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Abstract

Our aim is to use a description logic including default (�) and exception (�) connectives

as a formal framework for a CBR system. This approach allows the retrieval of similar

cases to be formalized. Subsumption and (sure, probable, typical and exceptional) inheri-

tance relations of the description logic are the foundations for the di�erent retrieval tasks:

abstracting the new case, classifying it in the index base (full and partial matching), eval-

uating the similarity with conceptual preference criteria of the conceptual abstraction of

the new case with the concepts of the index base, retrieving similar cases (instances) and

applying instance preference criteria to order them. Our preference criteria are symbolic

rather than numerical or those of fuzzy logic. Using description logic o�ers several advan-

tages: the classi�cation process can be used to retrieve similar cases, the formal properties

and the e�ciency of the system can easily be evaluated, preference criteria are homoge-

neously based on the formal description logic framework. Moreover preference criteria are

independent of the knowledge and can thus be used in other applications.

Key words : case-based reasoning, retrieval, description logic, similarity, matching,

default and exception.

1. Introduction

The main objective of case-based reasoning systems (CBR) is to resolve a problem (new

case) by retrieving from a base similar problems (old cases) which have already been handled

before and by reusing (modulo possible adaptations) the solutions which have been applied

to these old cases. The application domains are varied: diagnosis, plani�cation, decision-

making, etc. Generally the whole CBR process is divided into several steps (Aamodt and

Plaza, 1994):

1. retrieval of old cases,

2. reuse of the solutions,

3. evaluation of the chosen solutions,

* This research is supported as part of the \Creation and Enrichment of a Knowledge-Base: Application

to the Supervision of a Telephone Network" project involving CNRS-cognisciences, CNET (National

Center for Telecommunication Studies), INRIA, LIPN.
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4. learning of the new case.

Each of these steps raises a lot of problems which are the subject of much research (WCBR89.,

1989; WCBR91., 1991; EWCBR93., 1993; EWCBR94., 1994; Kolodner, 1993). In this pa-

per, only the retrieval of old cases is considered. Considering a base of old stored cases the

task is to compare a new case with the old cases in order to �nd \similar cases". The similar

cases are then used to \resolve" the new case. If the new case coincides completely with an

old case the new case is said to \(fully) match" the old case. If however, some properties do

not coincide it is said to \partially match" the old case. The similarity varies according to

certain preference criteria (e.g. the e�orts made by the system to �nd these similar cases).

There are therefore cases which are more similar than others.

Di�erent solutions have been proposed in CBR research for the retrieval and preference

criteria of similar cases (Kolodner, 1993). However these solutions are very often informal

and heterogeneous since they are based on extremely di�erent properties, and are very

dependent on the described applications. Consequently it is very di�cult to:

� evaluate the formal properties of these problems and proposed solutions such as de-

cidability, soundness of the results or completeness;

� use these solutions in other applications;

� compare these solutions from one system to another;

� calculate the complexity of the algorithms used.

Several researchers (Koehler, 1994; Kamp, 1995; Napoli and Lieber, 1993) suggest using

description logics (or terminological logics) to formalize the retrieval task of CBR systems.

Description logics (DLs) are used to represent concept hierarchies (or terminologies). They

are based on KL-ONE language (Brachman and Schmolze, 1985) and mostly formalize the

idea of concept de�nition and reasoning about these de�nitions. DLs employ two kinds of

formalisms for the representation of knowledge. The terminological formalism is used to

describe conceptual knowledge (T-box) (concepts and their analytic interrelations) while

assertional formalism allows facts to be stated (A-box) (e.g. an individual (or object) is an

instance of a concept). Concepts are partially ordered by a subsumption relation: a concept

B is subsumed by a concept A i� A is more general than B. Based on this subsumption

principle two kinds of inferences can be collectively referred to as classi�cation. Classi�ca-

tion of a new de�ned concept means automatically inserting it at the most speci�c place in

the terminology and classi�cation of an object (or recognition) consists in determining the

most speci�c concepts the object is an instance of. An undeniable advantage of description

logics is the automatic creation of the hierarchy from concept de�nitions.

For example in (Koehler, 1994) the author uses a description logic for the retrieval of

plans in a case-based planning system. The author describes a system (MRL) where a

terminological logic is used to create an index from the case description and to search for

similar indexes with the help of the classi�cation process. An index is a concept whose

description is a conceptual abstraction

1

of properties that several old stored instances have

1 \Abstraction" of an object (i.e. instance) is a well known operation in description logic which consists

in computing the most speci�c concept which generalizes this instance (cf. for example (Nebel, 1990)).
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in common, i.e. it is a generalization of these instances. A new case is described with two

components: a set of properties which describe the initial states (pre

new

) of the new case

and a set of properties which describe the �nal states (goal

new

) to be achieved. The author

goes on to propose two classi�cations in the MRL system: strong classi�cation which needs

the subsumption relation between pre

new

and pre

old

and between goal

old

and goal

new

, and

weak classi�cation which needs only the subsumption relations between pre

new

and pre

old

.

