
Tree Adjoining Grammars
in Noncommutat ive Linear Logic

- - E x t e n d e d A b s t r a c t - -

V. Michele Abrusci 1, Chris tophe Fouquerd ~, and Jacqueline Vauzeilles 2

1 CILA, Universits di Bari, 70121 Bali, Italy
LIPN-CNRS URA 1507, Uuiversitd Paris-Nord, 93430 Villetaneuse

A b s t r a c t . This paper 1 presents alogical formalization of Tree-Adjoining
Grammar (TAG). TAG dealswith lexicalized trees and two operations
are available: substitution and adjunction. Adjunction is generally pre-
sented as an insertion of a tree inside another, surrounding the subtree
at the adjunction node. This seems to be contradictory with standard
logical ability. We prove that some logic, namely a fragment of non-
commutative intuitionistic linear logic (N-ILL), can serve this purpose.
Briefly speaking, linear logic is a logic considering facts as resources. N-
ILL can then be considered either as an extension of Lambek calculus,
or as a restriction of linear logic. We model the TAG formalism in four
steps: trees (initial or derived) and the way they are constituted, the
operations (substitution and adjunction), and the elementary trees, i.e.
the grammar. The sequent calculus is a restriction of the standard se-
quent calculus for N-ILL. Trees (initial or derived) are then obtained as
the closure of the calculus under two rules that mimic the grammati-
cal ones. We then prove the equivalence between the language generated
by a TAG grammar and the closure under substitution and adjunction
of its logical representation. Besides this nice property, we relate parse
trees to logical proofs, and to their geometric representation: proofnets.
We briefly present them and give examples of parse trees as proofnets.
This process can be interpreted as an assembling of blocks (proofnets
corresponding to elementary trees of the grammar).

1 I n t r o d u c t i o n

This paper presents a logical formal izat ion of Tree-Adjoining G r a m m a r (TAG,
[8], [9]). TAG deals with lexicalized trees and two operat ions are available: sub-
s t i tu t ion and adjunct ion. A set of (elementary) trees is associated to each lexical
i tem. T A G is a tree rewrit ing system: the parsing process consists in apply ing
opera t ions to trees in order to obta in a (derived) tree whose sequence of leaves is
a sentence. Adjunct ion increases the expressive power of the formal i sm in such
a way tha t non context-free languages can be represented a l though the pars-
ing process is done in a polynomia l t ime. Adjunc t ion is generally presented as

1 An extended version is currently in submission and available as a technical report
[5]

97

an insertion of a tree inside another, surrounding the subtree at the adjunction
node. This seems to be contradictory with standard logical ability. We prove
hereafter that some logic, namely a fragment of non-commutative intuitionistic
linear logic (N-ILL, [2,3]), can serve this purpose. Briefly speaking, linear logic,
developed by Girard [6], is a logic considering facts as resources. N-ILL can then
be considered either as an extension of Lambek calculus, or as a restriction of
linear logic. Nevertheless, viewing logical literals as resources allows a straight
and natural mapping from a derivational formalism (such as TAG) to such a
logic: there is no need for indexing pieces of trees or words of a sentence. Since
we are not interested in disjunction in this paper, we only need the intuitionistic
part of linear logic. Finally, non-commutativity is necessary insofar as we aspire
to take care of word order.

We model the TAG formalism in four steps: trees (initial or derived) and the
way they are constituted, the operations (substitution and adjunction), and the
elementary trees, i.e. the grammar. Labels occurring in the grammar constitute
the set of propositional variables we need. The sequent calculus is a restriction of
the standard sequent calculus for N-ILL: there are identity axioms (A ~- A) and
rules for introducing connectives (| at left hand side, o-- at right hand side), o--
is the left implication, @ is one of the two 'and' connectives available in Linear
Logic and its variants. We prove that this restricted calculus is closed under two
rules tha t mimic the grammatical operations. Trees (initial or derived) are then
obtained as the closure of the calculus under these two rules. In fact, trees are
represented as (provable) sequents in an almost classical way. The right hand
side is the variable labeling the mother node of the tree. The left hand side is
a sequence of formulas of the following kinds: A for some leaf A of the tree,
A o-- B1 | �9 �9 �9 | B,~ where A is the label of some internal node and B~ are the
labels of its daughters, A o-- A whenever A is a node where an adjunction can
take place. This latter kind of formula can be grammatically interpreted as if
such an A was split into two nodes with the same label, linked by some "soft"
relation. The set of elementary trees of a TAG grammar g ' is then represented as
a subset M of the sequents in the closure of the calculus under the two previous
rules. We then prove the equivalence between the language generated in TAG
by such a grammar G' and the closure under substitution and adjunction of the
logical representation M. Note that our interpretation of adjunction is very close
to the use of quasi-trees described in [13].

Besides this nice property, we relate parse trees to logical proofs, and to their
geometric representation: proofnets. As for linear logic, there exists in N-ILL a
correspondence between proofs and some sort of nets, called proofnets. We briefly
present proofnets and give examples of parse trees as proofnets. This enables a
new point of view on the parsing process. This process can be interpreted as
an assembling of blocks (proofnets corresponding to elementary trees of the
grammar), and also as a circulation of information through links relating nodes
of the proofnets.

The paper is organized in four parts. Section 2 describes the TAG formalism.
We recall the terminology and show how substitution and adjunction operate on

98

trees. Section 3 gives a survey of noncommutat ive linear logic and relates it to
Lambek calculus and linear logic. We propose in section 4 a logical formulat ion
of TAG in a f ragment of N-ILL, and prove the correspondence between the two.
Section 5 is devoted to the representation of proofs as proofnets.

2 Tree Adjoining Grammars

The Tree Adjoining G r a m m a r formalism (TAG) is a tree generating formal ism
introduced in [8], linguistically mot ivated (see for example, [1,10]), and with
formal properties studied in [14-16]. A TAG is defined by two finite sets of trees
composed by means of the substi tution and adjunction operations ~.

D e f i n i t i o n 1. A TAG G is a 5-uple (VN, VT, S, I, A) where

- VN is a finite set of non-terminal symbols,
- VT is a finite set of terminal symbols,
- S is a distinguished non-terminal symbol, the start symbol,
- I is a set of initial trees,

- A is a set of auxiliary trees.

