
Outline

Tilings of a polycell :
algorithmic and structural aspects

Olivier Bodini Thomas Fernique

LIRMM
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Planar polycell

Definition

A planar polycell (C, I , v∗) is defined by :

a set of circuits (called cells) C = {C1, C2, . . . ,Ck} such that
the graph ∪iCi is planar ;

a subset I of the edges within C (called inner edges).

any one distinguished vertex v∗.
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A planar polycell (C, I , v∗) is defined by :
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any one distinguished vertex v∗.
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Graph of a planar polycell

The edges not in I form the set B of boundary edges.

Definition

The graph G(C,I ) of a polycell (C, I ) is formed by the graph ∪iCi

and, for each boundary edge (a, b) ∈ B, the reverse edge (b, a).
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Tiling of a polycell (or of it’s graph)

Let (C, I ) be a polycell and e ∈ I an inner edge. Circ(e) denotes
the subset of C formed by the cells which use the edge e.

Definition

A tiling of a polycell (C, I ) is a subset T of I such that
{Circ(e)}e∈T is a partition of C.
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Counter

Definition

A counter ψ on a polycell (C, I ) is a R-valuation of the edges
within C such that :

the value of a boundary edge is always equal to zero ;

the sum over the edges of each cell is equal to one.

Bodini, Fernique Tilings of a polycell : algorithmic and structural aspects



Basic notions
Construction of a tiling

A distributive lattice over the tilings of a polycell
Applications and examples

Tilings of a polycell
Tools : counters and height functions

Counter

Definition

A counter ψ on a polycell (C, I ) is a R-valuation of the edges
within C such that :

the value of a boundary edge is always equal to zero ;

the sum over the edges of each cell is equal to one.

0

0

0
0 0 0 0

0

0

0

0
0

0

0

0
0

0

Bodini, Fernique Tilings of a polycell : algorithmic and structural aspects



Basic notions
Construction of a tiling

A distributive lattice over the tilings of a polycell
Applications and examples

Tilings of a polycell
Tools : counters and height functions

Counter

Definition

A counter ψ on a polycell (C, I ) is a R-valuation of the edges
within C such that :

the value of a boundary edge is always equal to zero ;

the sum over the edges of each cell is equal to one.

0

0

0

0
0 0 0

0

0

0

0
0

0

0

0
0

0
1

−1

1
1

1

1
1

0

0

0

0

Bodini, Fernique Tilings of a polycell : algorithmic and structural aspects



Basic notions
Construction of a tiling

A distributive lattice over the tilings of a polycell
Applications and examples

Tilings of a polycell
Tools : counters and height functions

Binary counter

Definition

A binary counter is a counter wich takes only the values 0 or 1.

Each binary counter trivially corresponds to a tiling : the edges of
the tiling are those with value 1.
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Height function of a counter

Definition

The height function hψ of a counter ψ on the polycell (C, I , v∗)
maps each vertex v onto the ψ-weight of a shortest (directed) path
from v∗ to v .
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Height function of a counter

One proves :

Fact

The height is well-defined iff there exists (at least) a tiling of
the polycell ;

A counter ψ is uniquely determined by it’s height function hψ.
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Construction of a counter in the bipartite case
From counter to binary counter

Definition

A polycell (C, I , v∗) is bipartite if we can split C into two subset Cw

and Cb such that two cells in the same subset does not have any
common edge.

Theorem

There is a linear-time algorithm that constructs a counter on a
planar bipartite polycell.
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Construction of a counter in the bipartite case
From counter to binary counter

Let ψ be a counter on a planar polycell (C, I , v∗) which admits (at
least) a tiling. Let δ be defined on each edge e = (v , v ′) by :

δ(e) = ψ(e)−
(
hψ(v ′)− hψ(v)

)
.

Theorem

δ is a binary counter.

Moreover, ∀v hδ(v) = 0 : δ is called the minimal counter.
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Let ψ be any one counter. We will construct the binary counter δ.
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We thus obtain the binary counter δ,
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and the correspondant tiling.
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Construction of a counter in the bipartite case
From counter to binary counter

Hence, given a planar bipartite polycell, one can

construct a counter ψ in time O(n) ;

compute it’s height function hψ (Single Source Shortest Path
with negative weight edges) ;

construct from ψ a binary counter δ in time O(n).

Since for planar graphs, SSSP can be solved in O(n ln(n)3), it
proves :

Theorem

If a planar bipartite polycell has a tiling, one can construct a tiling
in time O(n ln(n)3).
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Let (C, I , v∗) be a fixed planar polycell. Let T be the set of the
tilings (or binary counters) of (C, I , v∗).

Lemma

If δ and δ′ are binary counters with height functions hδ and hδ′ ,
then min(hδ, hδ′) is the height function of a binary counter, and
max(hδ, hδ′) too.

We denote δ ∧ δ′ the binary counter with height function
min(hδ, hδ′) and δ ∨ δ′ the one with height function max(hδ, hδ′).
∧ and ∨ are thus operations onto T .

Theorem

(T ,∧,∨) is a (finite) distributive lattice.
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Hasse’s diagram of (T ,∧,∨)

We denote � the associated partial order :

δ � δ′ ⇔ (∀v hδ(v) ≤ hδ′(v)).

We say that δ′ covers δ if δ � δ′ and (δ � δ′′ � δ′) ⇒ δ′′ = δ
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Nodule

Definition

Let (C, I , v∗) be a planar polycell and T a tiling. Let GT be the
graph obtained from the graph of the polycell removing the edges
of T . The nodules of (C, I , v∗) are the strongly connected
components of GT .
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Nodule

Definition

Let (C, I , v∗) be a planar polycell and T a tiling. Let GT be the
graph obtained from the graph of the polycell removing the edges
of T . The nodules of (C, I , v∗) are the strongly connected
components of GT .

A*

The nodule containing v∗ is named A∗.
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Nodule

Definition

Let (C, I , v∗) be a planar polycell and T a tiling. Let GT be the
graph obtained from the graph of the polycell removing the edges
of T . The nodules of (C, I , v∗) are the strongly connected
components of GT .

A*

In fact, the nodules depend only on the polycell (not on T ).
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Flip

Definition

Let T ∈ T be a tiling and A a nodule other than A∗.
If all incoming edges on A are in T and none of the outcoming,
the decreasing flip on A exchanges these edges in T .
The increasing flip is the reverse operation.

Flips are constructive operations on the set T of the tilings.
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Flips and the lattice (T ,∧,∨)

Lemma

δ′ covers δ iff there exists a increasing flip that
transforms δ into δ′.

Definition

The graph of flip-accessibility in T is the
(undirected) graph whose vertices are the tilings
of T , linked iff co-accessible by a single flip.

Theorem

The Hasse’s diagram of (T ,∧,∨) and the graph
of flip-accessibility in T are isomorphic.
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Flip-accessibility in T

This isomorphism proves that any two tilings can be connected by
a sequence of flips. More precisely :

Theorem

Let (C, I , v∗) be a planar polycell with tilings T and nodules A.
Let δ and δ′ be any two binary counters (or tilings) with height
functions hδ and hδ′ .
A shortest sequence of flips that transforms δ into δ′ has length :∑

A∈A
|hδ(A)− hδ′(A)|

= O(n2)

Moreover we can effectively compute such a sequence.
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Enumeration

A linear extension of the partial order � combined with the
constructive operation of flip can be fruitful used for a planar
polycell :

Theorem

Given an initial tiling, one can enumerate the whole set of the
tilings in linear time per tiling and with space O(n ln n).
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Random sampling

Theorem
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