (b, a).
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Tiling of a polycell (or of it's graph)

Let (C, /) be a polycell and e € | an inner edge.
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Tiling of a polycell (or of it's graph)

Let (C, /) be a polycell and e € I an inner edge. Circ(e) denotes
the subset of C formed by the cells which use the edge e.
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Tiling of a polycell (or of it's graph)

Let (C, /) be a polycell and e € I an inner edge. Circ(e) denotes
the subset of C formed by the cells which use the edge e.

Definition

A tiling of a polycell (C, /) is a subset T of | such that
{Circ(€)}ecT is a partition of C.
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Counter

Definition

A counter 1 on a polycell (C, /) is a R-valuation of the edges
within C such that :
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Counter

Definition

A counter 1 on a polycell (C, /) is a R-valuation of the edges
within C such that :

@ the value of a boundary edge is always equal to zero ;
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Counter

Definition

A counter 1 on a polycell (C, /) is a R-valuation of the edges
within C such that :

@ the value of a boundary edge is always equal to zero ;

@ the sum over the edges of each cell is equal to one.
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Binary counter

Definition
A binary counter is a counter wich takes only the values 0 or 1.
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Binary counter

Definition
A binary counter is a counter wich takes only the values 0 or 1.

Each binary counter trivially corresponds to a tiling : the edges of
the tiling are those with value 1.
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Height function of a counter

Definition

The height function hy, of a counter ¢ on the polycell (C,/, v*)
maps each vertex v onto the 1)-weight of a shortest (directed) path
from v* to v.
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Height function of a counter

Definition

The height function hy, of a counter ¢ on the polycell (C,/, v*)
maps each vertex v onto the 1)-weight of a shortest (directed) path
from v* to v.
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Height function of a counter

Definition

The height function hy, of a counter ¢ on the polycell (C,/, v*)
maps each vertex v onto the 1)-weight of a shortest (directed) path
from v* to v.
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Height function of a counter

Definition

The height function hy, of a counter ¢ on the polycell (C,/, v*)
maps each vertex v onto the 1)-weight of a shortest (directed) path
from v* to v.
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Height function of a counter

One proves :

@ The height is well-defined iff there exists (at least) a tiling of
the polycell ;

@ A counter 1 is uniquely determined by it's height function hy,.
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Construction of a tiling Construction of a counter in the bipartite case
From counter to binary counter

Definition

A polycell (C, 1, v*) is bipartite if we can split C into two subset C,,
and Cp, such that two cells in the same subset does not have any
common edge.
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Construction of a tiling Construction of a counter in the bipartite case
From counter to binary counter

Definition

A polycell (C, 1, v*) is bipartite if we can split C into two subset C,,
and Cp, such that two cells in the same subset does not have any
common edge.

| A

Theorem

There is a linear-time algorithm that constructs a counter on a
planar bipartite polycell.
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Construction of a tiling Construction of a counter in the bipartite case

From counter to binary counter

Let ) be a counter on a planar polycell (C, I, v*) which admits (at
least) a tiling.
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Construction of a tiling Construction of a counter in the bipartite case

From counter to binary counter

Let ) be a counter on a planar polycell (C, I, v*) which admits (at
least) a tiling. Let § be defined on each edge e = (v, V') by :

d(e) = (e) = (hu(v') = hy(v)) -
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Construction of a tiling Construction of a counter in the bipartite case

From counter to binary counter

Let ) be a counter on a planar polycell (C, I, v*) which admits (at
least) a tiling. Let § be defined on each edge e = (v, V') by :

d(e) = (e) = (hu(v') = hy(v)) -

0 is a binary counter.
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Construction of a tiling Construction of a counter in the bipartite case

From counter to binary counter

Let ) be a counter on a planar polycell (C, I, v*) which admits (at
least) a tiling. Let § be defined on each edge e = (v, V') by :

d(e) = (e) = (hu(v') = hy(v)) -

0 is a binary counter.