An elementary tree is either an initial tree or an auxiliary tree. Both initial
and auxiliary trees are trees with at least one leaf labeled by a terminal node
(the g r ammar is a so-called lexicalized one). An auxiliary tree must fur thermore
have a leaf (the foot node, marked with a star *) with the same label as the root
node. Each non-terminal node is marked as adjoinable or non-adjoinable (in this
case, the node is marked NA). Each internal node must obviously be labeled by
a non-terminal node. a A derived tree is either an initial tree or a tree obtained
f rom derived trees by means of the two available operations.

In conformity with the literature, we will use a to refer to an initial tree,
]~ to refer to an auxiliary tree, 7 to refer to some derived tree. Examples of
initial and auxiliary trees are given in fig. 1. Two TAGs are defined: G1 = ({S},
{a,b,c,d,r (e is the empty word) and G2 = ({S, VP, NP, N},
{the, man, walks}, S, {as, c~3, a4}, 0).

The substitution operation is defined as usual. A non-terminal leaf of a tree
may be expanded with a tree whose root node has the same label. Leaves tha t
accept substi tution are marked with a down arrow $. The adjunction operat ion
is a little bit more complicated. I t supposes a derived tree with a non-terminal

2 Originally, there was no need for a substitution operation as initial trees were rooted
at S, thus labeling a sentence. We refer here to the Lexicalized-TAG formalism
where this constraint disappears on behalf of the substitution operation. However,
we maintain the name TAG.

3 In some versions, non-terminal nodes of elementary trees are labeled by a set of
(auxiliary) trees that can be adjoined at this node. In the case of an empty set, the
node is obviously non-adjoinable. For the sake of clarity, we simplify the definition to
only take into account the boolean adjoinable property: either the node is adjoinable
or it is non-adjoinable (NA).

99

0 / 2 ~ -

e a / / / ~ d

b S~vA c

the N J~ mail N PJ~

Fig. 1. Elementary trees.

walks

node, say X, possibly internal and not marked NA, and an auxiliary tree with
root node X. The operation consists in:

- excising the subtree with root labeled X in the derived tree,
- inserting the auxiliary tree at node labeled X in the derived tree,
- finally, inserting the excised subtree at the foot node (labeled X and marked

with a star *) in the auxiliary tree.

Substitution of a3 on a2 gives 7t =
the

m a l l

Substitution of 71 on 0/4 gives 72 =

Fig. 2. Substitution results

v p

the ~ walks

man

Examples of these operations are given in fig. 2 and 3. In order to clarify the
way adjunction is done, the adjoined tree B1 has its links dashed in the derived
trees 73 and 74. Obviously, there is only one kind of link. We write 71 ==~a 72
when 72 is the result of an adjunction or a substi tution of an elementary tree

100

Adjunction of j31 on at gives 73 =

StI.A

a . ~ . d

b S~A c

Adjunction of/31 on 73 gives 74 =
a S~A d

b STA c

E

Fig. 3. Adjunction results

of a TAG G on the derived tree 71. =:>b is the reflexive, transitive closure of
:~a . The set {7 /3a E G and a ~ * a 7} is noted T(G). The language L(G)
generated by a TAG G is the set of strings, i.e. sequences of leaves of trees
in T(G) when the leaves of these trees are only labeled with terminal nodes,
and whose root is the start symbol. Hence, L(Gz) = {anbncndn/n >_ 0} and
L(G2) = {the man walks).

3 Noncommutat ive Intuitionistic Linear Logic

Linear logic was introduced by Girard [6] as a "resource conscious logic". In
other words, while classical logic deals with static descriptions, linear logic con-
siders propositions as finite resources. Hence, 'A' and 'A and A' are equivalent in
classical logic, this is (generally) not the case in linear logic. The easiest techni-
cal way to investigate this difference is to consider the Gentzen sequent calculus
for these logics. A sequent is of the form F t- A where F and ,5 stand for se-
quences of well-formed formulae w.r.t, the language of the logic. It expresses the
fact that the (multiplicative) disjunction of formulas in ,5 is a consequence of
the (multiplicative) conjunction of formulas in F. A sequent calculus is a set of
rules specifying the provable sequents, being given a set of axioms. A proof of
a sequent is then the successive application of sequent rules beginning with ax-
ioms, i.e. a tree with the proved sequent as the root of the tree (at the bot tom)

101

and whose leaves are axioms (at the top). Rules of a sequent calculus introduce
in some way connectives in the right or left hand side of a sequent. Hence, in
the case of a simple calculus, sequent calculus is constructive in the sense that ,
given a sequent to be proved, there exists a constructive way to find the proof.
We refer the reader to [12] for a survey on various systems of deduction and
the relations between sequent calculus, Hilbert-style systems and natural deduc-
tion. Besides these introduction rules and axioms, we find structural rules that
govern the structure of a sequent. In classical logic, the set of structural rules
consists in weakening, contraction and exchange (cf fig. 4 where A, B are for-
mulas, F, F ~, A, A I are sequences of formulas). Weakening and contraction allow
the arbitrary copy of formulas: having a formula A as a hypothesis or conclusion
is equivalent to having it twice (or more). This point of view contradicts the
notion of resource, hence these two structural rules are omitted in linear logic.
However special connectives, namely the exponentials of-course '!' and why-not
'? ' have these properties. The exchange rule is responsible for commutativity of
the comma (in the right side and in the left side): the order of hypotheses or
conclusions does not matter. This rule is no longer valid in the noncommutative
version of linear logic.