The application suggested in Koehler's paper is for the reuse of plans to handle a mail

tool under UNIX. The advantage of this approach is undeniable: description logics possess

a formal semantics and a lot of research (Brachman and Levesque, 1984; Patel-Schneider,

1984; Nebel, 1988, 1990; Smolka, 1988; Schmidt-Schau�, 1989; Donini et al., 1991a, 1991b;

Doyle and Patil, 1991; Dionne et al., 1993a; Borgida and Patel-Schneider, 1994; Schaerf,

1994) has described very subtle results concerning the calculability of the subsumption and

classi�cation operations, for various description languages.

However in the MRL system, the matching fails if there is no subsumption relation

between pre

new

and pre

old

(i.e. no partial matching is proposed) and few criteria are

proposed to �nd the \best" matching:

� For strong classi�cation, the best candidate has the smallest number of subgoals which

occur in goal

old

but not in goal

new

.

� For weak classi�cation, the best candidate has the largest number of subgoals which

occur in the intersection of goal

old

and goal

new

but this number must be upper than

the half of the subgoals in goal

new

. Even if it seems to give good results in the

described application, this is rather informal and empirical (why the half?). Moreover

it is not possible to distinguish subgoals which must be from those which may not be

in the intersection for the matching to succeed.

The solution proposed in this paper uses a description logic described in (Coupey and

Fouquer�e, 1994a, 1994b, 1995) to formalize the retrieval process of a CBR system. The

particularity of this description logic is that it includes two new connectives: a connective

to describe a by default concept (�) and a connective to describe an exception to a concept

(�). The originality of this approach is the introduction of a de�nitional point of view for

defaults and exceptions: defaults and exceptions are an integral part of concept de�nitions.

Therefore they are used in subsumption and classi�cation operations. The description logic

is used to formalize search in the index base (like in (Koehler, 1994)), several preference

criteria (the most speci�c, sure/probable, typical/exceptional, the least number of exceptions)

and partial matching using subsumption, inheritance (inheritance relations are based on the

subsumption relation and reect the classical inferential point of view for defaults), default

knowledge, exceptions and least common subsumption operation

2

.

The application is a computer-assisted diagnosis system to help human supervisors di-

agnose and resolve incidents on the French telephone network (Coupey and Fouquer�e, 1995;

Bi�ebow et al., 1994). This approach has many advantages:

� The formal framework allows the properties of the system to be clearly identi�ed.

2 The least common subsumption operation computes the most speci�c concept which subsumes two

concepts.
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� The system is homogeneous since the entire reasoning process depends on formal

relations and operations of the description logic.

� The complexity of the subsumption relation has been studied in detail, thus allowing

the e�ciency of the retrieval process to be evaluated easily.

� The preference criteria are various and independent of our application and can there-

fore be reused in other applications.

� The partial matching operations can be monitored by drawing a distinction between

strict and default properties.

In the next section French telephone network supervision application led to this research

is presented. This is followed by a partial description of the ALN

��

description logic with

default (�) and exception (�) connectives (cf. (Coupey and Fouquer�e, 1993, 1994b) for a

complete presentation). Section 3 gives the de�nition of the de�nitional point of view of

defaults, which allows the relations (subsumption and inheritance) between concepts and

the instance-concept relations to be understood. These relations are the foundations for

our similarity preference criteria in the retrieval process of our CBR systems (section 4).

Section 5 describes some recent work combining description logics and CBR systems.

2. Brief presentation of the application

2.1 Global presentation

The main objective of this application is to interactively assist the human operators who

supervise the French telephone network by automatically diagnosing a new incident and

proposing:

1. A list of actions to be performed.

2. A list of stored old incidents which are similar to the new incident.

Figure 1 summarizes the steps required to process a new incident.

� (1) An incident occurs in the network, a set of parameters is sent to the supervision

equipment.

� (2) Some alarms light up at the operator's workstation.

� (3) The operator makes a description of the incident via an interface to our system.

� (4) The system proposes an action form containing the actions the operator must

perform, and a list of similar cases to this incident. Thus the operator can consult the

full description of these similar incidents (the alarms that it generated, the duration,

the consequences on the tra�c, the actions that were performed and their results,

etc.).

� (5) The operator executes commands to resolve the incident.
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supervision
equipment

telephone
network(1) incident

parameters
(2) alarms

(3) incident
description

(4) diagnoses +
action list +
similar incidents

(5) commands commands

Figure 1: Processing of a new incident

Index base (T-BOX)

duplex-stopping

Duplex-stopping action form

contact: .......
call:
verify:
etc.

Switch overload action form

Action form base

Incident form: x

Date: .......
Description:
Equipment:
etc.

Incident form: y

Date: .......
Description:
Equipment:
etc.

Description of the incident
x with the DL.

Description of the incident
y with the DL.