Moreover, Yv hs(v) =0 : § is called the minimal counter.
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Construction of a tiling Construction of a counter in the bipartite case

From counter to binary counter
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We thus obtain the binary counter 4,
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Construction of a tiling Construction of a counter in the bipartite case

From counter to binary counter
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and the correspondant tiling.
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Construction of a tiling Construction of a counter in the bipartite case

From counter to binary counter

Hence, given a planar bipartite polycell, one can
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Construction of a tiling Construction of a counter in the bipartite case

From counter to binary counter

Hence, given a planar bipartite polycell, one can

@ construct a counter 9 in time O(n) ;

Bodini, Fernique Tilings of a polycell : algorithmic and structural aspects



Construction of a tiling Construction of a counter in the bipartite case

From counter to binary counter

Hence, given a planar bipartite polycell, one can
@ construct a counter 9 in time O(n) ;

@ compute it's height function hy, (Single Source Shortest Path
with negative weight edges) ;
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Construction of a tiling Construction of a counter in the bipartite case

From counter to binary counter

Hence, given a planar bipartite polycell, one can
@ construct a counter 9 in time O(n) ;

@ compute it's height function hy, (Single Source Shortest Path
with negative weight edges) ;

@ construct from % a binary counter § in time O(n).
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Construction of a tiling Construction of a counter in the bipartite case

From counter to binary counter

Hence, given a planar bipartite polycell, one can
@ construct a counter 9 in time O(n) ;

@ compute it's height function hy, (Single Source Shortest Path
with negative weight edges) ;

@ construct from % a binary counter § in time O(n).

Since for planar graphs, SSSP can be solved in O(nln(n)3), it
proves :
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Construction of a tiling Construction of a counter in the bipartite case

From counter to binary counter

Hence, given a planar bipartite polycell, one can
@ construct a counter 9 in time O(n) ;

@ compute it's height function hy, (Single Source Shortest Path
with negative weight edges) ;

@ construct from % a binary counter § in time O(n).

Since for planar graphs, SSSP can be solved in O(nln(n)3), it
proves :

If a planar bipartite polycell has a tiling, one can construct a tiling
in time O(nln(n)3).
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Definition through height functions

A distributive lattice over the tilings of a polycell Flip-accessibility as a covering relation

Let (C,/,v*) be a fixed planar polycell. Let 7 be the set of the
tilings (or binary counters) of (C, [, v*).
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Definition through height functions

A distributive lattice over the tilings of a polycell Flip-accessibility as a covering relation

Let (C,/,v*) be a fixed planar polycell. Let 7 be the set of the
tilings (or binary counters) of (C, [, v*).

If 6 and &' are binary counters with height functions hs and hs,
then min(hs, hs') is the height function of a binary counter, and
max(hg, hg') too.
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Definition through height functions

A distributive lattice over the tilings of a polycell Flip-accessibility as a covering relation

Let (C,/,v*) be a fixed planar polycell. Let 7 be the set of the
tilings (or binary counters) of (C, [, v*).

If 6 and &' are binary counters with height functions hs and hs,
then min(hs, hs) is the height function of a binary counter, and
max(hg, hg') too.

We denote § A 0’ the binary counter with height function
min(hs, hs') and & vV &’ the one with height function max(hs, hs).
A and V are thus operations onto 7.
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Definition through height functions

A distributive lattice over the tilings of a polycell Flip-accessibility as a covering relation

Let (C,/,v*) be a fixed planar polycell. Let 7 be the set of the
tilings (or binary counters) of (C, [, v*).

If 6 and &' are binary counters with height functions hs and hs,
then min(hs, hs') is the height function of a binary counter, and
max(hg, hg') too.

We denote § A 0’ the binary counter with height function
min(hs, hs') and & vV &’ the one with height function max(hs, hs).
A and V are thus operations onto 7.

(7,A,V) is a (finite) distributive lattice.
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Definition through height functions
A distributive lattice over the tilings of a polycell Flip-accessibility as a covering relation

Hasse's diagram of (7, A, V)

We denote < the associated partial order :
0= = (VV hg(V) < h5/(V)).

We say that ¢’ covers § if § <" and (6 <" <) =d6"=6
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© A distributive lattice over the tilings of a polycell

@ Flip-accessibility as a covering relation
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Definition through height functions
A distributive lattice over the tilings of a polycell Flip-accessibility as a covering relation

Nodule

Definition

Let (C,I,v*) be a planar polycell and T a tiling.
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Definition through height functions
A distributive lattice over the tilings of a polycell Flip-accessibility as a covering relation

Nodule

Definition

Let (C,/,v*) be a planar polycell and T a tiling. Let Gt be the
graph obtained from the graph of the polycell removing the edges
of T.
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Definition through height functions

A distributive lattice over the tilings of a polycell Flip-accessibility as a covering relation

Nodule

Definition

Let (C,/,v*) be a planar polycell and T a tiling. Let Gt be the
graph obtained from the graph of the polycell removing the edges
of T. The nodules of (C, I, v*) are the strongly connected

components of Gr.