F F- A (l - - weakening)
F, A F - A

F ,A , A F- A
F, A F- A (l -- contraction)

F , B , A , F I F- A
F, A, B, F' F- A (l -- exchange)

F t- A (r - weakening)
F t - A , A

F b A , A , A
F t- A , A (r - contraction)

F F- A, B, A, A'
F F A, A, B, A I (r -- exchange)

Fig. 4. Structural rules

However, and this is already true in linear logic, the logical interpretation of
'and' and 'or' is not as simple as it is in classical logic. We need to distinguish two
'and' (| ' times', ~= 'with') and two 'or' (~ 'par', ~ 'plus'), hence inducing four
constants: 1, T, L, 0 (respective neutral elements for the previous connectives).
In fact, connectives are related in such a way that they form two groups: the
multiplicative group (| :~, 1, L) and the additive group (&, (~, T, 0). We only
use hereafter the multiplicative group. There are obviously fundamental reasons
for this proliferation but these explanations are outside the scope of this paper.
The negation and the implication are however of special interest. In (commu-
tative) linear logic, there are only one negation .• and one (linear) implication
-o. In the noncommutative case, they have also to be split: there are a pre- •
and a post- negation .• and a pre- o-- and a post- implication --o. These two
implications have to be related with the two operations in Lambek calculus: --o
with \ and o - with / . The implications may be defined in the following way:

102

B o- A -- B 7~• and A --o B = A • ~ B. We give in fig. 5 the one-sided
sequent calculus for the multiplicative fragment of noncommutative linear logic
N-LL, and in fig. 6 the two-sided sequent calculus for the multiplicative fragment
of intuitionistic noncommutative linear logic N-ILL: sequent calculus for N-LL
and sequent calculus for N-ILL satisfy the cut-elimination theorem4; however
we make use of cut-rules in section 4. Note that if F b A is provable in the
multiplicative intuitionistic noncommutative linear logic, then ~- (F*) • A* is
provable in the multiplicative noncommutative linear logic, where:

- for each formula A of intuitionistic noncommutative linear logic, A* is a
formula of noncommutative linear logic defined as follows

�9 p* = p, for every propositional letter p
�9 (B| = B*| (B -o C)* = (B*)" ~ C*, (B o-- C)* = B* 7 • *)

- for each finite sequence A1 , . . . , An of formulas of intuitionistic noncommu-
tative linear logic, (A1, . . . , An)* = (A1)*, . . . , (An)*

- for each finite sequence A1 , . . . , An of formulas of noncommutative linear
logic, (A I , . . . ,An) • -- (A ,) • (A1) •

We give hereafter two examples of proofs in order to show the way the sequent
calculus can be used. We choose logical translations of a Lambek grammar to
pinpoint the obvious relation with Lambek formalism. The first one (fig. 7) is a
straightforward translation in a Lambek style, being given the two implications.
The second proof (fig. 8) interprets the Lambek grammar in a derivation-style,
we only need one implication and the connective times. The proofs use cuts: they
can be withdrawn as the logic enjoys the cut-elimination theorem, but we think it
can help understanding the process. Moreover, we associate to each lexical item a
(provable) sequent we use as a proper axiom (label 'lex'). The following sections
include other examples and emphasize the usefulness of noncommutative linear
logic in the linguistic domain. The lexicon in a Lambek-style is the following
o n e :

John : NP
gives : ((NP\ S) /NP) /NP
Mary : NP
a : NP/N
book : N

4 T h e c a l c u l u s ,A (a f r a g m e n t o f N - I L L)

The formalization of TAG in N-ILL relies mainly on a logical presentation of
the two operations substitution and adjunction together with a correspondence
between proofs and trees. As already shown in the previous section, the substi-
tution operation is nothing else but the application of some sort of cut-rule we
call the atomic cut-rule. Interpreting the adjunction operation is really the main
difficulty. The adjunction results from two atomic cut-rules between the sequent
corresponding to the adjunction tree and two suitable sequents corresponding

4 For each proof, there exists a cut-free proof with the same conclusion.

103

Alphabet:

- propositional letters: a, b, c , . . .
- for each propositional let ter p and each integer n > 0

t i m e s ~ t i m e s

pl... I and I... Ip

- connectives: |

Formulas: usual definition
Sequents: I- F where F is a finite sequence of formulas
Metalinguistic definition of A • and J-A s.t. ~AA)= (AA)A = A, for every formula A:

n t i m e s n q - 1 t i m e s It t i m e s ~ 1 t i m e s

(p ~...A)A = p ~.. .~ (- . . . • = A...A p

t i m e s n - - 1 t i m e s ~ t i m e s m + l t i m e s

A(p....J.)=p J....~. qA...Ap)= J....J. p

(B | C) s = C A W B s (B ~ C)" = C A | B"

"(B | C) = ~ A B

Rules of sequent calculus:

~(B ~ C)=~C | "B

~ (axiom) [-F~,A, F2 I -AA ,A (cut ,) I--F,A I -A , ,AA, A2 (cut2)
F- A • ~- FI, A, F2 F- AI,F, A2

~- A I ' A ' B ' A 2 (r ~) ~- Ft,A, F2 I- B , A ~- F,A b A , , B , A2 (r2|
~ - A I , A W B , A2 f - F 1 , A | F2 (r l | ~ _ A 1 , F , A | 2

Fig. 5. Language and sequent calculus for Multiplicative Noncommutative Linear Logic

104

Alphabet:

- propositional letters: a, b, c , . . .
- connectives: | o-, -o

Formulas: usual definition
Sequents: F b A where F is a finite sequence of formulas and A is a formula
Rules of sequent calculus:

F ~ - A F1,A, F2~-B
A ~- A (axiom) 1"1, F, F2 ~- B (cut)

F~-A z ~ - U (r - |
F, A t - A |

FI ,A ,B , F2 b C
F 1 , A | F2 ~-C (l - |

FI,A, F2 ~ C zI ~- B
F , ,Ac . - B , A , F2~-C (l - o -)

F,B~-A
F b A o - - - B (v - 0---)

F1,A, F2 ~- C z2 ~ B
F1, A, B _o A, Fz b C (l - - -o)

B , F ~ A
F F B - o A (r - -o)

