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A b s t r a c t .  This paper 1 presents alogical formalization of Tree-Adjoining 
Grammar (TAG). TAG dealswith lexicalized trees and two operations 
are available: substitution and adjunction. Adjunction is generally pre- 
sented as an insertion of a tree inside another, surrounding the subtree 
at the adjunction node. This seems to be contradictory with standard 
logical ability. We prove that some logic, namely a fragment of non- 
commutative intuitionistic linear logic (N-ILL), can serve this purpose. 
Briefly speaking, linear logic is a logic considering facts as resources. N- 
ILL can then be considered either as an extension of Lambek calculus, 
or as a restriction of linear logic. We model the TAG formalism in four 
steps: trees (initial or derived) and the way they are constituted, the 
operations (substitution and adjunction), and the elementary trees, i.e. 
the grammar. The sequent calculus is a restriction of the standard se- 
quent calculus for N-ILL. Trees (initial or derived) are then obtained as 
the closure of the calculus under two rules that mimic the grammati- 
cal ones. We then prove the equivalence between the language generated 
by a TAG grammar and the closure under substitution and adjunction 
of its logical representation. Besides this nice property, we relate parse 
trees to logical proofs, and to their geometric representation: proofnets. 
We briefly present them and give examples of parse trees as proofnets. 
This process can be interpreted as an assembling of blocks (proofnets 
corresponding to elementary trees of the grammar). 

1 I n t r o d u c t i o n  

This  paper  presents a logical formal izat ion of  Tree-Adjoining G r a m m a r  (TAG, 
[8], [9]). TAG deals with lexicalized trees and two operat ions  are available: sub- 
s t i tu t ion  and adjunct ion.  A set of  (elementary) trees is associated to each lexical 
i tem. T A G  is a tree rewrit ing system: the parsing process consists in apply ing  
opera t ions  to  trees in order to obta in  a (derived) tree whose sequence of  leaves is 
a sentence. Adjunct ion  increases the expressive power of  the formal i sm in such 
a way tha t  non context-free languages can be represented a l though the pars- 
ing process is done in a polynomia l  t ime. Adjunc t ion  is generally presented as 

1 An extended version is currently in submission and available as a technical report 
[5] 
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an insertion of a tree inside another, surrounding the subtree at the adjunction 
node. This seems to be contradictory with standard logical ability. We prove 
hereafter that  some logic, namely a fragment of non-commutative intuitionistic 
linear logic (N-ILL, [2,3]), can serve this purpose. Briefly speaking, linear logic, 
developed by Girard [6], is a logic considering facts as resources. N-ILL can then 
be considered either as an extension of Lambek calculus, or as a restriction of 
linear logic. Nevertheless, viewing logical literals as resources allows a straight 
and natural  mapping from a derivational formalism (such as TAG) to such a 
logic: there is no need for indexing pieces of trees or words of a sentence. Since 
we are not interested in disjunction in this paper, we only need the intuitionistic 
part of linear logic. Finally, non-commutativity is necessary insofar as we aspire 
to take care of word order. 

We model the TAG formalism in four steps: trees (initial or derived) and the 
way they are constituted, the operations (substitution and adjunction), and the 
elementary trees, i.e. the grammar.  Labels occurring in the grammar constitute 
the set of propositional variables we need. The sequent calculus is a restriction of 
the standard sequent calculus for N-ILL: there are identity axioms (A ~- A) and 
rules for introducing connectives (| at left hand side, o-- at right hand side), o-- 
is the left implication, @ is one of the two 'and'  connectives available in Linear 
Logic and its variants. We prove that  this restricted calculus is closed under two 
rules tha t  mimic the grammatical operations. Trees (initial or derived) are then 
obtained as the closure of the calculus under these two rules. In fact, trees are 
represented as (provable) sequents in an almost classical way. The right hand 
side is the variable labeling the mother node of the tree. The left hand side is 
a sequence of formulas of the following kinds: A for some leaf A of the tree, 
A o-- B1 | �9 �9 �9 | B,~ where A is the label of some internal node and B~ are the 
labels of its daughters, A o-- A whenever A is a node where an adjunction can 
take place. This latter kind of formula can be grammatically interpreted as if 
such an A was split into two nodes with the same label, linked by some "soft" 
relation. The set of elementary trees of a TAG grammar g '  is then represented as 
a subset M of the sequents in the closure of the calculus under the two previous 
rules. We then prove the equivalence between the language generated in TAG 
by such a grammar G' and the closure under substitution and adjunction of the 
logical representation M. Note that  our interpretation of adjunction is very close 
to the use of quasi-trees described in [13]. 

Besides this nice property, we relate parse trees to logical proofs, and to their 
geometric representation: proofnets. As for linear logic, there exists in N-ILL a 
correspondence between proofs and some sort of nets, called proofnets. We briefly 
present proofnets and give examples of parse trees as proofnets. This enables a 
new point of view on the parsing process. This process can be interpreted as 
an assembling of blocks (proofnets corresponding to elementary trees of the 
grammar),  and also as a circulation of information through links relating nodes 
of the proofnets. 

The  paper is organized in four parts. Section 2 describes the TAG formalism. 
We recall the terminology and show how substitution and adjunction operate on 
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trees. Section 3 gives a survey of noncommutat ive  linear logic and relates it to 
Lambek  calculus and linear logic. We propose in section 4 a logical formulat ion 
of TAG in a f ragment  of N-ILL, and prove the correspondence between the two. 
Section 5 is devoted to the representation of proofs as proofnets. 