N
= ~—_

: TN
L e
I A

-

Bodini, Fernique Tilings of a polycell : algorithmic and structural aspects



Definition through height functions
A distributive lattice over the tilings of a polycell

Nodule

Flip-accessibility as a covering relation

Definition

Let (C,/,v*) be a planar polycell and T a tiling. Let Gt be the
graph obtained from the graph of the polycell removing the edges

of T. The nodules of (C, I, v*) are the strongly connected
components of Gr.

The nodule containing v* is named A*.
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Definition through height functions

A distributive lattice over the tilings of a polycell Flip-accessibility as a covering relation

Nodule

Definition

Let (C,/,v*) be a planar polycell and T a tiling. Let Gt be the
graph obtained from the graph of the polycell removing the edges
of T. The nodules of (C, I, v*) are the strongly connected

components of Gr.
AL SO T
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In fact, the nodules depend only on the polycell (not on T).
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Definition through height functions
A distributive lattice over the tilings of a polycell Flip-accessibility as a covering relation

Flip

Definition
Let T € T be a tiling and A a nodule other than A*.
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Definition through height functions
A distributive lattice over the tilings of a polycell Flip-accessibility as a covering relation

Flip

Definition
Let T € T be a tiling and A a nodule other than A*.
If all incoming edges on A are in T and none of the outcoming,

N
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Definition through height functions
A distributive lattice over the tilings of a polycell Flip-accessibility as a covering relation

Flip

Definition

Let T € T be a tiling and A a nodule other than A*.

If all incoming edges on A are in T and none of the outcoming,
the decreasing flip on A exchanges these edges in T.
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Definition through height functions
A distributive lattice over the tilings of a polycell Flip-accessibility as a covering relation

Flip

Definition

Let T € T be a tiling and A a nodule other than A*.

If all incoming edges on A are in T and none of the outcoming,
the decreasing flip on A exchanges these edges in T.

The increasing flip is the reverse operation.

\\///T\/ \// )
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Definition through height functions
A distributive lattice over the tilings of a polycell Flip-accessibility as a covering relation

Flip

Definition

Let T € T be a tiling and A a nodule other than A*.

If all incoming edges on A are in T and none of the outcoming,
the decreasing flip on A exchanges these edges in T.

The increasing flip is the reverse operation.

\/ \/\/W

Flips are constructive operations on the set 7 of the tilings.
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Definition through height functions
A distributive lattice over the tilings of a polycell Flip-accessibility as a covering relation

Flips and the lattice (7, A, V)

&' covers § iff there exists a increasing flip that
transforms § into ¢'.
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Definition through height functions
A distributive lattice over the tilings of a polycell Flip-accessibility as a covering relation

Flips and the lattice (7, A, V)

&' covers § iff there exists a increasing flip that
transforms § into ¢'.
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Definition through height functions
A distributive lattice over the tilings of a polycell Flip-accessibility as a covering relation

Flips and the lattice (7, A, V)

&' covers § iff there exists a increasing flip that
transforms § into ¢'.
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Definition through height functions
A distributive lattice over the tilings of a polycell Flip-accessibility as a covering relation

Flips and the lattice (7, A, V)

8’ covers § iff there exists a increasing flip that _
transforms § into §'. K L /
~ L/

Definition ‘

The graph of flip-accessibility in 7 is the — <
(undirected) graph whose vertices are the tilings K \ /b/

of 7, linked iff co-accessible by a single flip.
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Definition through height functions
A distributive lattice over the tilings of a polycell Flip-accessibility as a covering relation

Flips and the lattice (7, A, V)

of 7, linked iff co-accessible by a single flip.

Theorem L N\
The Hasse's diagram of (T, A\,V) and the graph K D/

of flip-accessibility in T are isomorphic.