Fig. 6. Language and sequent calculus for Multiplicative Noncommutative Intuitionis-
tic Linear Logic

to two subparts of the tree where adjunction is done. However, it remains to
prove that there is only one way to combine the pieces, the substitution node
being given, and that the order of the elements are as requested. For that pur-
pose, we show that for a suitable fragment of N-ILL there is a unique way to
decompose a sequent F, a o - A, A t- B into F, a, A2 b B and A 1 ~- A. In this
section, we clarify the calculus `4 used to interpret TAG: it includes a cut rule
and an adjunction rule that mimic the grammatical operations. According with
the previous remarks, these two rules are correct w.r.t, the logic. We give the
basic properties satisfied by this calculus ,4. In order to model TAG in N-ELL,
we first construct the set ~ of subtrees of depth 1 of trees appearing in a TAG
grammar ~' . The TAG grammar ~' is then a subset of the closure T (~) under
substitution (possibly with the declaration of adjunction nodes annotated in this
case subst*) and adjunction of the set G. The interpretation of elements of G as
provable sequents of ,4 is straightforward. This leads to a calculus ,4(~) where
the operations are restricted w.r. t .G. The TAG grammar ~' is then in correspon-
dence with a subset M(G') of ,4(G) and we prove the equivalence between the
language generated by G' and the set of sequents obtained by closure on M(G')
by the cut and adjunction rules 5 . Proofs of propositions are postponed until the
annex. The various components of our approach are summarized below.

5 We note M instead of M(Q') whenever there is no ambiguity.

(l
~x
)

A
P

.
((

(A
'P

 -
.o

 S
)

o
-

A
'P

)
o-

 A
'P

)
o

-
gw

cs
, 9

w
es

,
A

'P
, A

'P
 i-

 S

:V
P

 o
-

M
or

u,
 :

|iu
rU

 ~
-

N
p

l

(c
ut

)
A

'P
, (

{(
A

'P
 -

o
 S

)
o-

-
N

P
)

o-
-

A
'P

)
o-

 O
w

es
,g

iv
es

,
A

'P
 o

--
 M

ar
y,

 M
ar

y,
 N

P
 F

 S

(l
~,

x)

(A
'P

 o
-

N
)

o
-a

,a
,

N
F

A

'P

A
' o

-
bo

ok
,

bo
ok

F
 A

'

(N
P

 o
-

N
)

o-
-

a
,a

,N
 o

--
 b

oo
k,

 b
oo

k
k

A
'P

A
'P

 o
--

Jo
hn

,
Jo

hn
 I

-
A

'P
 (l

ex
)

:V
P

, (
((

N
P

 -
o

 S
)

o-
-

N
P

)
o-

-
A

rp
)

o-
-

gi
ve

s,
 g

w
es

,
A

'P
 o

-
M

ar
y,

 M
ar

y,
 (

A
'P

 o
-

N
)

o-
-

a,
a,

 N
 o

--
 b

oo
k,

 b
oo

k
I-

 S

(c
ut

)
N

P
 o

-
Jo

hn
,

Jo
hn

,
((

(A
'P

 -
o

 S
)

o-
-

N
P

)
o

-
A

'P
)

o
-

gw
es

, g
ir

ts
,

N
P

 o
--

 .
ll

ar
y,

 M
ar

y,
 (

 N
P

 o
-

A
')

o-
-

a,
 o

, N
 o

-
bo

ok
,

bo
ok

 l
"

S

F
ig

. 7
.

P
ro

of
 o

f
Jo

hn
 g

iv
es

 M
ar

y
a

bo
ok

:
(L

am
be

k-
st

yl
e)

 t
w

o
im

pl
ic

at
io

ns

(h
.x
)

(l
ex
)

(l
ex
)

(l
ex
)

(l
ex
)

S
o

-
:V

P
cd

 I
'P

.:
V

P
,

I'
P

o
-

|"
e,

~
:V

P
G

A
'P

,
V

 o
-g

il
,c

s,
 g

iv
es

,:
V

P
,

X
P

F
 S

A

'P
o

-
M

ar
g,

 M
a

ry
F

A

'P

A
'P

o
-

D
ct

G
A

',
D

et

o-
-a

,a
,

A
rp

 A
'P

N

o
-.

b
o

o
k,

 b
oo

kk

A"

(c
ut

 }

(r
ut
)

S
o-

-
X

P
 r

| "

P,
 .V

P,
 |

'P
 o

-
V

 ~

A
'I

~ @
 A

'P
, I

"
o-

-
gi

vc
s,

gn
,c

s,
 N

P
 o

-
M

ar
y,

 M
ar

y,
 :

V
P

 F
 S

:V

P
 o

--
 D

~t
 @

 N
,

D
ct

 o
-

a,
 a

,
N

 o
--

 b
oo

k,
 b

oo
k

k
A

'P
 (~
ut
)

X
P

 o
-

Jo
hn

.
Jo

hn
 F

 N
p'l

ex
'sf

~
o

-
A

'P
 C

i'

P
,

.V
P

,
|'

P
 o

--
 V

 6
L,

N
P

 |

N
P,

 |
.'

o-
 g

iv
es

,g
iv

es
,

N
P

 o
-

M
ar

y,
 M

ar
y,

 .
V

P
 o

-
D

et
 ~

. N
,

D
et

 o
--

 a
,a

,
N

 o
-

bo
ok

, b
oo

k
P

 S

(c
ut

)

Co
n

S
o-

-
.V

P
 6

3
1 "

P
, .

V
P

 o
--

 J
oh

n,
 J

oh
n,

 V
P

 o
--

 V
 ,

~
.V

P
 @

 N
P

.
V

 o
-

gi
ve

s,
 g

iv
es

,
N

P
 o

-
M

ar
y,

 M
ar

y,
 N

P
 o

-
D

ot
 |

N

,
D

et
 c

-
a,

 a
,

A"
 o

--
 b

oo
k,

 b
oo

k
F

 S

F
ig

.
8.

 P
ro

of
 o

f
Jo

hn
 g

iv
es

 M
ar

y
a

bo
ok

: o
ne

 i
m

pl
ic

at
io

n
an

d
ti

m
es

106

cut
adj

Q
-41g)

, , ee Seq

subst*'N~ 1
TI~)

D M(G'

cut
~dj

D 6 ' ~ CL(6 ')
subst
adj

: CL(M(G'))

Consider the following fragment -4 of the non-commutative intuistionistic
linear logic (N-ILL).

D e f i n i t i o n 2 (T h e ca lcu lus A).