2 Tree Adjoining Grammars 

The Tree Adjoining G r a m m a r  formalism (TAG) is a tree generating formal ism 
introduced in [8], linguistically mot ivated (see for example,  [1,10]), and with 
formal  properties studied in [14-16]. A TAG is defined by two finite sets of trees 
composed by means of the substi tution and adjunction operations ~. 

D e f i n i t i o n  1. A TAG G is a 5-uple (VN, VT, S, I, A) where 

- VN is a finite set of non-terminal symbols, 
- VT is a finite set of terminal  symbols, 
- S is a distinguished non-terminal  symbol,  the start symbol,  
- I is a set of initial trees, 

- A is a set of auxiliary trees. 

An elementary tree is either an initial tree or an auxiliary tree. Both initial 
and auxiliary trees are trees with at least one leaf labeled by a terminal  node 
(the g r ammar  is a so-called lexicalized one). An auxiliary tree must  fur thermore 
have a leaf (the foot node, marked with a star  *) with the same label as the root 
node. Each non-terminal  node is marked as adjoinable or non-adjoinable (in this 
case, the node is marked NA). Each internal node must  obviously be labeled by 
a non-terminal  node. a A derived tree is either an initial tree or a tree obtained 
f rom derived trees by means of the two available operations. 

In conformity with the literature, we will use a to refer to an initial tree, 
]~ to refer to an auxiliary tree, 7 to refer to some derived tree. Examples  of 
initial and auxiliary trees are given in fig. 1. Two TAGs are defined: G1 = ({S}, 
{a,b,c,d,r (e is the empty  word) and G2 = ({S, VP, NP, N}, 
{the, man, walks}, S, {as, c~3, a4}, 0). 

The  substitution operation is defined as usual. A non-terminal  leaf of a tree 
may  be expanded with a tree whose root node has the same label. Leaves tha t  
accept substi tution are marked with a down arrow $. The adjunction operat ion 
is a little bit more complicated. I t  supposes a derived tree with a non-terminal  

2 Originally, there was no need for a substitution operation as initial trees were rooted 
at S, thus labeling a sentence. We refer here to the Lexicalized-TAG formalism 
where this constraint disappears on behalf of the substitution operation. However, 
we maintain the name TAG. 

3 In some versions, non-terminal nodes of elementary trees are labeled by a set of 
(auxiliary) trees that can be adjoined at this node. In the case of an empty set, the 
node is obviously non-adjoinable. For the sake of clarity, we simplify the definition to 
only take into account the boolean adjoinable property: either the node is adjoinable 
or it is non-adjoinable (NA). 
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0 / 2  ~ -  

e a / / / ~  d 

b S~vA c 

the N J~ mail N PJ~ 

Fig. 1. Elementary trees. 

walks 

node, say X,  possibly internal and not marked NA, and an auxiliary tree with 
root node X.  The operation consists in: 

- excising the subtree with root labeled X in the derived tree, 
- inserting the auxiliary tree at node labeled X in the derived tree, 
- finally, inserting the excised subtree at the foot node (labeled X and marked 

with a star  *) in the auxiliary tree. 

Substitution of a3 on a2 gives 7t = 
the 

m a l l  

Substitution of 71 on 0/4 gives 72 = 

Fig. 2. Substitution results 

v p  

the ~ walks 

man 

Examples  of these operations are given in fig. 2 and 3. In order to clarify the 
way adjunction is done, the adjoined tree B1 has its links dashed in the derived 
trees 73 and 74. Obviously, there is only one kind of link. We write 71 ==~a 72 
when 72 is the result of an adjunction or a substi tution of an elementary tree 
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Adjunction of j31 on at  gives 73 = 

StI.A 

a . ~ .  d 

b S~A c 

Adjunction of/31 on 73 gives 74 = 
a S~A d 

b STA c 

E 

Fig. 3. Adjunction results 

of a TAG G on the derived tree 71. =:>b is the reflexive, transitive closure of 
:~a .  The set {7 /3a  E G and a ~ *  a 7} is noted T(G). The language L(G) 
generated by a TAG G is the set of strings, i.e. sequences of leaves of trees 
in T(G) when the leaves of these trees are only labeled with terminal nodes, 
and whose root is the start symbol. Hence, L(Gz) = {anbncndn/n >_ 0} and 
L(G2) = {the man walks). 

