Bidimensional Sturmian Sequences and Substitutions

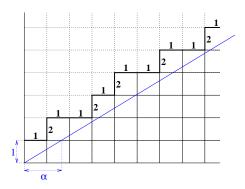
Thomas Fernique

LIRMM - Université Montpellier II Poncelet Lab. - Independent University of Moscow

DLT'05

- 1 Prelude: Sturmian words and substitutions
- - The linear map $\Theta(\sigma)$
 - The dual map $\Theta^*(\sigma)$
- 3 Bidimensional Sturmian sequences
 - Stepped planes and associated sequences
 - The action of Θ^*
- 4 Algebraic characterization
 - Bidimensional continued fractions
 - The case of periodic expansions

$$\alpha \in \mathbb{R} \backslash \mathbb{Q} \leadsto \text{sturmian word } u_{\alpha}$$
:



Here:
$$\alpha = \frac{1+\sqrt{5}}{2} = 1 + \frac{1}{1+\frac{1}{\cdots}} \rightsquigarrow u_{\alpha} = 12112121121121 \cdots$$

Substitution: morphism σ of \mathcal{A}^* s.t. $|\sigma^n(i)| \to \infty$ for $i \in \mathcal{A}$.

$$\sigma: 1 \mapsto 12, 2 \mapsto 1$$
:

$$1 \rightarrow 12 \rightarrow 121 \rightarrow 12112 \rightarrow 12112121 \rightarrow \dots$$

$$\sigma$$
 extended to $\mathcal{A}^{\omega} \leadsto \text{fixed-point: } u \in \mathcal{A}^{\omega} \mid u = \sigma(u).$

$$\lim_{n \to \infty} \sigma^n(1) = 12112121121121 \cdots = u_{\alpha} = \sigma(u_{\alpha}).$$

Theorem (Algebraic Characterization I)

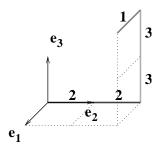
The Sturmian word u_{α} is a fixed-point if and only if α has a periodic continued fraction expansion.

Generalization of this algebraic characterization?

- Prelude: Sturmian words and substitutions
- 2 Generalized substitutions
 - The linear map $\Theta(\sigma)$
 - The dual map $\Theta^*(\sigma)$
- 3 Bidimensional Sturmian sequences
 - Stepped planes and associated sequences
 - The action of Θ^*
- 4 Algebraic characterization
 - Bidimensional continued fractions
 - The case of periodic expansions

 $\mathcal{A} = \{1,2,3\}$ and $(\vec{e}_1,\vec{e}_2,\vec{e}_3)$ canonical basis of \mathbb{R}^3 .

 $u \in \mathcal{A}^* \leadsto \text{broken line of segments } [\vec{x}, \vec{x} + \vec{e}_i] = (\vec{x}, i), \vec{x} \in \mathbb{N}^3$:

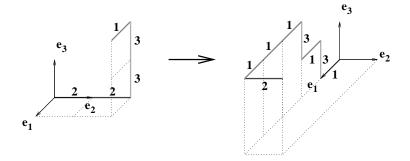


 σ on $\mathcal{A} \rightsquigarrow$ linear map $\Theta(\sigma)$ on segments:

$$\Theta(\sigma) : (\vec{x}, i) \mapsto M_{\sigma}\vec{x} + \sum_{p \mid \sigma(i) = p \cdot j \cdot s} (\vec{f}(p), j),$$

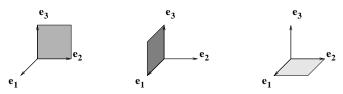
where
$$(M_{\sigma})_{i,j} = |\sigma(j)|_i$$
 and $\vec{f}(u) = {}^t(|u|_1, |u|_2, |u|_3)$.

$$\sigma: \left\{ \begin{array}{l} 1 \mapsto 12 \\ 2 \mapsto 13 \\ 3 \mapsto 1 \end{array} \right., \quad M_{\sigma} = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right), \quad \sigma(22331) = 13131112.$$