8’ covers § iff there exists a increasing flip that _ 2
H /
transforms 0 into ¢'. K\ P HL//
|
The graph of flip-accessibility in 7 is the — <
(undirected) graph whose vertices are the tilings K \ /b/

| \
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Definition through height functions
A distributive lattice over the tilings of a polycell Flip-accessibility as a covering relation

Flip-accessibility in 7

This isomorphism proves that any two tilings can be connected by
a sequence of flips.
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Definition through height functions
A distributive lattice over the tilings of a polycell Flip-accessibility as a covering relation

Flip-accessibility in 7

This isomorphism proves that any two tilings can be connected by
a sequence of flips. More precisely :

Theorem

Let (C,1,v*) be a planar polycell with tilings T and nodules A.
Let § and &' be any two binary counters (or tilings) with height
functions hs and hy: .

A shortest sequence of flips that transforms § into &' has length :

> |hs(A) = hs (A)]

AeA

Moreover we can effectively compute such a sequence.
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Definition through height functions
A distributive lattice over the tilings of a polycell Flip-accessibility as a covering relation

Flip-accessibility in 7

This isomorphism proves that any two tilings can be connected by
a sequence of flips. More precisely :

Theorem

Let (C,1,v*) be a planar polycell with tilings T and nodules A.
Let § and &' be any two binary counters (or tilings) with height
functions hs and hy: .

A shortest sequence of flips that transforms § into &' has length :

> 1hs(A) — hy (A)] = O(n?)

AeA

Moreover we can effectively compute such a sequence.
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0 Applications and examples
@ Enumeration and random sampling
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Enumeration and random sampling
Classical dimers tilings and perfect matchings
Applications and examples

Enumeration

A linear extension of the partial order < combined with the
constructive operation of flip can be fruitful used for a planar
polycell :

Given an initial tiling, one can enumerate the whole set of the
tilings in linear time per tiling and with space O(nn n).
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Enumeration and random sampling
Classical dimers tilings and perfect matchings

Applications and examples

Random sampling
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0 Applications and examples

@ Classical dimers tilings and perfect matchings
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Enumeration and random sampling
Classical dimers tilings and perfect matchings
Applications and examples

Tilings with dominoes or lozenges
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Enumeration and random sampling

Classical dimers tilings and perfect matchings
Applications and examples

Tilings with dominoes or lozenges

|
VoV

i, Fernique ilings of a polycell : algorithmic and structural aspects



Enumeration and random sampling
Classical dimers tilings and perfect matchings
Applications and examples

Tilings with dominoes or lozenges
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Classical dimers tilings and perfect matchings
Applications and examples

Tilings with dominoes or lozenges

l

]

Ve
AVANNYAY

Bodini, Fernique Tilings of a polycell : algorithmic and structural aspects



Enumeration and random sampling
Classical dimers tilings and perfect matchings
Applications and examples

Tilings with dominoes or lozenges

T
- |QQ

e
w U%ﬁ%
L A

Bodini, Fernique Tilings of a polycell : algorithmic and structural aspects



Enumeration and random sampling
Classical dimers tilings and perfect matchings
Applications and examples

Tilings with dominoes or lozenges

Bodini, Fernique Tilings of a polycell : algorithmic and structural aspects



Enumeration and random sampling
Classical dimers tilings and perfect matchings
Applications and examples

Tilings with dominoes or lozenges

Bodini, Fernique Tilings of a polycell : algorithmic and structural aspects



Enumeration and random sampling
Classical dimers tilings and perfect matchings
Applications and examples

Tilings with dominoes or lozenges

Bodini, Fernique Tilings of a polycell : algorithmic and structural aspects



Enumeration and random sampling
Classical dimers tilings and perfect matchings
Applications and examples

Tilings with dominoes or lozenges

Bodini, Fernique Tilings of a polycell : algorithmic and structural aspects



Enumeration and random sampling

Classical dimers tilings and perfect matchings

=
=

Applications and examples

o

/

P
@%\@
@@@g@@

/ﬁ\
\

5
3oy B

\

Bodini, Fernique Tilings of a polycell : algorithmic and structural aspects



Enumeration and random sampling
Classical dimers tilings and perfect matchings
Applications and examples

Perfect matchings of a planar bipartite graph

Bodini, Fernique Tilings of a polycell : algorithmic and structural aspects



	Outline
	Basic notions
	Tilings of a polycell
	Tools : counters and height functions

	Construction of a tiling
	Construction of a counter in the bipartite case
	From counter to binary counter

	A distributive lattice over the tilings of a polycell
	Definition through height functions
	Flip-accessibility as a covering relation

	Applications and examples
	Enumeration and random sampling
	Classical dimers tilings and perfect matchings