3 Noncommutat ive  Intuitionistic Linear Logic 

Linear logic was introduced by Girard [6] as a "resource conscious logic". In 
other words, while classical logic deals with static descriptions, linear logic con- 
siders propositions as finite resources. Hence, 'A' and 'A and A' are equivalent in 
classical logic, this is (generally) not the case in linear logic. The easiest techni- 
cal way to investigate this difference is to consider the Gentzen sequent calculus 
for these logics. A sequent is of the form F t- A where F and ,5 stand for se- 
quences of well-formed formulae w.r.t, the language of the logic. It expresses the 
fact that  the (multiplicative) disjunction of formulas in ,5 is a consequence of 
the (multiplicative) conjunction of formulas in F.  A sequent calculus is a set of 
rules specifying the provable sequents, being given a set of axioms. A proof of 
a sequent is then the successive application of sequent rules beginning with ax- 
ioms, i.e. a tree with the proved sequent as the root of the tree (at the bot tom) 
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and whose leaves are axioms (at the top). Rules of a sequent calculus introduce 
in some way connectives in the right or left hand side of a sequent. Hence, in 
the case of a simple calculus, sequent calculus is constructive in the sense that ,  
given a sequent to be proved, there exists a constructive way to find the proof. 
We refer the reader to [12] for a survey on various systems of deduction and 
the relations between sequent calculus, Hilbert-style systems and natural deduc- 
tion. Besides these introduction rules and axioms, we find structural rules that  
govern the structure of a sequent. In classical logic, the set of structural rules 
consists in weakening, contraction and exchange (cf fig. 4 where A, B are for- 
mulas, F, F ~, A, A I are sequences of formulas). Weakening and contraction allow 
the arbitrary copy of formulas: having a formula A as a hypothesis or conclusion 
is equivalent to having it twice (or more). This point of view contradicts the 
notion of resource, hence these two structural rules are omitted in linear logic. 
However special connectives, namely the exponentials  of-course '!' and why-not 
'? '  have these properties. The exchange rule is responsible for commutativity of 
the comma (in the right side and in the left side): the order of hypotheses or 
conclusions does not matter. This rule is no longer valid in the noncommutative 
version of linear logic. 

F F- A ( l - -  weakening) 
F, A F - A  

F ,A ,  A F- A 
F, A F- A (l -- contraction) 

F , B , A , F  I F- A 
F, A, B,  F' F- A (l -- exchange) 

F t- A (r - weakening) 
F t - A , A  

F b A , A , A  
F t- A , A  (r - contraction) 

F F- A, B,  A, A'  
F F A,  A, B, A I (r -- exchange) 

Fig. 4. Structural rules 

However, and this is already true in linear logic, the logical interpretation of 
'and'  and 'or' is not as simple as it is in classical logic. We need to distinguish two 
'and'  (| ' times', ~= 'with') and two 'or' (~  'par', ~ 'plus'), hence inducing four 
constants: 1, T, L, 0 (respective neutral elements for the previous connectives). 
In fact, connectives are related in such a way that  they form two groups: the 
multiplicative group (| :~, 1, L) and the additive group ( &, (~, T, 0). We only 
use hereafter the multiplicative group. There are obviously fundamental reasons 
for this proliferation but these explanations are outside the scope of this paper. 
The negation and the implication are however of special interest. In (commu- 
tative) linear logic, there are only one negation .• and one (linear) implication 
-o. In the noncommutative case, they have also to be split: there are a pre- • 
and a post- negation .• and a pre- o-- and a post- implication --o. These two 
implications have to be related with the two operations in Lambek calculus: --o 
with \ and o -  with / .  The implications may be defined in the following way: 
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B o-  A -- B 7~• and A --o B = A • ~ B. We give in fig. 5 the one-sided 
sequent calculus for the multiplicative fragment of noncommutative linear logic 
N-LL, and in fig. 6 the two-sided sequent calculus for the multiplicative fragment 
of intuitionistic noncommutative linear logic N-ILL: sequent calculus for N-LL 
and sequent calculus for N-ILL satisfy the cut-elimination theorem4; however 
we make use of cut-rules in section 4. Note that  if F b A is provable in the 
multiplicative intuitionistic noncommutative linear logic, then ~- (F*) • A* is 
provable in the multiplicative noncommutative linear logic, where: 

- for each formula A of intuitionistic noncommutative linear logic, A* is a 
formula of noncommutative linear logic defined as follows 

�9 p* = p, for every propositional letter p 
�9 (B| = B*| (B -o  C)* = (B*)" ~ C*, (B o-- C)* = B* 7 •  *) 

- for each finite sequence A1 , . . . ,  An of formulas of intuitionistic noncommu- 
tative linear logic, (A1, . . . ,  An)* = (A1)*, . . . ,  (An)* 

- for each finite sequence A1 , . . . ,  An of formulas of noncommutative linear 
logic, ( A I , . . .  ,An) • -- ( A , ) •  (A1) • 

We give hereafter two examples of proofs in order to show the way the sequent 
calculus can be used. We choose logical translations of a Lambek grammar to 
pinpoint the obvious relation with Lambek formalism. The first one (fig. 7) is a 
straightforward translation in a Lambek style, being given the two implications. 
The second proof (fig. 8) interprets the Lambek grammar in a derivation-style, 
we only need one implication and the connective times. The proofs use cuts: they 
can be withdrawn as the logic enjoys the cut-elimination theorem, but we think it 
can help understanding the process. Moreover, we associate to each lexical item a 
(provable) sequent we use as a proper axiom (label 'lex'). The following sections 
include other examples and emphasize the usefulness of noncommutative linear 
logic in the linguistic domain. The lexicon in a Lambek-style is the following 
o n e :  

John : NP 
gives : ( (NP\ S) /NP) /NP 
Mary : NP 
a : NP/N 
book : N 

4 T h e  c a l c u l u s  ,A ( a  f r a g m e n t  o f  N - I L L )  

The formalization of TAG in N-ILL relies mainly on a logical presentation of 
the two operations substitution and adjunction together with a correspondence 
between proofs and trees. As already shown in the previous section, the substi- 
tution operation is nothing else but the application of some sort of cut-rule we 
call the atomic cut-rule. Interpreting the adjunction operation is really the main 
difficulty. The adjunction results from two atomic cut-rules between the sequent 
corresponding to the adjunction tree and two suitable sequents corresponding 