- Prelude: Sturmian words and substitutions
- 2 Generalized substitutions
 - The linear map $\Theta(\sigma)$
 - The dual map $\Theta^*(\sigma)$
- 3 Bidimensional Sturmian sequences
 - Stepped planes and associated sequences
 - The action of Θ^*
- 4 Algebraic characterization
 - Bidimensional continued fractions
 - The case of periodic expansions

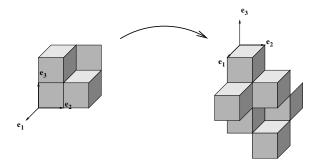
Segment $(\vec{x}, i) \rightsquigarrow \text{dual face } (\vec{x}, i^*)$:



Linear map $\Theta(\sigma) \rightsquigarrow \text{dual map } \Theta^*(\sigma)$:

$$\Theta^*(\sigma)(\vec{x}, i^*) = M_{\sigma}^{-1} \vec{x} + \sum_{j \in \mathcal{A}} \sum_{s \mid \sigma(j) = p \cdot i \cdot s} (\vec{f}(s), j^*).$$

$$\sigma: 1 \mapsto 12, 2 \mapsto 13, 3 \mapsto 1$$
:

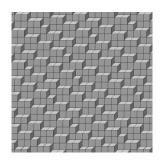


- 1 Prelude: Sturmian words and substitutions
- 2 Generalized substitution
 - The linear map $\Theta(\sigma)$
 - The dual map $\Theta^*(\sigma)$
- 3 Bidimensional Sturmian sequences
 - Stepped planes and associated sequences
 - The action of Θ^*
- 4 Algebraic characterization
 - Bidimensional continued fractions
 - The case of periodic expansions

$$\alpha, \beta \in [0,1)^2$$
: $\mathcal{P}_{\alpha,\beta} = \{\vec{x} \in \mathbb{R}^3 \mid \langle \vec{x}, {}^t(1,\alpha,\beta) \rangle = 0\}.$

Definition (Stepped plane)

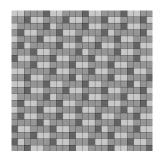
$$\mathcal{S}_{\alpha,\beta} = \{ (\vec{x}, i^*) \mid 0 \leq \langle \vec{x}, {}^t(1, \alpha, \beta) \rangle < \langle \vec{e}_i, {}^t(1, \alpha, \beta) \rangle \}.$$



Theorem

One can bijectively map the faces of the stepped plane $S_{\alpha,\beta}$ to the letters of a bidimensional sequence $U_{\alpha,\beta}$ over $A = \{1,2,3\}$.

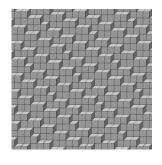
1, α and β linearly independent over $\mathbb{Q} \Rightarrow \mathcal{U}_{\alpha,\beta}$ Sturmian.

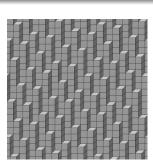


- Prelude: Sturmian words and substitutions
- 2 Generalized substitution
 - The linear map $\Theta(\sigma)$
 - The dual map $\Theta^*(\sigma)$
- 3 Bidimensional Sturmian sequences
 - Stepped planes and associated sequences
 - The action of Θ^*
- 4 Algebraic characterization
 - Bidimensional continued fractions
 - The case of periodic expansions

Theorem (Action of Θ^*)

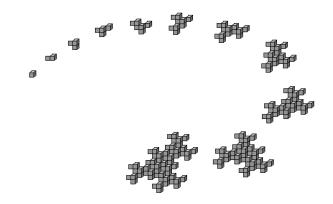
$${}^{t}(1,\alpha',\beta') \propto {}^{t}\mathcal{M}_{\sigma}{}^{t}(1,\alpha,\beta) \Rightarrow \Theta^{*}(\sigma)(\mathcal{S}_{\alpha,\beta}) = \mathcal{S}_{\alpha',\beta'}.$$





$$M_{\sigma}^{-1}\mathcal{P}_{\alpha,\beta}=\mathcal{P}_{\alpha',\beta'}\leadsto\Theta^*(\sigma)$$
 "discretization" of M_{σ}^{-1} .

$$(\alpha, \beta) = (\alpha', \beta') \leadsto \text{growing patches of } S_{\alpha, \beta}$$
:



 $\rightsquigarrow \Theta^*(\sigma)$ bidimensional substitution.