- Alphabet of .4: propositional letters a, b , . . . , connectives @, o- ,
- Formulas: usual definition. A is a simple @-formula iff A is a propositional

letter or A is a formula bl @. �9 .@bn where bl, . �9 bn are propositional letters.
- Sequents: F t- A, where F is a finite sequence of formulas and A is a formula,
- Sequent calculus:

�9 Axiom: a b a
F F A A~- B . . F F A FI ,a ,F~F B

�9 Rules: F, A b A @ B (@) F I , a o - A , F , F 2 F B (o-)

Axiom and rules are restricted as follows: a stands for a propositional letter,
A, B stand for simple @-formulas.

P r o p o s i t i o n 3 (M a i n p r o p e r t i e s o f ca l cu lus .4). (proofs in [5])

1. I f F b A | B is provable in .4, then
- A and B are simple |
- there is a unique pair (F1,F2) s.t. F = F1,F2 and both the sequents

1"1 ~- A and 1"2 b B are provable in .4.
2. I f F, a o-- A, ,5 i- B is provable in .4, then

- A and B are simple @-formulas;
- there is a unique pair (A1, A2) s . t . . 4 = .41,.42 and both the sequents

.41 ~- A and F, a, .42 ~- B are provable in .4.
Such a pair (.41, A2) will be called "the splitting pair for "4 in F, a o - A, A F
B ' . Note that this pair can be computed easily: the first element "41 of the
splitting pair must satisfy a counting condition on each variable occurring in
it (see [5]).

107

3. The calculus .4 is closed under the atomic cut-rule (i.e. substitution rule)
F t - a A l , a , z ~ 2 t - A

A1, F, A2 1- A (cut)
i.e.: if the sequents F t- a and z~l,a, A2 t- A are provable in `4, then the
sequent A1, F, A2 t- A is also provable in `4.

4. The calculus ,4 is closed under the adjoinin~ rule
r l , a, F2 I- a A, ao--a,A~l-b

z2, F1, A1, F2, A2 ~" b (adj)
where (A1, A2) is the splitting pair of A in A, a o- a, A ~- b.

Note that A1 and A2 are uniquely defined from the premises, so the previous
deduction is really a logical rule.

D e f i n i t i o n 4 (T h e ca lcu lus ,4(G)). Let G be a family of labeled trees, of depth
1, not of the form X o-- X. Let T(G) be the closure of G under the rules:

- substitution with or without the declaration of a new internal point on which
the adjoining operation may be applied,

- adjoining operation.

,4(G) is the calculus obtained from ,4 as follows:

- propositional letters are exactly all the labels of the trees in G,
- the rule (o--) is restricted as follows:

F ~ ' A FI,a, F 2 t - B (o--,~)
F1, a o-- A, F, F2 ~- B

where A, B are simple Q-formulas of the language of ,4(~), a is a proposi-
tional letter of the language of ,4(G) and one of the following cases occurs:

�9 A i s a

�9 A is a propositional letter b different from a, and the tree TE

t l

b

�9 A is bl @ .-- | bn, and the tree / / / / ~ E
bl . . . bn

The following propositions state the correspondence between sequents and
trees. The first two provide a precise translation between the two notions. Basi-
cally, a sequent F t- a (in the previous language) is the logical equivalent of a tree
with root a, and there is exactly one formula in F for each leaf, for each subtree
(of depth 1), for each adjunction node, and nothing else. Sea() (resp. Tree())
associates a sequent to each tree (resp. each sequent), and we prove the two
are converse. The last three propositions are properties concerning the logical
counterpart of a TAG grammar. The last one is in fact the most important: the
closure under (logical) adjunction and substitution of the set of sequents corre-
sponding to a set of elementary trees is exactly the set of sequents corresponding
to the closure under (grammatical) adjunction and substitution of this set of el-
ementary trees. In other words, the logical and grammatical calculi coincide, i.e.
the restricted logical calculus we defined above and the TAG calculus.

108

Propos i t i on 5 (Main p roper t i e s of calculus A(G)). The properties 1-4 of
.A are also properties of .A(G). Moreover the following properties hold for ~4(G) :

- To T e T(G), we associate a sequent Sea(T) ofA(G) s.t.:
�9 if a is the root of T, and the terminal points of T (ordered from left to

right) are al , am, then Sea(T) is
F~-a

where in F the sequence of all the occurring propositional variables is
a l , . . . , am and in F there is a formula c o- c iff c is an internal point
o f T on which the adjoining operation may be operated;

�9 Seq(T) is provable in .A(~).
- To every provable sequent F ~- A in .A(~), we associate Tree(I" ~- A) s.t.

�9 i rA is a propositional letter, then Tree(I" F A) e T(F) where the root is
A, the terminal points (from left to right) are exactly all the propositional
letters occurring in F and in the same order in which they occur in F,
and the internal points on which the adjoining operation may be operated
are exactly all the propositional letters c s.t. c o- c occurs in F;

�9 i f A is bl | .." | bn, and so F = F1 . . .Fn with the sequents Fi P bi
provable in .A(F) for every 1 < i < n, then Tree(I" b- A) is a sequence
T1 , . . . ,Tn of trees E T(F) , s.t. Ti = Tree(Fi ~- bi).

- I f F F a is provable in M(F), then Seq(Tree(F F a)) = F F a. I f T is a tree
o fF, then Tree(Seq(T)) = T.

- Let M be a set of provable sequents in ,4(F). Define CL(M) as follows:
�9 MC CL(M)
�9 (closure under atomic cut-rule)

if F ~- a E CL(M) and AI,a,A~ ~- B ECL(M), then A1,F, A2 ~-
B e e L (M)

�9 (closure under adjoining operation) i fF t ,a , F2 ~ a eCL(M) and Z~,a o-
a, A ~- b e CL(M), then A, F1, A1, F2, A2 e b �9 CL(M), where (A1, A2) is
the splitting pair o / A in A, a, A ~ b;

�9 nothing else belongs to CL(M).
- I f F e A �9 CL(M), then F ~- A is provable in A(F) .
- I fF ' C_ T(F) , let CL(F') be the closure ofF' under:

�9 substitution;
�9 adjoining operation.