Incident base
(A-BOX)

Incident form base

(1)
(1) (2)

(2)

(3)

(4)

(4)

cy:: B1 BN

cx:: C1 CN

contact: .......
call:
verify:
etc.

Figure 2: Knowledge bases in the application
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CTZP DUPLEX STOPPING

1-Preparation phase (5 minutes after detection of the incident):

1.1-Improvements in information *** :

LIST in the base **** the beams in the back zone

of the CTZP, the CU

of the corresponding CTZP

group

PUT under supervision, the above beams and the

if they are not yet there, V codi�ed beams

to the CTZP concentrator

in the same numbering zone

IDENTIFY � � � � � �

VERIFY � � � � � �

1.2-Preparation of information actions:

WARN ******

ASK FOR � � � authorization to use the

CTS

UPDATE Vocal server

PREPARE Information Telexes � � �

.

.

.

.

.

.

.

.

.

2-Action phase 1 (20 minutes after the detection of the incident) :

2.1-Information actions:

SEND Information Telex ******

.

.

.

.

.

.

.

.

.

2.1-Network modi�cation actions:

CONTACT BY PHONE to bring measurements into operation to the tra�c correspondents

of *** for the CAA of the *** concerned

SEND � � � � � �

.

.

.

.

.

.

.

.

.

Figure 3: Extract of the CTZP duplex stopping form (translated from French)
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2.2 Knowledge in the application

Figure 2 shows the knowledge bases used in the application.

� The index base is a terminology of concepts (T-box part of our description logic).

This base includes incident concepts such as minor-incident, serious-incident, major-

incident, simplex-stopping, duplex-stopping, ine�ective-calls-rush, measurement-miss,

overload, etc. The sub-concepts are distinguished mainly by the kind of equipment

which is involved in the incident. These conceptual de�nitions have been elaborated

from documentation supplied by our industrial partner (CNET) and from a study

on a supervision site (Perron, 1995; Nobecourt, 1995). The terminology has been

validated by an expert of the site (Bi�ebow et al., 1994). Moreover this base can evolve

dynamically during learning cycles (Ventos et al., 1995b)

3

. Each incident concept of

the index base is linked to its action form (3) and to the incidents (2) of the incident

base which are instances of the incident concept.

� The action form base is a set of forms which describe certain actions the operator

has to perform for each category of incidents. There is one action form for each

incident concept of the index base. Figure 3 is an extract

4

of the CTZP duplex

stopping

5

action form. At the moment there are about thirty incident forms

6

.

� The incident form base is a set of forms, each of which contains all the information

relative to an incident: date, actions performed, duration, consequences, causes, etc.

There are approximately one hundred incidents a month. Figure 4 is an extract of an

incident form.

� The incident description base (A-box) is a set of entries, each of them corre-

sponds to an incident. It contains:

{ the properties of the incident in the description logic (it is a codi�cation of a

subset of the properties described in the incident form

7

),

{ a link (4) with the corresponding incident form,

{ a link (1) with the most speci�c incident concepts of the index base of which the

incident is an instance (inverse link of (2)).

2.3 Bene�ts of the application

The objectives of this application have been dictated by several problems and insu�ciencies

in the present supervision tasks:

3 The learning process is beyond the scope of this paper.

4 CTZP is for Commutateur de Transit de Zone P�eriph�erique Transit Switch of Peripheral Zone.

5 Stars (*) are put in place of certain con�dential information.

6 This number is a rough indication. Indeed one of the main objectives of this project is to restructure

all the knowledge concerning telecommunication supervision. A team from INRIA is working with the

experts on a supervision site (Perron, 1995; Caulier and Perron, 1995) and a team from LIPN is studying

the documentation (Nobecourt, 1995). The number of action forms is expected to increase but should

not exceed �fty.

7 These properties correspond to those which have been used for the concept de�nitions of the index base.
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DR : TRAFFIC CPE : CPRR ******* MAJOR INCIDENT

******* CTU3 18 NOV 94 06:28 Duration : 21mn

EVENT: Duplex stopping of ******* CTU3.

DETECTION: ine�ective beams:

RU**-RP**

RU**-RP**

totally busy beams:

RU**-RP**

All the overowing beams are ine�ective

SETIF ACTION: action form: 14

Duty operator ***** called, comes, sees nothing

abnormal.

The number of communications in progress is less than the number

given by *****.

Search in the data base ****** : polluting telephone number

** ** ** **.

Call information for identi�cation: not assigned.

� � �

CAUSES polluting number ** ** ** **.

TRAFFIC IMPACT 0 denials 36069 ine�ective calls

COMMENTS The numbers ** ** ** ** and ** ** ** ** correspond

to two num�eris groups by the name of ********.

The customer will be contacted.

� � �.

Figure 4: Extract of an incident form
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� The supervision and network equipment become more and more complex and varied

therefore the operators are snowed under a stream of information to manage.

� The incident and the action forms are hand written and the operators spend a lot of

time to �nd and consult the documents.