4 For each proof, there exists a cut-free proof with the same conclusion. 
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Alphabet:  

- propositional letters: a, b, c , . . .  
- for each propositional let ter  p and each integer n > 0 

t i m e s  ~ t i m e s  

pl... I and I... Ip 

- connectives: | 

Formulas: usual definition 
Sequents: I- F where F is a finite sequence of formulas 
Metalinguistic definition of A • and J-A s.t. ~AA)= (AA)A = A, for every formula A: 

n t i m e s  n q - 1  t i m e s  It t i m e s  ~ 1  t i m e s  

(p ~...A )A = p  ~.. .~ ( - . . . •  = A...A p 

t i m e s  n - - 1  t i m e s  ~ t i m e s  m + l  t i m e s  

A(p....J.)=p J....~. qA...Ap)= J....J. p 

(B | C) s = C A W B s (B ~ C)" = C A | B" 

"(B | C ) = ~ A B  

Rules of sequent calculus: 

~(B ~ C)=~C | "B 

~ (axiom) [-F~,A, F2 I -AA ,A  (cut , )  I--F,A I -A , ,AA,  A2 (cut2) 
F- A •  ~- FI, A, F2 F- AI,F, A2 

~- A I ' A ' B ' A 2  (r ~) ~- Ft,A, F2 I- B , A  ~- F,A b A , , B ,  A2 (r2| 
~ - A I , A W B ,  A2 f - F 1 , A |  F2 ( r l |  ~ _ A 1 , F , A |  2 

Fig. 5. Language and sequent calculus for Multiplicative Noncommutative Linear Logic 
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Alphabet: 

- propositional letters: a, b, c , . . .  
- connectives: | o-, -o 

Formulas: usual definition 
Sequents: F b A where F is a finite sequence of formulas and A is a formula 
Rules of sequent calculus: 

F ~ - A  F1,A, F2~-B 
A ~- A (axiom) 1"1, F, F2 ~- B (cut) 

F~-A  z ~ - U  ( r - |  
F, A t - A |  

FI ,A ,B ,  F2 b C 
F 1 , A |  F2 ~-C ( l - |  

FI,A, F2 ~ C zI ~- B 
F , ,Ac . -  B , A ,  F2~-C ( l - o - )  

F,B~-A 
F b A o - - - B  (v -  0---) 

F1,A, F2 ~- C z2 ~ B 
F1, A, B _o A, Fz b C ( l - - -o)  

B , F ~  A 
F F B - o A  ( r -  -o) 

Fig. 6. Language and sequent calculus for Multiplicative Noncommutative Intuitionis- 
tic Linear Logic 

to two subparts of the tree where adjunction is done. However, it remains to 
prove that  there is only one way to combine the pieces, the substitution node 
being given, and that  the order of the elements are as requested. For that  pur- 
pose, we show that  for a suitable fragment of N-ILL there is a unique way to 
decompose a sequent F, a o -  A, A t- B into F, a, A2 b B and A 1 ~- A. In this 
section, we clarify the calculus `4 used to interpret TAG: it includes a cut rule 
and an adjunction rule that  mimic the grammatical operations. According with 
the previous remarks, these two rules are correct w.r.t, the logic. We give the 
basic properties satisfied by this calculus ,4. In order to model TAG in N-ELL, 
we first construct the set ~ of subtrees of depth 1 of trees appearing in a TAG 
grammar ~' .  The  TAG grammar ~' is then a subset of the closure T (~ )  under 
substitution (possibly with the declaration of adjunction nodes annotated in this 
case subst*) and adjunction of the set G. The interpretation of elements of G as 
provable sequents of ,4 is straightforward. This leads to a calculus ,4(~) where 
the operations are restricted w.r. t .G. The TAG grammar ~' is then in correspon- 
dence with a subset M(G') of ,4(G) and we prove the equivalence between the 
language generated by G' and the set of sequents obtained by closure on M(G') 
by the cut and adjunction rules 5 . Proofs of propositions are postponed until the 
annex. The various components of our approach are summarized below. 

5 We note M instead of M(Q') whenever there is no ambiguity. 
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cut 
adj 

Q 
-41g) 

, , ee  Seq 

subst*'N~ 1 
TI~) 

D M(G' 

cut 
~dj 

D 6 '  ~ CL(6 ' )  
subst 
adj 

: CL(M(G')) 

Consider the following fragment -4 of the non-commutative intuistionistic 
linear logic (N-ILL). 

D e f i n i t i o n  2 ( T h e  ca lcu lus  A).  

- Alphabet of .4: propositional letters a, b , . . . ,  connectives @, o- ,  
- Formulas: usual definition. A is a simple @-formula iff A is a propositional 

letter or A is a formula bl @. �9 .@bn where bl, .  �9 bn are propositional letters. 
- Sequents: F t- A, where F is a finite sequence of formulas and A is a formula, 
- Sequent calculus: 

�9 Axiom: a b a 
F F  A A~- B . . F F  A FI ,a ,F~F B 

�9 Rules: F, A b A @ B  ( @ ) F I , a o - A , F ,  F 2 F B  (o-)  

Axiom and rules are restricted as follows: a stands for a propositional letter, 
A, B stand for simple @-formulas.  

