When Periodicity Enforces Aperiodicity

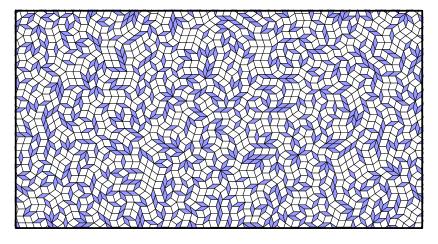
Nicolas Bédaride & Thomas Fernique

Marseille, january 17th, 2013

2 Main result

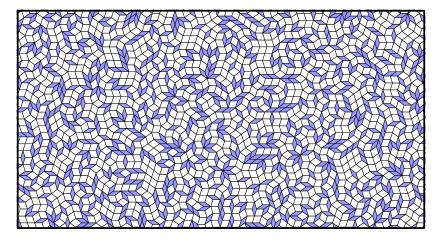
3 Examples

Planar rhombus tilings



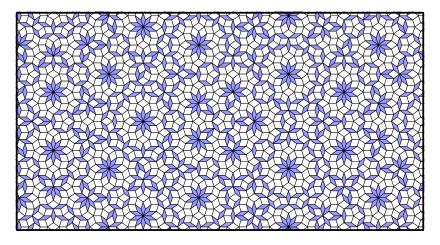
n pairwise non-colinear vectors of $\mathbb{R}^2 \leadsto \mathsf{tilings}$ of \mathbb{R}^2 by $\binom{n}{2}$ rhombi.

Planar rhombus tilings



Lift: homeomorphism which maps tiles on 2-faces of unit n-cubes.

Planar rhombus tilings



Planar: lift in $E + [0, t]^n$, where E is the *slope* and t the *thickness*.

Local rules

Definition

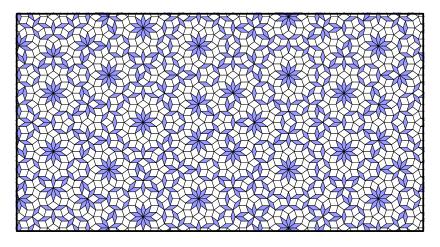
A slope E has *local rules* (LR) if there is a finite set of *patches* s. t. any rhombus tiling without any such patch is planar with slope E.

LR are said to be

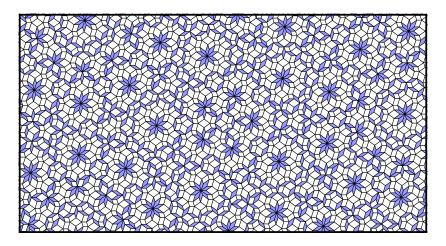
- strong if the tilings satisfying them have thickness 1;
- natural if the thickness 1 tilings satisfy them;
- weak otherwise (the thickness is just bounded).

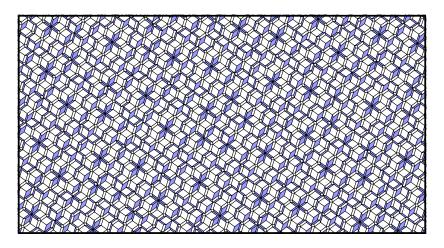
Mathieu's talk focused on weak LR. We here focus on natural LR.

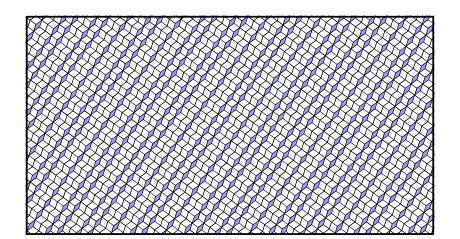
Shadows and subperiods

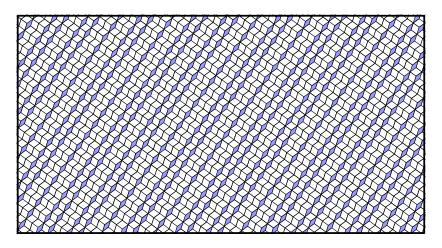


Shadows and subperiods









Subperiod: shadow period (tiling); shadow rational vector (slope).

2 Main result

3 Examples

A Characterization

Theorem

A slope has natural LR iff finitely many slopes have its subperiods.

This result is moreover constructive (see examples hereafter).

A Characterization

Theorem

A slope has natural LR iff finitely many slopes have its subperiods.

This result is moreover constructive (see examples hereafter).

Slopes with natural LR must be algebraic (Le'95). Here, we refine:

Corollary

A slope with natural LR is generated by vectors defined over a number field of degree at most $\lfloor \frac{n}{2} \rfloor$. Degree $\lfloor \frac{\phi(n)}{2} \rfloor$ is reached.

Necessity (sketch)

Definition

Singular points of order k of E: $\operatorname{Sing}_k(E) := \partial(E + [0,1]^n) + \mathbb{Z}_k^n$.

Lemma

 $Sing_k(E)$ cuts up the window into convex connected components corresponding to "size k" patches of slope E thickness 1 tilings.

