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Settings
°

Lift: homeomorphism which maps tiles on 2-faces of unit n-cubes.
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Planar rhombus tilings

Planar. lift in E 4 [0, t]", where E is the slope and t the thickness.
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Local rules

Definition
A slope E has local rules (LR) if there is a finite set of patches s. t.
any rhombus tiling without any such patch is planar with slope E.

LR are said to be
@ strong if the tilings satisfying them have thickness 1;
@ natural if the thickness 1 tilings satisfy them;

@ weak otherwise (the thickness is just bounded).

Mathieu's talk focused on weak LR. We here focus on natural LR.
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Shadows and subperiods

Shadow: projection on a space generated by three basis vectors.
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Shadow: projection on a space generated by three basis vectors.



Settings

Shadows and subperiods
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Shadow: projection on a space generated by three basis vectors.
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Shadows and subperiods

Shadow: projection on a space generated by three basis vectors.
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Shadows and subperiods

Subperiod: shadow period (tiling); shadow rational vector (slope).
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Main result

A Characterization

A slope has natural LR iff finitely many slopes have its subperiods.

This result is moreover constructive (see examples hereafter).
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A Characterization

A slope has natural LR iff finitely many slopes have its subperiods.

This result is moreover constructive (see examples hereafter).

Slopes with natural LR must be algebraic (Le'95). Here, we refine:

A slope with natural LR is generated by vectors defined over a
number field of degree at most | 5|. Degree L@J is reached.
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Necessity (sketch)

Definition
Singular points of order k of E: Sing,(E) := d(E + [0, 1]") + ZJ.

Sing,(E) cuts up the window into convex connected components
corresponding to ‘size k" patches of slope E thickness 1 tilings.
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Necessity (sketch)

Definition
Singular points of order k of E: Sing,(E) := d(E + [0, 1]") + ZJ.

Sing,(E) cuts up the window into convex connected components
corresponding to “size k" patches of slope E thickness 1 tilings.

Subperiods characterize either finitely many slopes, or a continuum.
Subperiod ~ intersection of boundaries of connected component.
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Sufficiency (sketch)

Subperiods can be enforced by forbidding finitely many patches. \
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Sufficiency (sketch)

Subperiods can be enforced by forbidding finitely many patches.

Definition
A slope satisfies the P-condition if it contains three non-collinear
vectors which project onto subperiods in three irrational shadows.

P-condition < planarity of the tilings with the same subperiods.




Main result

Sufficiency (sketch)

Subperiods can be enforced by forbidding finitely many patches.

Definition

A slope satisfies the P-condition if it contains three non-collinear
vectors which project onto subperiods in three irrational shadows.

P-condition < planarity of the tilings with the same subperiods.
Subperiods characterize finitely many slopes = P-condition holds.
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Grassmann-Plucker coordinates

Definition
The plane Rii + RV has GP-coordinates (Gjj)i<j = (ujvj — ujv;)i<;.

Proposition (Grassmann-Pliicker)

GP-coordinates satisfy all the relations GjjGy = Gy Gjj — GjjGj.

Proposition

Whenever a planar tiling admits p€; + q€; + réx as a subperiod,
the GP-coordinates of its slope satisfy pGj — qGj + rGj; = 0.
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Generalized Penrose tilings

The slope has GP-coordinates (¢, 1, —1, —p, ¢, 1,—1, ¢, 1, ).
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Generalized Penrose tilings
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The slope has GP-coordinates (¢, 1, —1, —p, ¢, 1,—1, ¢, 1, ).
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Generalized Penrose tilings

G13 = Ga1 = Gog = G52 = G35 = 1

Subperiods yleld{ Gio = Go1 = Gus = Gay — Gos —: x
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Generalized Penrose tilings

Plugged into the five GP-relations, this yields x? = x + 1.
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Generalized Penrose tilings

Subperiods characterize finitely many slopes: the theorem applies!
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Generalized Penrose tilings

Subperiods are easily enforced in each shadow by forbidden patches.
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Generalized Penrose tilings
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This still holds in the tilings, at least in those of thickness 1.
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Generalized Penrose tilings
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Generalized Penrose tilings
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This still holds in the tilings, at least in those of thickness 1.
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Generalized Penrose tilings

SR

LG-R: RN

Considering all the shadows yields (simple) natural LR for the tilings.
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Ammann-Beenker tilings

The slope has GP-coordinates (1,v/2,1,1,v/2,1).
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Ammann-Beenker tilings

Subperiods yield G12 = G14 = G23 - G34; GP-relation G13 G24 = 2.
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Ammann-Beenker tilings

Subperiods thus characterize all the slopes (1,t,1,1,2/t,1), t € R.



Examples
°

Ammann-Beenker tilings

Subperiods thus characterize all the slopes (1,t,1,1,2/t,1), t € R.



Examples
°

Ammann-Beenker tilings

Subperiods thus characterize all the slopes (1,t,1,1,2/t,1), t € R.



Examples
°

Ammann-Beenker tilings

Subperiods thus characterize all the slopes (1,t,1,1,2/t,1), t € R.
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Ammann-Beenker tilings

The theorem does not apply, but planarity is nevertheless enforced!
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Ammann-Beenker tilings

Moreover, AB tilings are those maximizing the rhombus frequencies.



Thank you for your attention!
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