P r o p o s i t i o n  3 ( M a i n  p r o p e r t i e s  o f  ca l cu lus  .4). (proofs in [5]) 

1. I f  F b A | B is provable in .4, then 
- A and B are simple |  
- there is a unique pair (F1,F2) s.t. F = F1,F2 and both the sequents 

1"1 ~- A and 1"2 b B are provable in .4. 
2. I f  F, a o-- A, ,5 i- B is provable in .4, then 

- A and B are simple @-formulas; 
- there is a unique pair (A1, A2) s . t . . 4  = .41,.42 and both the sequents 

.41 ~- A and F, a, .42 ~- B are provable in .4. 
Such a pair (.41, A2) will be called "the splitting pair for "4 in F, a o -  A, A F 
B ' .  Note that this pair can be computed easily: the first element "41 of the 
splitting pair must satisfy a counting condition on each variable occurring in 
it (see [5]). 
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3. The calculus .4 is closed under the atomic cut-rule (i.e. substitution rule) 
F t - a  A l , a , z ~ 2 t - A  

A1, F, A2 1- A (cut) 
i.e.: if the sequents F t- a and z~l,a, A2 t- A are provable in `4, then the 
sequent A1, F, A2 t- A is also provable in `4. 

4. The calculus ,4 is closed under the adjoinin~ rule 
r l ,  a, F2 I- a A, ao--a,A~l-b 

z2, F1, A1, F2, A2 ~" b (adj) 
where (A1, A2) is the splitting pair of A in A, a o-  a, A ~- b. 

Note that  A1 and A2 are uniquely defined from the premises, so the previous 
deduction is really a logical rule. 

D e f i n i t i o n  4 ( T h e  ca lcu lus  ,4(G)). Let G be a family of labeled trees, of depth 
1, not of the form X o-- X. Let T(G) be the closure of G under the rules: 

- substitution with or without the declaration of a new internal point on which 
the adjoining operation may be applied, 

- adjoining operation. 

,4(G) is the calculus obtained from ,4 as follows: 

- propositional letters are exactly all the labels of the trees in G, 
- the rule (o--) is restricted as follows: 

F ~ ' A  FI,a, F 2 t - B  (o--,~) 
F1, a o-- A, F, F2 ~- B 

where A, B are simple Q-formulas  of the language of ,4(~), a is a proposi- 
tional letter of the language of ,4(G) and one of the following cases occurs: 

�9 A i s a  

�9 A is a propositional letter b different from a, and the tree TE 

t l  

b 

�9 A is bl @ .-- | bn, and the tree / / / / ~  E 
bl . . .  bn 

The following propositions state the correspondence between sequents and 
trees. The first two provide a precise translation between the two notions. Basi- 
cally, a sequent F t- a (in the previous language) is the logical equivalent of a tree 
with root a, and there is exactly one formula in F for each leaf, for each subtree 
(of depth 1), for each adjunction node, and nothing else. Sea() (resp. Tree()) 
associates a sequent to each tree (resp. each sequent), and we prove the two 
are converse. The last three propositions are properties concerning the logical 
counterpart of a TAG grammar. The last one is in fact the most important: the 
closure under (logical) adjunction and substitution of the set of sequents corre- 
sponding to a set of elementary trees is exactly the set of sequents corresponding 
to the closure under (grammatical) adjunction and substitution of this set of el- 
ementary trees. In other words, the logical and grammatical calculi coincide, i.e. 
the restricted logical calculus we defined above and the TAG calculus. 
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Propos i t i on  5 (Main  p roper t i e s  of  calculus A(G)). The properties 1-4 of 
.A are also properties of .A(G). Moreover the following properties hold for ~4(G) : 

- To T e T(G), we associate a sequent Sea(T) ofA(G) s.t.: 
�9 if  a is the root of T, and the terminal points of T (ordered from left to 

right) are al . . . .  , am, then Sea(T ) is 
F~-a  

where in F the sequence of all the occurring propositional variables is 
a l , . . . ,  am and in F there is a formula c o-  c iff c is an internal point 
o f T  on which the adjoining operation may be operated; 

�9 Seq(T) is provable in .A(~). 
- To every provable sequent F ~- A in .A(~), we associate Tree(I" ~- A)  s.t. 

�9 i rA  is a propositional letter, then Tree(I" F A)  e T(F)  where the root is 
A, the terminal points (from left to right) are exactly all the propositional 
letters occurring in F and in the same order in which they occur in F, 
and the internal points on which the adjoining operation may be operated 
are exactly all the propositional letters c s.t. c o-  c occurs in F; 

�9 i f  A is bl | .." | bn, and so F = F1 . . .Fn  with the sequents Fi P bi 
provable in .A(F) for every 1 < i < n, then Tree(I" b- A)  is a sequence 
T1 , . . . ,Tn  of trees E T(F) ,  s.t. Ti = Tree(Fi ~- bi). 

- I f  F F a is provable in M(F), then Seq(Tree(F F a)) = F F a. I f  T is a tree 
o fF,  then Tree(Seq(T)) = T. 