Clearly, CL(F') C_ T(F) .
Let M = {Seq (T) /T �9 F'}, then e L (M) = {Seq (T) /T �9 CL(F')}.

Starting from this last proposition, it is not too difficult to prove that the
language accepted by a TAG grammar F' is exactly the language accepted by
M(F'). We can define the language accepted by such a calculus in the follow-
ing way. Let us take only those sequents in CL(M(F')) whose right part is the
propositional variable S (the start symbol of the grammar), and such that propo-
sitional variables of the left part of the sequent correspond to terminal symbols
of the grammar, i.e. words of the language. The language accepted by M(F')
is then the set of sequences of words in the Same order as they appear in the
previous sequents.

109

. /V ~ ' the man N P V~
!

walks
The set of sequents M1 associated to this grammar is the following one:

MI-'{
N P ~ the | N, the, N I- NP,
N o-- man, man }- N,
S o--- N P | VP, NP, VP o-- walks, walks F S

}
The analysis of "the man walks" corresponds to the following proof in A(GI1):

NPo--t.he| NP N o--man, manF N
NPo- - lhe | the,No--rnan, rnanbNP S o - - N P | NP, VPo-walks , walksFS

S o-- NP | VP, NP o-- the ~ N, the, N o-- man, man, VP o- walks, walks ~ .q

Example T. Grammar G~ = { ~, / ~ ' " ~ }
e a / / / ~ d

b SNA C
The associated set of sequents M2 is defined from G~

M2--{
S o- a | 1 7 4 S o - S, S o - b |174 S,
S o-- S, S o - e,e}- S

}
The analysis of "aabbccdd" corresponds to the proof of the following sequent.

We have decomposed the different elements of the left part according to the
adjunction rule.

,.S~174174176174174176176174174176174174 ~ , , ~ d ~-S

5 T A G a n a l y s i s u s i n g n o n c o m m u t a t i v e p r o o f n e t s

A proof in sequent calculus contains many useless properties in its contexts. Gi-
rard has defined in a purely geometric way [6] a class of graphs of formulas, called
proof-nets: to each proof of a sequent }- F in the one-sided sequent calculus for
multiplicative linear logic corresponds a proof-net whose conclusions are exactly
the formulas in F, and to each proof-net corresponds at least one proof of the se-
quent ~- F in the one-sided sequent calculus for multiplicative linear logic (where
F is a sequence of all the conclusions of the proof-net). Similarly, Abrusci [3] de-
fined in a purely geometric way a class of graphs, called noncommutative proof
nets: to each proof of a sequent F- F in the one-sided sequent calculus for multi-
plicative noncommutative linear logic corresponds a noncommutative proof-net

110

with conclusions F, and to each noncommutative proof-net with conclusions F
corresponds at least one proof of the sequent ~- F in the one-sided sequent cal-
culus for multiplicative noncommutative linear logic. Therefore, to each proof of
F ~- A in the sequent calculus for intuistionistic multiplicative noncommutative
linear logic corresponds k noncommutative proof-net with conclusions (/'*)J-, A*.

5.1 N o n c o m m u t a t i v e p r o o f n e t s

To every proof ~r of a sequent b F in the one-sided sequent calculus for mul-
tiplicative noncommutative linear logic, we can associate (by induction on the
construction of the proof r) a noncommutative proofnet with conclusions F, i.e.
an oriented planar graph r I of occurrencies of formulas s.t.:

- the conclusions of Ir ~ are exactly the formulas in F;
- # is a noncommutative proof structure, i.e. it is constructed by means of

the following links6:

�9 Axiom-link (two conclusions, no premise) A I j _ ~

�9 Cut-link (two premises, no conclusion)

�9 | (two premises, one conclusion)

A B

A |

A A -L

I I

A B
* ~-link (two premises, one conclusion) V

AZ~B

and every occurrence of formula is a premise of at most one link and is
conclusion of exactly one link;

- the translation of 7r is a proofnet, i.e. it admits no shorttrip. A shorttrip is
a trip that does not contain each node twice. A trip is a sequence of nodes,
going from one node to another according to the graph and to a switch for
each times-link and each par-link, in a bideterministic way: the traversal of
nodes is done according to fig. 9 but without taking into account the labels
of nodes (see below);

- every assignment for ~r' is total;
- ~r' induces the linear order F of the conclusions.

An assignment for a proof structure ~r' is made in the following way. Let us
associate two integer variables left-N and right-N to each node N computed as in
fig. 9. The left variable of a node labeled by a propositional variable A is named

The par link is graphically distinguished from the times link. However this is only
sugar as the graph has really only one kind of edge.

111

x A. A special trip is a trip from the left variable to the right variable of some
node. It follows the links given by the graph but the switch for times must be
at right, the switch for par must be at left. Moreover the switch for par is used
only if right-C occurs before right-B in the special trip from left-A. At the same
time it imposes constraints between integer variables as defined in the following
figure, where --~ means the transition from a variable to another variable. The
assignment is total when the set of constraints can be satisfied. The precedence
relation on the conclusions of 7r' is defined s.t. A precedes B iff right-A = left-
B + 1. Then ~r' induces the linear order of the conclusions iff the precedence
relation is a chain and each conclusion occurs exactly once in the chain.

1' " Conclusion (xc) Ct Axiom-link sB• ~ tBs

Cut-link s- lBt ~ tB•

B C sBv ~-- vCt

| L-switch ~ ~ N ~ r It-switch ~ N x ~ /

B| C sB| Ct

7/ - l ink L-switch

sB(z c + 1) (zC)c t B C

sB ~ C t B ~ C

Fig. 9. Travels through proof structures

Precise definitions, examples, explanations and the proof of the following
theorem can be found in [4].

T h e o r e m 8. r ' is a noncommutative proof net with conclusions F iff there ex-
ists a proof r of the sequent ~- F in the sequent calculus for multiplicative non-
commutative linear logic s.t. r ' is associated to r.

Note that every noncommutative proofnet is a planar graph.