Necessity (sketch)

Definition

Singular points of order k of E: $\operatorname{Sing}_k(E) := \partial(E + [0,1]^n) + \mathbb{Z}_k^n$.

Lemma

 $Sing_k(E)$ cuts up the window into convex connected components corresponding to "size k" patches of slope E thickness 1 tilings.

Lemma

Subperiods characterize either finitely many slopes, or a continuum.

Lemma

Subperiod \simeq intersection of boundaries of connected component.

Sufficiency (sketch)

Lemma

Subperiods can be enforced by forbidding finitely many patches.

Sufficiency (sketch)

Lemma

Subperiods can be enforced by forbidding finitely many patches.

Definition

A slope satisfies the *P-condition* if it contains three non-collinear vectors which project onto subperiods in three irrational shadows.

Lemma

P-condition ⇔ planarity of the tilings with the same subperiods.

Sufficiency (sketch)

Lemma

Subperiods can be enforced by forbidding finitely many patches.

Definition

A slope satisfies the *P-condition* if it contains three non-collinear vectors which project onto subperiods in three irrational shadows.

Lemma

P-condition \Leftrightarrow planarity of the tilings with the same subperiods.

Lemma

Subperiods characterize finitely many slopes \Rightarrow P-condition holds.

2 Main result

3 Examples

Grassmann-Plücker coordinates

Definition

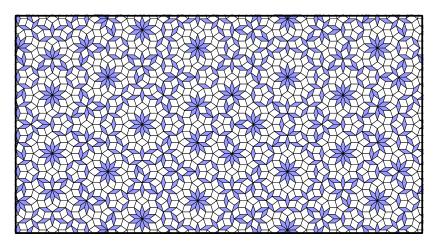
The plane $\mathbb{R}\vec{u} + \mathbb{R}\vec{v}$ has GP-coordinates $(G_{ij})_{i < j} = (u_i v_j - u_j v_i)_{i < j}$.

Proposition (Grassmann-Plücker)

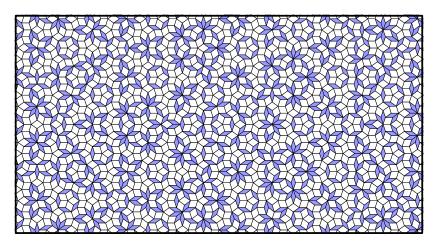
GP-coordinates satisfy all the relations $G_{ij}G_{kl}=G_{ik}G_{jl}-G_{il}G_{jk}$.

Proposition

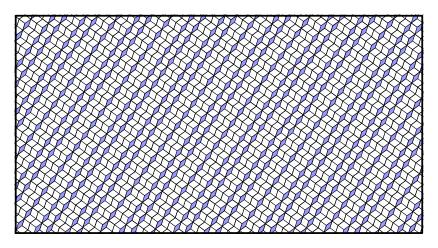
Whenever a planar tiling admits $p\vec{e}_i + q\vec{e}_j + r\vec{e}_k$ as a subperiod, the GP-coordinates of its slope satisfy $pG_{jk} - qG_{ik} + rG_{ij} = 0$.



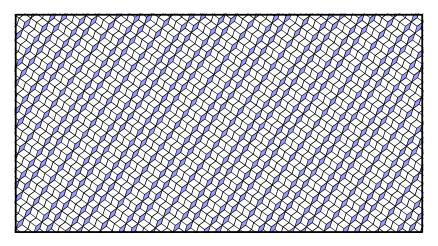
The slope has GP-coordinates $(\varphi, 1, -1, -\varphi, \varphi, 1, -1, \varphi, 1, \varphi)$.



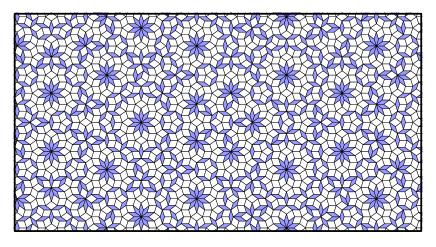
The slope has GP-coordinates $(\varphi, 1, -1, -\varphi, \varphi, 1, -1, \varphi, 1, \varphi)$.



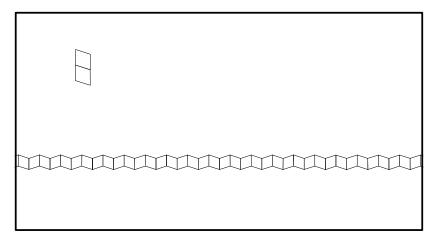
Subperiods yield
$$\left\{ \begin{array}{l} G_{13} = G_{41} = G_{24} = G_{52} = G_{35} = 1 \\ G_{12} = G_{51} = G_{45} = G_{34} = G_{23} =: x \end{array} \right.$$



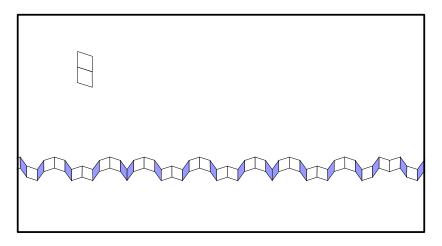
Plugged into the five GP-relations, this yields $x^2 = x + 1$.