� The evolution of the equipment induces new classes of incidents which require new

action forms to be elaborated. This work is done by hand studying incident descrip-

tions.

� The supervision employees often changed and the knowledge of the experimented op-

erators is not capitalized in order to be exploitable e�ciently by the novice operators.

� An incident which is not quickly resolved can a�ect a lot of telephone subscribers and

induce a considerable losses of money for the company.

The application allows to reduce these problems by:

� Using a knowledge based system to capitalize the experience of the operators.

� Quickly proposing a list of actions to be performed in order to resolve the incident

and thus avoid a great number of suscribers to be a�ected.

� Relieving the operators by assisting them in the diagnosis task and automatically

retrieving information about old similar incidents.

� Being a formative tool for novice operators.

� Assisting the operator to enrich the index base. The learning process automatically

propose new incident concepts creation from incident descriptions.

2.4 Default knowledge in the application

From initial investigations on human supervisor expertise, it has been observed that end-

users essentially manipulate concepts with default knowledge (Grelet, Marcerou, Pasdeloup,

P�erichon, and Ratel, 1992). however these defaults often contribute to the de�nition of the

concepts. We then de�ne a description language with two connectives to describe default

and exception knowledge which allows such de�nitions. In the next subsections we give the

intuition of our point of view for default knowledge and the underlying formalism. The

bene�ts of the ability to describe default and exception knowledge for the application are:

� An adaptability in the description of the knowledge base since �nding concept de�ni-

tions with exclusively strict knowledge is not obvious and sometimes impossible.

� It is closed to the knowledge de�nition of human supervisors.

� It allows de�nitions (necessary and su�cient conditions to recognize an instance) for

concept which otherwise would only be partially de�ned (necessary but not su�cient

conditions). This is an indispensable feature for incident diagnosis where most of the

concepts need to be de�ned for automatic classi�cation.

� Default and exception knowledge are the foundations for the de�nition of the prefer-

ence criteria and the partial matching in the similar cases retrieval.
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3. Defaults in concept de�nitions

3.1 Introduction

In (classical) description logics concept de�nitions are exclusively made of strict knowledge.

A conceptual de�nition is a set of necessary and su�cient conditions to recognize an in-

stance: an object o is an instance of a de�ned concept C if it satis�es the de�nition of C

and all instances of C necessarily satisfy this de�nition. However, much research (Doyle

and Patil, 1991; MacGregor, 1991)(Padgham and Zhang, 1993, page 666) has shown that

few concepts are de�ned with strict knowledge. It is a real problem since the partial de�-

nition of these concepts is not su�cient to recognize its instances and the concept can not

be classi�ed in the terminology. The same problem arose when creating the index base in

our application, but it was possible to �nd a necessary and su�cient de�nition for these

concepts by integrating default knowledge. For example, an incident which lasts more than

10 minutes and which a�ects at least 200 people must be recognized as a serious incident

but some serious incidents which last more than 10 minutes but which are known to be

exceptional relative to at least 200 people knowledge may not a�ect at least 200 people.

We therefore extended a classic description logic with two new unary connectives default

(�) and exception (�) in such a way that they can be part of concept de�nitions; we call

it the de�nitional point of view of default knowledge. From this point of view a concept

de�nition C (including default knowledge) is still both necessary and su�cient to recognize

an instance (constitutive property): an object is an instance of a concept C i� it satis�es

the strict de�nitional concepts of C, and satis�es or is explicitly \exceptional" w.r.t. the

default concepts of C. For example, the serious-incident concept can be de�ned as incident

which lasts more than 10 minutes and which by default a�ects at least 200 people. Thus

all serious incidents necessarily last more than 10 minutes and a�ect at least 200 people

or are explicitly exceptional relative to at least 200 people knowledge, and conversely all

incidents which last more than 10 minutes and which a�ect at least 200 people or which are

exceptional relative to this default knowledge are recognized as serious incidents. Note that

an exception is not a negation. Nothing can be said about the gray color of instances of a

concept which de�nition is exception to gray. What an explicit exception does mean is that

to be gray is no longer a characteristic of these instances (i.e. it can not be inferred they are

gray or not gray but it is known that they are exceptional relative to gray characteristic).

When there is an amalgam between negation and exception all the classical problems raised

by Brachman appear. For example, yellow birds should be recognized as elephants as they

are not gray and have no trunk and no tusks and all these properties are by default for the

elephants (cf. (Brachman, 1985) for these examples).

3.2 Subsumption and inheritance: the intuition

Let us explain how our point of view on default knowledge is compatible with subsumption

and classi�cation of standard description logics. In standard description logics a concept A is

subsumed by a concept B i� the set of instances of A is a subset of the set of the instances

of B for all interpretations of A and B. Our purpose was to be able to de�ne concepts

with default and exception knowledge and still remain compatible with standard semantics

of subsumption and consequently with standard classi�cation process. From the classical
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(default inference) point of view for default knowledge A's are by default B's means that \in

general" A's are B's but there exist some A's that are exceptional and that may be not B's.