112

5.2 P a r s i n g e x a m p l e s

We give in this section two simple examples of parses. The aim of this section
is to show the strong connection between the structure of proofs of sequents
and a standard TAG derived structure. Moreover, it emphasizes the interest of a
proofnet approach as the syntax (and parsing process) is concretely designed as
a logical manipulation of logical structures. In the conclusion, we briefly mention
that this can also give a logical formalization of D-trees [13].

The first example requires only composition, i.e. the cut-rule from the logical
point of view. We first give the sequents (provable in ,4) associated with the
lexical items. Their meanings are straightforward, e.g. 'John and Mary are noun
phrases (NP)', 'saw requires a complement NP to obtain a verb phrase (VP)
and a subject NP to obtain a sentence (S)'. Note that VP is an adjunction node
so the sequent associated to the item saw includes the formula VP o-- VP. The
next example uses this specification.

John N P o- John, John ~- N P
Mary N P o- Mary, Mary ~- N P
s a w So-NP| VP,NP, VPo-- VP, VPo-V|

The proof associated to the analysis of John saw Mary requires two cuts. The
two sequent proofs given in fig. 10 are the only two possibilities for this sentence
in the fragment ,A(6). This pinpoints the fact that the order in which the cuts are
made is not significant w.r.t, the derived structure. Proofnets allow expression of
this equivalence. Hence the two proofs have the same associated proofnet given
in fig. 11. For the sake of clarity, the cut rules are bold lines, and we circle
subnets associated to lexical items. Obviously, if we delete the two cut lines, we
are left with three proofnets representing (provable) sequents. Such a proofnet
contains still superfluous information. As the only available operations in .A(6)
are (i) the cut-rule and (ii) the adjunction rule on a propositional variable, we
only need to keep nodes referring to (i) conclusions of the proofnet that are
propositional variables or negation of propositional variables (a cut can be made
on such a literal), and (ii) the fact that there exists a subgraph of the following
form (corresponding to the existence of a formula A o- A in the left part of a
sequent, i.e. its negation A | A • in the one-sided associated sequent):

--1 F -
A A •

V
A | •

We can then simplify the graph and replace the internal logical machinery by
black boxes (big black circles in the figure). The conclusions of the basic proofnets
are labeled: outputs (i.e. conclusions that are propositional variables) are drawn
as closed half circles, inputs (i.e. conclusions that are negation of propositional
variables) are drawn as open half circles. Plain lines link black boxes to black
boxes or conclusions, and subgraphs corresponding to adjunction points are
drawn as dashed lines. The previous proofnet is then redrawn as in fig. 14 right.

S
o-

-
N

P
 @

 V
P

,
N

P
,

V
P

 o
-

V
P

,
V

P
 o

-
V

 @
 N

P
,

V
 o

--
 s

a
w

,
sa

w
,

N
P

 b
 S

N

P
 o

-
M

a
ry

,
M

a
ry

 k
-

N
P

N
P

 o
--

 J
o

h
n

,
Jo

h
n

 k
-

N
P

S

o-
-

N
P

 @
 V

P
,

N
P

,
V

P
 o

--

V
P

,
V

P
 o

--
 V

 |

N
P

,
V

or

-
sa

w
,

sa
w

,
N

P
 c

-
M

a
ry

,
M

a
ry

 l
-

S

S
o

-
N

P
 |

V

P
,

N
P

 o
-

Jo
hn

,
Jo

h
n

,
V

P
 o

-
V

P
,

V
P

 o
--

 V
 |

N

P
,

V

o
-

sa
w

,
sa

w
,

N
P

 o
--

 M
a

ry
,

M
a

ry
 I

-
S

S
o-

--
 N

P
 |

V

P
,

N
P

,
V

P
 o

-
V

P
,

V
P

 o
--

 V
 @

 N
P

,
V

o

-
sa

w
,

sa
w

,
N

P
 ~

- S

N
P

 o
--

 J
oh

n,
 J

o
h

n
 b

 N
P

N
P

 o
--

- M
a

ry
,

M
a

ry
 I

-
N

P

S
o-

-
N

P
 @

 V
P

,
N

P
 o

--
 J

o
h

n
,

Jo
h

n
,

V
P

 o
--

V

P
,

V
P

 o
--

 V
 @

 N
P

,
V

o-

-
sa

w
,

sa
w

,
N

P
 k

-
S

S
o-

-
N

P
 |

V

P
,

N
P

 o
-

Jo
hn

,
Jo

h
n

,
V

P
 o

--

V
P

,
V

P
 o

--
 V

 |

N
P

,
V

o-

-
sa

w
,

sa
w

,
N

P
 o

--
 M

a
ry

,
M

a
ry

 ~
- S

Fi
g. 1

0..
A(

~)-
pro

ofs
 of

Jo
h

n
 s

aw
 M

a
ry

,F
,

,

v.
V/

(
i

13

I_
.._

V
,.

l~

NP
 @

 9
[

[

[PJ
"

NP
 | V

P |

Fi
g. 1

1.
Jo

h
n

 s
a

w
 M

a
ry

..a
,

r

114

We obviously find the derived tree (neglecting some minor differences). The log-
ical proofnet can then be seen as an "explanation" of the structure of the tree,
that is to say the operations available on the tree are the result of some focus
of what can be done on the proofnet. On the one hand the use of black boxes
is necessary to clarify the structure of the analysis, on the other hand this hides
proof details that can be useful for some linguistic operations (as is the case
for adjunction w.r.t, the classical structure of a derived tree). We show in [5]
another application of such a (logical) refinement.