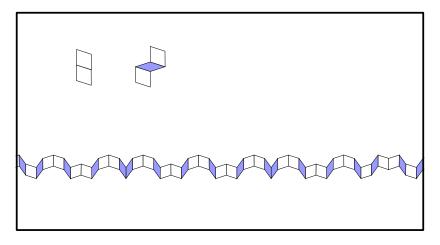


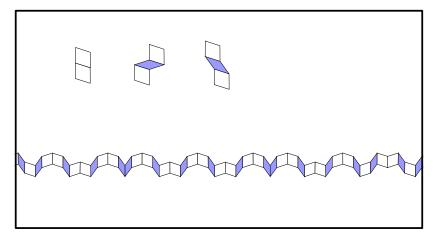
Subperiods characterize finitely many slopes: the theorem applies!

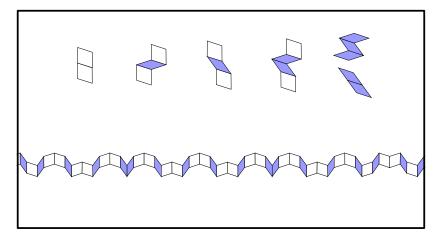


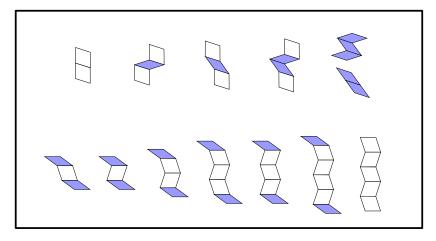
Subperiods are easily enforced in each shadow by forbidden patches.



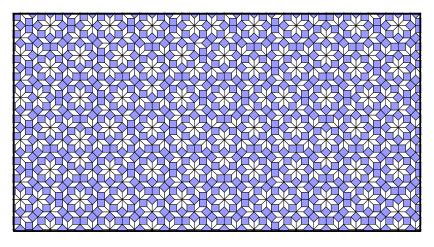




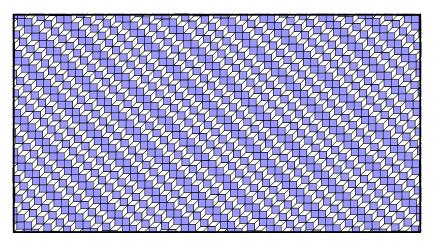




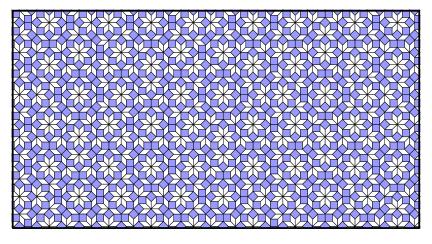
Considering all the shadows yields (simple) natural LR for the tilings.

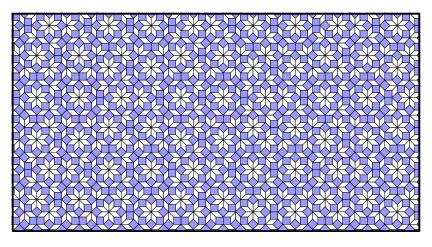


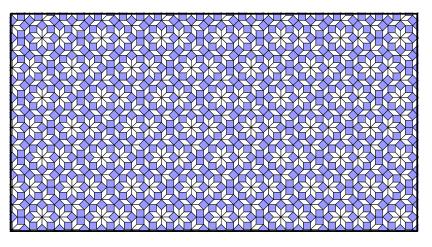
The slope has GP-coordinates $(1, \sqrt{2}, 1, 1, \sqrt{2}, 1)$.

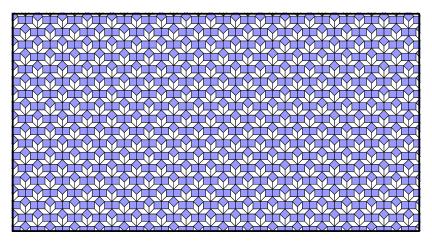


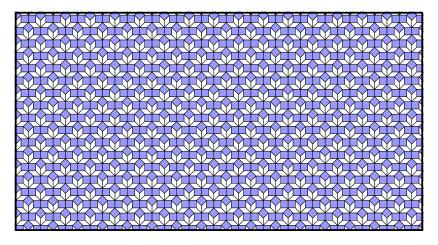
Subperiods yield $G_{12} = G_{14} = G_{23} = G_{34}$; GP-relation $G_{13}G_{24} = 2$.







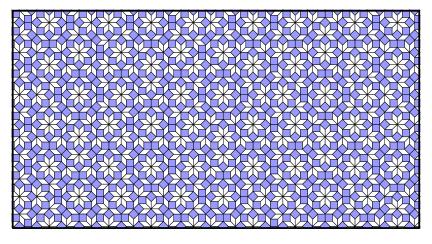




The theorem does not apply, but planarity is nevertheless enforced!

Examples

Ammann-Beenker tilings



Moreover, AB tilings are those maximizing the rhombus frequencies.

Thank you for your attention!