Such a point of view for default knowledge alone is incompatible with standard subsumption

and classi�cation since the classi�er can not handle probable knowledge about a concept to

classify it in a terminology (e.g. it can not classify A under B if there exist A's which are

not B's). We then decided to separate what is true for all interpretations (i.e. sure) about

default and exception knowledge from what is probable (not true in all interpretations)

and associate them two levels: the standard subsumption and classi�cation for the former

and inheritance for the latter. The de�nitional point of view with its constitutive property

de�ned in the previous subsection induces sure subsumptions: a `by default concept C' (�C)

is a set of instances which includes instances of C and instances \exceptional" w.r.t. C (e.g.

C

�

, C

�

�

, �(C

�

), �(C

�

�

), C

�

�

�

, etc. (cf. section 3.4)). It means that for each concept C, C

�

,

C

�

�

, �(C

�

), �(C

�

�

), C

�

�

�

, etc. as well as C itself are subsumed by �C. Based on these (sure)

subsumptions the standard classi�cation process can be applied to insert a new de�ned

concept in a terminology. Whereas these subsumptions are true for all interpretations,

inheritance level consists in complementing subsumption level by interpreting default in a

classical (default inference) way where an exception inhibits a default. For example, if in the

subsumption level it is known that A is subsumed by �C (i.e. instances of A are instances

of �C) but A is not subsumed by an \exception" to C (e.g. C

�

) then the inheritance level

will infer that A is in probable inheritance relation with C (i.e. in general instances of A

are instances of C). On the contrary if A is subsumed by C

�

then the inheritance level can

not infer that A is in probable inheritance relation with C (it is a classical default inference

inhibited by an exception). Moreover for example if a concept B is subsumed by �C and

by �C

�

and by C

�

�

then the inheritance level considers that C is \counter-excepted" for

B therefore B is in probable inheritance relation with C. Subsumption and inheritance

are thus two complementary levels which match the classical default inferences but the

advantage of our approach is the ability to classify a concept de�nition of which includes

default and exception knowledge.

Formally we distinguish di�erent inheritance relations between concepts (sure, proba-

ble, typical, exceptional), sure inheritance being subsumption exactly, probable inheritance

relation matching the standard notion of default inference. Among sure and probable

inheritance relations we showed that it is possible to distinguish typical and exceptional

inheritance. C is in typical inheritance relation with D i� C inherits all concepts inherited

by D. C is in exceptional inheritance relation with D if C does not inherit at least one

concept which is inherited by D (i.e. the inheritance is inhibited by an exception for C).

Let us show the relations between classical default inference point of view and these two

levels (subsumption, inheritance) with an example (�gure 5). Let the graph (G1) in �gure

5 be a classical inheritance graph where a thin arrow is a default link, a heavy arrow is a

strict link and a dashed arrow is an exception link. The relation between concepts is an

inheritance relation and an exception inhibits the inheritance of a concept. Thus D inherits

E, C inherits D but C does not inherit E, F inherits C, D,H , G but does not inherit E. Let

us suppose now the introduction of the default and exception unary connectives (i.e. � and

�) to describe `by default concept' and an `exception to a concept'. The previous graph can

thus be rewritten in a graph where all default links have been changed in strict links to the

concepts `by default concepts' and all exception links in strict links to concepts `exception to

11
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M
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Figure 5: Default inference/subsumption and inheritance.

a concept' (�gure 5 (G2)). In fact a terminology of concepts in our description logic can be

viewed as an inheritance graph where only strict links remain. In such an inheritance graph

inheritance relations are sure. This relation is exactly the subsumption relation. However

some information in the �rst graph seem to be absent in the second one: D and C are

subsumed by �E but what about D inherits E whereas C does not? The inheritance level

allows to compute inheritance relations between concepts based on subsumption relation.

For examples, C is in a sure and exceptional inheritance relation with D because C is

subsumed by D but D inherits E whereas C does not inherit; F is in sure and typical

inheritance relation with C because F is subsumed by C and all concepts inherited by C

are inherited by F . In the graph (G3) several inheritance relations are given (s stands

for sure, p for probable, t for typical and e for exceptional). The main consequence of the

introduction of the � and � unary connectives and the subsumption level is the ability to

classify concepts, de�nitions of which include default knowledge (i.e. `by default concepts')

and exceptions. Let us suppose concepts D, C, F in the �gure 5 to be (fully) de�ned

(i.e. their de�nitions are necessary and su�cient), let M (�gure 5 (G4)) be a new de�ned

concept, it will be classi�ed under C, and above F .

Subsumption and inheritance are �nally the base for instance checking (section 3.4.6.).