The next example includes the two operations composition and adjunction,
i.e. two cut-rules and an adjunction rule. In fig. 12 the adjunction rule is repre-
sented as a double thick dashed line: this (logically) mimics the adjunction as it
can be described in the derived tree given in fig. 14 left. Note that the adverb
has to be placed after the complement (rightmost in the proofnet) in order to
keep the graph planar. The proofnet in fig. 13 is the proofnet corresponding to a
cut-free proof. The sequent associated to the adverb today is the following one:

today VP o-- VP | today, VP, today t- VP

6 Conclus ion

The use of logics to describe Natural Language is not a new idea. Work on e.g.
Lambek calculus and logic programming are famous examples (see e.g. [11], ... on
how to use sequent calculus for natural language processing). However, linguistic
formalisms have fundamentally evolved these two decades. Though theoretical
research has been done on unification and attribute-value structures, operations
on syntactic trees have been investigated mainly by comparing different solutions
[16,15]. We consider here another way to look at these operations (see also [7]).
We focus on the adjunction operation available in Tree Adjoining Grammars as it
seems to be the most simple way to augment the expressive power of a formalism.
We prove that Noncommutative Intuitionistic Linear Logic is a natural logical
means and we define a fragment equivalent to TAG. We show furthermore to
which extent geometric representations of proofs (proofnets) may be useful to
understand how black boxes (i.e. relations between nodes in a syntactic tree)
help simplifying a parse but also hide interesting mechanisms. There is still a lot
to do in this direction. Among other things, Generalized Categorial Grammars
have also to be logically investigated, the objective being to relate the current
available operations and to complete this set. The previous discussions show also
the relationship between our point of view and the idea of quasi-trees developed
by Vijay-Shanker [13]. He proposes to consider partial descriptions of trees, i.e.
adjunction nodes are represented by means of loose relations whose meaning is
a domination relation. In this case, the exljunction operation is identified with a
pair of substitution operations. The strong relation with what precedes is clear.
However, in order to take into account exactly this presentation the axiom of
identity A P A, where A is a propositional variable, has to be added to the

r

sa
w

V
V

|
NP

 V
P •

~
to

da
y•

 ~
 ~

l/
la

ry

|
..V

p"
hr

P 1
•

•
sa

w
|

•
V

|
NP

 |
VP

 •
VF

L

..
J

vP

VP
 |1

76
17

7
~

V
l

[

NP
 •

NP
 |

VP
 S

 •

~'
P•

 V
P

|
|

VP
•

"P

• N
P

|
VP

 |
S •

 S

IF

L
._

s

f

-,
I V

 •

V

sa
w

 |
V

 •

F
ig

.
12

.
Jo

h
n

 s
aw

 M
a

ry
 t

od
ay

t
I

N
P

V

P

NP
 |

VP
 S

 •

V

N
P

 |

V
P

 |

S
•

S

F
ig

.
13

.
C

ut
-f

re
e

pr
oo

fn
et

 f
or

 J
oh

n
 s

aw
 M

a
ry

 t
od

ay

116

•
VP

I
NP

NP

John John
s a w

.) NP

D

Mary

~ ' V P
I

s today

Mary

Fig. 14. (left) Simpfified proof for John saw Mary. (right) Simplified proof for John
saw Mary today

calculus A(G) given in section 4. In this way, adjunction nodes can be deleted
from sequents. In this new cMculus, the following rule is satisfied:

A ~ - A F, A o - - A , A ~ - B
F, A ~- B (adjunction)

Hence, we obtain the following equivalence:

P r o p o s i t i o n 9. A parse tree is correct

iff each pazr of nodes in a domination relation have the same label
iff there is a proof whose conclusions that are propositional variables are the
words of the sentence in the same order, and without any formula of the
form A o-- A.

References

1. A. Abeill6, K. Bishop, S. Cote, and Y. Schabes. A lexicalized tree-adjoining gram-
mar for english. Technical Report MS-CIS-90-24, LINC LAB 170, Computer Sci-
ence Department, University of Pennsylvania, Philadelphia, PA, 1990.

2. M. Abrusci. Noncommutative intuitionnistic linear propositional logic. Zeitschrifl
fi~r Mathematische Logik und Grundlagen der Mathematik, 36:297-318, 1990.

3. M. Abrusci. Phase semantics and sequent calculus for pure noncommutative clas-
sical linear propositional logic. The Journal of Symbolic Logic, 56(4):1403-1451,
1991.

4. M. Abrusci. Noncommutative proof nets. In J.-Y. Girard, Y. Lafont, and L. Reg-
nier, editors, Advances in Linear Logic, volume 222, pages 271-296. Cambridge
University Press, 1995. Proceedings of the Workshop on Linear Logic, Ithaca,
NewYork, June 1993.

117

5. M. Abrusci, C. Fouquer~, and J. Vauzeilles. Tree adjoining grammars in non-
commutative linear logic. Technical Report 97-03, LIPN, Universit$ Paris-Nord,
France, 1997. In submission.

6. J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1-102, 1987.
7. A.K. Joshi and S. Kulick. Partial proof trees, resource conscious logic and syntactic

constraints. In (this volume), 1997.
8. A.K. Joshi, L.S. Levy, and M. Takahashi. Tree adjunct grammars. Journal o]

Computer and System Sciences, 10(1):136-163, 1975.
9. Aravind Joshi and Yves Schabes. Tree-adjoining grammars. In Grzegorz Rozenberg

and Arto Salomaa, editors, Handbook of Formal Languages, volume 3 - Beyond
Words, chapter 2, pages 69 - 124. Springer-Verlag, 1996.

10. A.S. Kroch and A.K. Joshi. Linguistic relevance of tree adjoining grammars. Tech-
nical Report MS-CIS-85-18, LINC LAB 170, Computer Science Department, Uni-
versity of Pennsylvania, Philadelphia, PA, 1985.

11. J. Lambek. The mathematics of sentence structure. Am. Math. Monthly, 65:154-
169, 1958.

12. G. Sundholm. Systems of deduction. In D. Gabbay and F. Guenthner, editors,
Handbook of Philosophical Logic, volume 1, pages 133-188. D. Reidel Publishing
Company, 1983.

13. K. Vijay-Shanker. Using descriptions of trees in a tree adjoining grammar. Com-
putational Linguistics, 18(4):481-517, 1992.

14. K. Vijay-Shanker and A.K. Joshi. Some computational properties of tree adjoining
grammars. In 23rd Meeting of the Association for Computational Linguistics, pages
82-93, 1985.

15. K. Vijay-Shanker and D.J. Weir. The equivalence of four extensions of context-free
grammars. Mathematical Systems Theory, 27:511-545, 1994.

16. K. Vijay-Shanker and D.3. Weir. Parsing some constrained grammar formalisms.
Computational Linguistics, 19(4):591-636, 1994.