- Let M be a set of provable sequents in ,4(F). Define CL(M) as follows: 
�9 MC CL(M) 
�9 (closure under atomic cut-rule) 

if  F ~- a E CL(M) and AI,a,A~ ~- B ECL(M), then A1,F, A2 ~- 
B e e L ( M )  

�9 (closure under adjoining operation) i fF t ,a ,  F2 ~ a eCL(M) and Z~,a o- 
a, A ~- b e CL(M), then A, F1, A1, F2, A2 e b �9 CL(M), where (A1, A2) is 
the splitting pair o / A  in A, a, A ~ b; 

�9 nothing else belongs to CL(M). 
- I f  F e A �9 CL(M), then F ~- A is provable in A(F) .  
- I fF '  C_ T(F) ,  let CL(F') be the closure ofF'  under: 

�9 substitution; 
�9 adjoining operation. 

Clearly, CL(F') C_ T(F) .  
Let M = {Seq (T ) /T  �9 F'}, then e L ( M )  = {Seq (T ) /T  �9 CL(F')}. 

Starting from this last proposition, it is not too difficult to prove that the 
language accepted by a TAG grammar F' is exactly the language accepted by 
M(F'). We can define the language accepted by such a calculus in the follow- 
ing way. Let us take only those sequents in CL(M(F')) whose right part is the 
propositional variable S (the start symbol of the grammar), and such that propo- 
sitional variables of the left part of the sequent correspond to terminal symbols 
of the grammar, i.e. words of the language. The language accepted by M(F') 
is then the set of sequences of words in the Same order as they appear in the 
previous sequents. 
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. /V  ~ ' the man N P  V~  
! 

walks 
The set of sequents M1 associated to this grammar is the following one: 

MI-'{ 
N P  ~ the | N, the, N I- NP, 
N o-- man, man }- N, 
S o--- N P  | VP, NP, VP o-- walks, walks F S 

} 
The analysis of "the man walks" corresponds to the following proof in A(GI1): 

NPo--t.he| NP N o--man, manF N 
NPo- - lhe |  the,No--rnan, rnanbNP S o - - N P |  NP, VPo-walks ,  walksFS 

S o-- NP | VP, NP o-- the ~ N, the, N o-- man, man, VP o- walks, walks ~ .q 

Example T. Grammar G~ = { ~, / ~ ' " ~  } 
e a  / / / ~  d 

b SNA C 
The associated set of sequents M2 is defined from G~ 

M2--{ 
S o- a | 1 7 4  S o -  S, S o -  b |174 S, 
S o-- S, S o -  e,e}- S 

} 
The analysis of "aabbccdd" corresponds to the proof of the following sequent. 

We have decomposed the different elements of the left part according to the 
adjunction rule. 

,.S~174174176174174176176174174176174174 ~ , , ~ d  ~-S 

5 T A G  a n a l y s i s  u s i n g  n o n c o m m u t a t i v e  p r o o f  n e t s  

A proof in sequent calculus contains many useless properties in its contexts. Gi- 
rard has defined in a purely geometric way [6] a class of graphs of formulas, called 
proof-nets: to each proof of a sequent }- F in the one-sided sequent calculus for 
multiplicative linear logic corresponds a proof-net whose conclusions are exactly 
the formulas in F, and to each proof-net corresponds at least one proof of the se- 
quent ~- F in the one-sided sequent calculus for multiplicative linear logic (where 
F is a sequence of all the conclusions of the proof-net). Similarly, Abrusci [3] de- 
fined in a purely geometric way a class of graphs, called noncommutative proof 
nets: to each proof of a sequent F- F in the one-sided sequent calculus for multi- 
plicative noncommutative linear logic corresponds a noncommutative proof-net 



110 

with conclusions F,  and to each noncommutative proof-net with conclusions F 
corresponds at least one proof of the sequent ~- F in the one-sided sequent cal- 
culus for multiplicative noncommutative linear logic. Therefore, to each proof of 
F ~- A in the sequent calculus for intuistionistic multiplicative noncommutative 
linear logic corresponds k noncommutative proof-net with conclusions (/'*)J-, A*. 

5.1 N o n c o m m u t a t i v e  p r o o f n e t s  

To every proof ~r of a sequent b F in the one-sided sequent calculus for mul- 
tiplicative noncommutative linear logic, we can associate (by induction on the 
construction of the proof r )  a noncommutative proofnet with conclusions F, i.e. 
an oriented planar graph r I of occurrencies of formulas s.t.: 

- the conclusions of Ir ~ are exactly the formulas in F;  
- # is a noncommutative proof structure, i.e. it is constructed by means of 

the following links6: 

�9 Axiom-link (two conclusions, no premise) A I j _ ~  

�9 Cut-link (two premises, no conclusion) 

�9 | (two premises, one conclusion) 

A B 

A |  

A A -L 

I I 

A B 
* ~-link (two premises, one conclusion) V 

AZ~B 

and every occurrence of formula is a premise of at most one link and is 
conclusion of exactly one link; 

- the translation of 7r is a proofnet, i.e. it admits no shorttrip. A shorttrip is 
a trip that  does not contain each node twice. A trip is a sequence of nodes, 
going from one node to another according to the graph and to a switch for 
each times-link and each par-link, in a bideterministic way: the traversal of 
nodes is done according to fig. 9 but without taking into account the labels 
of nodes (see below); 

- every assignment for ~r' is total; 
- ~r' induces the linear order F of the conclusions. 