Instance checking consists in �nding all concepts of the terminology whose an object (i.e.

an individual) is an instance of. Put simply, a conceptual abstraction O of an object o is

elaborated from the description of the object o and classi�ed in the terminology (subsump-

tion level). Then all concepts whose o is an instance of are exactly all concepts that O

inherits (inheritance level). Thus o is a sure/probable and a typical/exceptional instance of

a concept C i� O is in a sure/probable and typical/exceptional inheritance with C.

Let us �nally remark that the originality of this work is the subsumption level with

classi�cation of concepts de�ned with default knowledge. The inheritance level with the

sure/probable and typical/exceptional inheritance relations are very useful for our CBR

system (cf. section 4), but it is not in the tradition of non-monotonic inheritance work

which essentially deal with ambiguity problems by searching criteria (e.g. speci�city) to

\resolve" them. That explains why we do not compare our work concerning inheritance
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with previous work. However we will see in section 3.4.1. that developments are currently

being studied to extend this work in order to take into account speci�city criteria.

3.3 Description logic

The description language ALN

��

is inductively de�ned from a set R of primitive roles, a set

P of primitive concepts (primitive components in (Nebel, 1990)) and the constant concept

> (top) with the syntax rule:

C;D! > the most general concept

j P primitive concept

j C uD concept conjunction

j 8R : C value restriction

j R AT-LEAST n cardinality restriction on R (minimum)

j R AT-MOST n cardinality restriction on R (maximum)

j :P negation of a primitive concept

j �C default concept

j C

�

exception to the concept C

Example 1

ine�ective-beam AT-LEAST 2 u switch, describes all the switches which have at least two

ine�ective beams,

8working-state:alarm u equipment, describes all the equipments where the working state is

alarm,

8linked-to::CT-Paris u switch, describes all the switches which are not linked to a CT-Paris,

A (full) de�nition of an atomic concept de�ned from a term C of ALN

��

is noted A � C, a

partial de�nition

8

is noted A < C. In addition, o::C expresses the fact that o is an instance

of the concept C and o

1

::R:o

2

the fact that o

1

and o

2

stand in the relation R.

Example 2

9

The de�nitions of four incident concepts (i.e. they are subsumed by the concept incident)

and the partial de�nition of another concept are given.

serious-incident � incident u more-than-10-minutes

u �at-least-200-a�ected-people

serious-service-incident � incident u service-number-a�ected

u more-than-10-minutes,

equipment-incident � equipment-dependent u incident,

serious-service-equipment-incident � incident u service-number-a�ected

u more-than-10-minutes

u equipment-incident

8 Note that partial de�nitions can be converted into full de�nitions by using new primitive concepts. Let

an atomic concept A be partially de�ned w.r.t. a term C, and A

0

a new primitive concept the partial

de�nition can be replaced with an equivalent full de�nition: A � A

0

uC.

9 The real de�nitions are rather more complicated but for the sake of clarity and concision have been

simpli�ed in this paper.
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service-number-a�ected < number-overcall

u number-a�ected AT-LEAST 1

u 8number: service

u at-least-200-a�ected-people

�

3.4 Formal semantics

In (Coupey and Fouquer�e, 1994a, 1994b) the AL

��

language (which includes �, �, 8, :

and u connectives) is described and we detail the framework in which subsumption and

inheritance are de�ned. In order to relate formally a concept viewed as a set of instances

and its algorithmic use (normalization and comparison, e.g. (Nebel, 1990)), we adopt an

algebraic process. We give an equational system outlining the properties of the connectives.

Thanks to the existence of an initial algebra w.r.t. this equational system (the descriptive

semantics), we show that the various semantic viewpoints (i.e. algebra) coincide exactly

with the equational one. The extensional semantics is the (traditional) point of view used

in DLs: a concept is a set of instances. In the structural semantics, concepts are denoted

exactly by their properties (normal form). Two concepts are equivalent if they have the

same normal form. This semantics is operational in that it corresponds to an algorithm

for subsumption. In the following subsections a brief and non technical presentation of this

formal semantics is done in order to give to the reader a precise idea of subsumption and

inheritance relations for the interpretation of the relations (de�ned in section 4) used in our

CBR system.

Remark 1 In (Coupey and Fouquer�e, 1994b) it is shown that subsumption and inheritance

relations in AL

��

are well-founded, complete, and the computations are performed in a

polynomial time. Since handling the AT-LEAST and AT-MOST connectives does not

increase the complexity (the computation of subsumption in ALN is polynomial (Donini

et al., 1991a, 1991b) and there is no equation linking these connectives to � and � (cf. next

subsection)) all these results and the formal semantics can obviously be extended to ALN

��

(cf. (Ventos et al., 1995a)).