- Prelude: Sturmian words and substitutions
- 2 Generalized substitution
 - The linear map $\Theta(\sigma)$
 - The dual map $\Theta^*(\sigma)$
- 3 Bidimensional Sturmian sequences
 - Stepped planes and associated sequences
 - The action of Θ^*
- 4 Algebraic characterization
 - Bidimensional continued fractions
 - The case of periodic expansions

Modified Jacobi-Perron:

$$(\alpha,\beta) = [(a_1,\varepsilon_1),\ldots,(a_k,\varepsilon_k),[(\alpha_k,\beta_k)]]$$
$$= [(a_1,\varepsilon_1),(a_2,\varepsilon_2),\ldots]$$

where $a_i \in \mathbb{N}$ and $\varepsilon_i \in \{0, 1\}$.

Matrix viewpoint:

$${}^{t}(1,\alpha_{k-1},\beta_{k-1}) = \eta_{k}{}^{t}M_{\sigma_{(a_{k},\varepsilon_{k})}}{}^{t}(1,\alpha_{k},\beta_{k}),$$

where $\eta_k \in \mathbb{R}$ and $\sigma_{(a_k, \varepsilon_k)}$ substitution on $\mathcal{A} = \{1, 2, 3\}$.

By theorem (Action of Θ^*):

$$\Theta^*(\sigma_{(a_k,\varepsilon_k)})(\mathcal{S}_{\alpha_k,\beta_k}) = \mathcal{S}_{\alpha_{k-1},\beta_{k-1}}.$$

Then, $\Theta^*(\sigma\sigma') = \Theta^*(\sigma')\Theta^*(\sigma)$ yields:

$$\Theta^*(\sigma_{(\mathsf{a}_k,\varepsilon_k)}\dots\sigma_{(\mathsf{a}_1,\varepsilon_1)})(\mathcal{S}_{\alpha_k,\beta_k})=\mathcal{S}_{\alpha,\beta}.$$

• • •

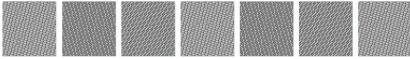
- 1 Prelude: Sturmian words and substitutions
- - The linear map $\Theta(\sigma)$
 - The dual map $\Theta^*(\sigma)$
- 3 Bidimensional Sturmian sequences
 - Stepped planes and associated sequences
 - The action of Θ^*
- 4 Algebraic characterization
 - Bidimensional continued fractions
 - The case of periodic expansions

$$(\alpha_p, \beta_p) = (\alpha, \beta) \rightsquigarrow \text{ periodic expansion:}$$

$$(\alpha, \beta) = [(a_1, \varepsilon_1), \dots, (a_p, \varepsilon_p), [(\alpha, \beta)]].$$

Then, $S_{\alpha,\beta}$ fixed-point:

$$\Theta^*(\sigma_{(a_p,\varepsilon_p)}\dots\sigma_{(a_1,\varepsilon_1)})(\underbrace{\mathcal{S}_{\alpha_p,\beta_p}}_{\mathcal{S}_{\alpha,\beta}})=\mathcal{S}_{\alpha,\beta}.$$



$$(\alpha, \beta) = [(1, 1), (1, 1), (1, 0), (1, 1), (1, 1), (1, 0), (1, 1), \ldots]$$

Theorem (Algebraic Characterization II)

The bidimensional Sturmian sequence $\mathcal{U}_{\alpha,\beta}$ is a fixed-point if (α,β) has a periodic bidimensional continued fraction expansion.

What about the "only if" part?