An assignment for a proof structure ~r' is made in the following way. Let us 
associate two integer variables left-N and right-N to each node N computed as in 
fig. 9. The left variable of a node labeled by a propositional variable A is named 

The par link is graphically distinguished from the times link. However this is only 
sugar as the graph has really only one kind of edge. 
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x A. A special trip is a trip from the left variable to the right variable of some 
node. It follows the links given by the graph but the switch for times must be 
at right, the switch for par must be at left. Moreover the switch for par is used 
only if right-C occurs before right-B in the special trip from left-A. At the same 
time it imposes constraints between integer variables as defined in the following 
figure, where --~ means the transition from a variable to another variable. The 
assignment is total when the set of constraints can be satisfied. The precedence 
relation on the conclusions of 7r' is defined s.t. A precedes B iff right-A = left- 
B + 1. Then ~r' induces the linear order of the conclusions iff the precedence 
relation is a chain and each conclusion occurs exactly once in the chain. 

1' " Conclusion (xc) Ct Axiom-link sB• ~ tBs 

Cut-link s- lBt  ~ tB• 

B C sBv ~-- vCt 

|  L-switch ~ ~ N ~ r  It-switch ~ N x ~ /  

B| C sB| Ct 

7/ - l ink  L-switch 

sB( z  c + 1) ( zC)c t  B C 

sB ~ C t  B ~ C  

Fig. 9. Travels through proof structures 

Precise definitions, examples, explanations and the proof of the following 
theorem can be found in [4]. 

T h e o r e m  8. r '  is a noncommutative proof net with conclusions F iff there ex- 
ists a proof r of the sequent ~- F in the sequent calculus for multiplicative non- 
commutative linear logic s.t. r '  is associated to r.  

Note that every noncommutative proofnet is a planar graph. 
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5.2 P a r s i n g  e x a m p l e s  

We give in this section two simple examples of parses. The aim of this section 
is to show the strong connection between the structure of proofs of sequents 
and a standard TAG derived structure. Moreover, it emphasizes the interest of a 
proofnet approach as the syntax (and parsing process) is concretely designed as 
a logical manipulation of logical structures. In the conclusion, we briefly mention 
that  this can also give a logical formalization of D-trees [13]. 

The first example requires only composition, i.e. the cut-rule from the logical 
point of view. We first give the sequents (provable in ,4) associated with the 
lexical items. Their meanings are straightforward, e.g. 'John and Mary are noun 
phrases (NP)', 'saw requires a complement NP to obtain a verb phrase (VP) 
and a subject NP to obtain a sentence (S)'. Note that  VP is an adjunction node 
so the sequent associated to the item saw includes the formula VP o-- VP. The 
next example uses this specification. 

John N P  o-  John, John ~- N P  
Mary  N P  o-  Mary, Mary ~- N P  
s a w  So-NP|  VP,NP, VPo-- VP, VPo-V|  

The proof associated to the analysis of John saw Mary  requires two cuts. The 
two sequent proofs given in fig. 10 are the only two possibilities for this sentence 
in the fragment ,A(6). This pinpoints the fact that  the order in which the cuts are 
made is not significant w.r.t, the derived structure. Proofnets allow expression of 
this equivalence. Hence the two proofs have the same associated proofnet given 
in fig. 11. For the sake of clarity, the cut rules are bold lines, and we circle 
subnets associated to lexical items. Obviously, if we delete the two cut lines, we 
are left with three proofnets representing (provable) sequents. Such a proofnet 
contains still superfluous information. As the only available operations in .A(6) 
are (i) the cut-rule and (ii) the adjunction rule on a propositional variable, we 
only need to keep nodes referring to (i) conclusions of the proofnet that  are 
propositional variables or negation of propositional variables (a cut can be made 
on such a literal), and (ii) the fact that there exists a subgraph of the following 
form (corresponding to the existence of a formula A o-  A in the left part of a 
sequent, i.e. its negation A | A • in the one-sided associated sequent): 

--1 F -  
A A • 

V 
A |  • 

We can then simplify the graph and replace the internal logical machinery by 
black boxes (big black circles in the figure). The conclusions of the basic proofnets 
are labeled: outputs (i.e. conclusions that  are propositional variables) are drawn 
as closed half circles, inputs (i.e. conclusions that  are negation of propositional 
variables) are drawn as open half circles. Plain lines link black boxes to black 
boxes or conclusions, and subgraphs corresponding to adjunction points are 
drawn as dashed lines. The previous proofnet is then redrawn as in fig. 14 right. 



S 
o-

- 
N

P
 @

 V
P

, 
N

P
, 

V
P

 o
- 

V
P

, 
V

P
 o

- 
V

 @
 N

P
, 

V
 o

--
 s

a
w

, 
sa

w
, 

N
P

 b
 S

 
N

P
 o

- 
M

a
ry

, 
M

a
ry

 k
- 

N
P

 

N
P

 o
--

 J
o

h
n

, 
Jo

h
n

 k
- 

N
P

 
S 

o-
- 

N
P

 @
 V

P
, 

N
P

, 
V

P
 o

--
 

V
P

, 
V

P
 o

--
 V

 |
 

N
P

, 
V

 
or

- 
sa

w
, 

sa
w

, 
N

P
 c

- 
M

a
ry

, 
M

a
ry

 l
- 

S 

S 
o

- 
N

P
 |

 
V

P
, 

N
P

 o
- 

Jo
hn

, 
Jo

h
n

, 
V

P
 o

- 
V

P
, 

V
P

 o
--

 V
 |

 
N

P
, 

V
 

o
- 

sa
w

, 
sa

w
, 

N
P

 o
--

 M
a

ry
, 

M
a

ry
 I

- 
S 

S 
o-

--
 N

P
 |

 
V

P
, 

N
P

, 
V

P
 o

- 
V

P
, 

V
P

 o
--

 V
 @

 N
P

, 
V

 
o

- 
sa

w
, 

sa
w

, 
N

P
 ~

- S
 

N
P

 o
--

 J
oh

n,
 J

o
h

n
 b

 N
P

 