3.4.1 The equational system

The equational system gives the properties of the connectives. Thus the speci�city relations

between �C, C

�

, C, ��C, C

�

�

, etc. induced by the de�nitional point of view have been made

explicit:

8A;B;C 2 ALN

��

:

1. � u: (A uB) u C = A u (B u C)

2. A uB = B uA

3. A uA = A

4. > u A = A

5. � 8: 8R : (A uB) = (8R : A) u (8R : B)

6. 8R : > = >

7. � �: (�1) (�A)

�

= A

�

8. � �: (�1) �(A uB) = (�A) u (�B)
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9. (�2) A u �A = A

10. (�3) A

�

u �A = A

�

11. (�4) ��A = �A

12. � AT-LEAST: R AT-LEAST muR AT-LEAST n = R AT-LEAST maxi(m,n)

13. R AT-LEAST 0 = >

14. � AT-MOST: R AT-MOST muR AT-MOST n = R AT-MOST mini(m,n)

Except those which are relative to � and �, these equations are classical (Dionne et al.,

1993a, 1993b). (�2) and (�3) are the two most important equations. They express a

subsumption relation between A and �A (A is subsumed by �A)

10

and between A

�

and

�A (A

�

is subsumed by �A). From a structural point of view this shows that if a concept

contains �A in its de�nition then it subsumes all the concepts which contain �A or A

�

or A

in their de�nitions which corresponds to the de�nitional point of view for default given in

the introduction to this section. From an extensional point of view the set of �A's instances

is seen as a superset of A's instances and a superset of the instances which are exceptions

to A (i.e. to be an A is more speci�c than to be a �A and to be an A

�

is more speci�c than

to be a �A). �1 presupposes that an exception has a meaning only if it concerns a default

concept. It is rather pragmatic since it considers that the end-users write gray

�

whereas they

actually have (�gray)

�

in mind. Thanks to �1 the two are equivalent. (�4) allows redundant

chains to be removed and (�1) is a classical distributivity property. In fact these last two

equations mean that certain criteria (e.g. speci�city) used in path-based non-monotonic

inheritance are not taken into account. One could, for instance, imagine a system where

��C has a weakened meaning relative to �C which would make �1 obsolete. However let us

recall that our main objective is to be able to de�ne concept with default knowledge and

classify them. The speci�city criteria is useful to \resolve" inheritance ambiguities (e.g. a

concept inherits by default a concept and its negation) but \ambiguities" do not reect (up

to now) real cases in our application. However developments are currently being studied to

extend the equational system in order to take into account speci�city criteria. Put simply,

in this extension

11

� is a binary connective linking a \context" (a concept) and the `by

default concept'. In case of ambiguity the most speci�c context will be preferred.

Certain equations linked to \inconsistency" (e.g. A u :A is \inconsistent") seem to

miss. In fact this is not the case. Let us suppose that we have the constant ? in our

language denoting \inconsistency". First the absorption property of ? is undesirable in our

framework. For instance, �Cu�(:C)u�(C

�

)u�D would be equivalent to � ? (equation 8

and absorption property of ?) which is really counter-intuitive as in particular �D has been

absorbed. Second our equational system allows intentional subsumptions between concepts

that are equivalent to ? from an extensional point of view (i.e. ;) to be detected (e.g.

a triangle which has four sides is intentionally di�erent from a square circle even if their

extension is equal to the empty set (cf. (Woods, 1991) for a discussion about this subject)).

However (section 3.4) inconsistencies (and ambiguities) are detected in the inheritance level.

The non advisability of some other equations are discussed in (Coupey and Fouquer�e,

1994b).

10 Note that subsumption can be de�ned with equality: A is subsumed by B i� A uB = A.

11 This work is beyond the scope of this paper.
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Example 3 : Equality examples

�(8R : (Au B)) u (8R : A)

�

=(eq 8) �(8R : A u 8R : B) u (8R : A)

�

=(eq 5) �(8R : A) u �(8R : B) u (8R : A)

�

=(eq 10) �(8R : B) u (8R : A)

�

�(R AT-LEAST 3) u (R AT-LEAST 4)

�

=(eq 10) �(R AT-LEAST 3) u (R AT-LEAST 4)

�

u �(R AT-LEAST 4)

=(eq 8) �(R AT-LEAST 3 u R AT-LEAST 4) u (R AT-LEAST 4)

�

u

�(R AT-LEAST 4)

=(eq 12) (R AT-LEAST 4)

�

u �(R AT-LEAST 4)

=(eq 10) (R AT-LEAST 4)

�

�(A) u (A uB)

�

=(eq 10) �A u (A uB)

�

u �(A uB)

=(eq 8) �A u (A uB)

�

u �A u �B

=(eq 3) (Au B)

�

u �A u �B

=(eq 8) (Au B)

�

u �(A uB)

=(eq 10) (Au B)

�

8R : �A u 8R : �(A

�

) u 8R : A

�

�

=(eq 5) 8R : (�A u �(A

�

) u A

�

�

)

=(eq 10) 8R : A

�

�

Remark 2 The equational system and these examples above show that equations on �

and � work in any case where they are applied (i.e. �(8R : C), �(AT-LEAST N R), �

(AT-MOST N R) and 8R : �C connectives). It should be noted that our language does not

include connectives to construct roles (e.g. range, domain, AND-ROLE) therefore � and �

are always applied to concepts (whatever they are).