N
P

 o
--

- M
a

ry
, 

M
a

ry
 I

- 
N

P
 

S 
o-

- 
N

P
 @

 V
P

, 
N

P
 o

--
 J

o
h

n
, 

Jo
h

n
, 

V
P

 o
--

 
V

P
, 

V
P

 o
--

 V
 @

 N
P

, 
V

 
o-

- 
sa

w
, 

sa
w

, 
N

P
 k

- 
S 

S 
o-

- 
N

P
 |

 
V

P
, 

N
P

 o
- 

Jo
hn

, 
Jo

h
n

, 
V

P
 o

--
 

V
P

, 
V

P
 o

--
 V

 |
 

N
P

, 
V

 
o-

- 
sa

w
, 

sa
w

, 
N

P
 o

--
 M

a
ry

, 
M

a
ry

 ~
- S

 

Fi
g. 1

0..
A(

~)-
pro

ofs
 of 

Jo
h

n
 s

aw
 M

a
ry

 

,F
, 

, 

v. 
V/

( 
i 

13
 

I_
.._

 

V
,.

l~
 

NP
 @

 9 
[ 

[ 

[PJ
" 

NP
 | V

P | 

Fi
g. 1

1. 
Jo

h
n

 s
a

w
 M

a
ry

 

..a
, 

r 



114 

We obviously find the derived tree (neglecting some minor differences). The log- 
ical proofnet can then be seen as an "explanation" of the structure of the tree, 
that  is to say the operations available on the tree are the result of some focus 
of what can be done on the proofnet. On the one hand the use of black boxes 
is necessary to clarify the structure of the analysis, on the other hand this hides 
proof details that  can be useful for some linguistic operations (as is the case 
for adjunction w.r.t, the classical structure of a derived tree). We show in [5] 
another application of such a (logical) refinement. 

The next example includes the two operations composition and adjunction, 
i.e. two cut-rules and an adjunction rule. In fig. 12 the adjunction rule is repre- 
sented as a double thick dashed line: this (logically) mimics the adjunction as it 
can be described in the derived tree given in fig. 14 left. Note that  the adverb 
has to be placed after the complement (rightmost in the proofnet) in order to 
keep the graph planar. The proofnet in fig. 13 is the proofnet corresponding to a 
cut-free proof. The sequent associated to the adverb today is the following one: 

today VP o-- VP | today, VP, today t- VP 

6 Conclus ion 

The use of logics to describe Natural Language is not a new idea. Work on e.g. 
Lambek calculus and logic programming are famous examples (see e.g. [11], ... on 
how to use sequent calculus for natural language processing). However, linguistic 
formalisms have fundamentally evolved these two decades. Though theoretical 
research has been done on unification and attribute-value structures, operations 
on syntactic trees have been investigated mainly by comparing different solutions 
[16,15]. We consider here another way to look at these operations (see also [7]). 
We focus on the adjunction operation available in Tree Adjoining Grammars as it 
seems to be the most simple way to augment the expressive power of a formalism. 
We prove that  Noncommutative Intuitionistic Linear Logic is a natural logical 
means and we define a fragment equivalent to TAG. We show furthermore to 
which extent geometric representations of proofs (proofnets) may be useful to 
understand how black boxes (i.e. relations between nodes in a syntactic tree) 
help simplifying a parse but also hide interesting mechanisms. There is still a lot 
to do in this direction. Among other things, Generalized Categorial Grammars 
have also to be logically investigated, the objective being to relate the current 
available operations and to complete this set. The previous discussions show also 
the relationship between our point of view and the idea of quasi-trees developed 
by Vijay-Shanker [13]. He proposes to consider partial descriptions of trees, i.e. 
adjunction nodes are represented by means of loose relations whose meaning is 
a domination relation. In this case, the exljunction operation is identified with a 
pair of substitution operations. The strong relation with what precedes is clear. 
However, in order to take into account exactly this presentation the axiom of 
identity A P A, where A is a propositional variable, has to be added to the 
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• 
VP 

I 
NP 

NP 

John John 
s a w  

.) NP 

D 

Mary 

~ ' V P  
I 

s today 

Mary 

Fig. 14. (left) Simpfified proof for John saw Mary. (right) Simplified proof for John 
saw Mary today 

calculus A(G) given in section 4. In this way, adjunction nodes can be deleted 
from sequents. In this new cMculus, the following rule is satisfied: 

A ~ - A  F, A o - - A , A ~ - B  
F, A ~- B (adjunction) 

Hence, we obtain the following equivalence: 

P r o p o s i t i o n  9. A parse tree is correct 

iff each pazr of nodes in a domination relation have the same label 
iff there is a proof whose conclusions that are propositional variables are the 
words of the sentence in the same order, and without any formula of the 
form A o-- A. 
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