3.4.2 Descriptive subsumption

Following Birkho�'s theorem (cf. (Gratzer, 1968; Jacobson, 1989) for a presentation of

universal algebras and sets of equations), this set of equations induces an equational class

of algebras that we call C

��

-algebras. Connectives and constants of ALN

��

are interpreted

as operations and elements in algebras of this class, thus giving the \meaning" of terms.

Given a set X of variables fx

1

; : : : ; x

n

g, we denote ALN

��

[X ] the set of terms over X and

the signature of ALN

��

. The quotient ALN

��

[X ]

jEq

is a free C

��

-algebra, that is to say

the only equalities valid in ALN

��

[X ]

jEq

are those valid in all C

��

-algebras. ALN

��

[;]

jEq

is

the initial algebra of the set of C

��

-algebras: for any C

��

-algebra A, there exists a unique

homomorphism from ALN

��

[;]

jEq

into A.

Let us go back to the description knowledge base: it is a set of de�nitions � = fx

1

�

C

1

; : : : ; x

n

� C

n

g where C

i

2ALN

��

[;]

jEq

12

. We next consider the least congruence �

�

12 In this paper we ignore cyclic de�nitions.
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Figure 6: Examples of descriptive subsumption.

on ALN

��

[;]

jEq

satisfying �. The quotient algebra, noted D

�

[X ], is called the descriptive

algebra as it provides a description of the classes of terms w.r.t. the knowledge base. Note

that the (unique) homomorphism from the initial algebra ALN

��

[;]

jEq

into D

�

[X ] is one-

to-one.

De�nition 1 Let A,B be elements of ALN

��

, B <

d

A, i.e. A descriptively subsumes B,

i� B u A =

D

�

[X ]

B.

Since equations valid in this algebra are the only ones valid in all C

��

-algebras, it captures

the properties of concepts.

The �gure 6 shows several concepts which are descriptively subsumed by �C.

3.4.3 Structural subsumption

Structural concept algebra is used to give an intentional semantics. It also captures the

way subsumption testing is computed in implementations. A denotation (normal form) is

computed for each concept de�ned by the end-user: this is the fundamental data struc-

ture handled by the subsumption algorithm. Our algebra distinguishes between primitive

concepts, negation of primitive concepts, exception properties and role properties, either

strictly or by default: an element of the domain is a pair strict part, default part of 4-uples

primitive part, negation part, role part, exception part, each tuple itself being a set. The

structural semantics of AL

��

is given in (Coupey and Fouquer�e, 1994b, 1995). Each connec-

tive is interpreted as a semantic operation on elements of the domain. Testing structural

subsumption is then based on the comparison of normal forms. It is shown in (Coupey and

Fouquer�e, 1994b) that structural subsumption is equivalent to descriptive subsumption for

AL

��

. It is useless in this paper to further develop the structural semantics of ALN

��

which

is an obvious extension of AL

��

one's.

3.4.4 Extensional subsumption

In the literature, subsumption is generally de�ned from a model-theoretic point of view. The

formal meaning of concept descriptions is classically (Nebel, 1990) given by an interpretation

I = (D; k:k

I

). D (the domain) is an arbitrary non-empty set of individuals and k:k

I

is an interpretation function such that every concept is mapped onto a subset of D and
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every role onto a subset of D � D. Extensional C

��

-algebras and corresponding extensional

subsumptions can be de�ned in the following way (� and � are interpreted as unary semantic

functions from D to D):

k>k

I

= D

kPk

I

� D, where P is a primitive concept

kC uDk

I

= kCk

I

\ kDk

I

k:Ak

I

= DnkAk

I

k�Ck

I

= �

I

(kCk

I

)

kC

�

k

I

= �

I

(kCk

I

)

k8R : Ck

I

= fx 2D=8y, if (x; y) 2 kRk

I

then y 2 kCk

I

g

kR AT-LEAST nk

I

= fx 2D=card(fy=(x; y) 2 kRk

I

g) � ng where card(.) is the

cardinality fonction

kR AT-MOST nk

I

= fx 2D=card(fy=(x; y) 2 kRk

I

g) � ng

such that all the interpretations of � (�

I

) and � (�

I

) respect the equational system. �

I

and

�

I

are semantic functions which give a subset of the domain such that �

I

(kCk

I

) is a set

which includes kCk

I

and kC

�

k

I

. An interpretation I is a model for a concept C if kCk

I

is

non-empty. Based on this semantics we give the following de�nition:

De�nition 2 Let A,B be elements of ALN

��

,B <

e

A, i.e. B is extensionally subsumed by

A i� kBk

I

� kAk

I

for each interpretation I .

Theorem 1 Let C and D be elements of AL

��

such that, for each interpretation I , kCk

I

6=

; and kDk

I

6= ;, C <

s

D i� C <

e

D.

Proof: (sketch) As � and � satisfy the equational system, and the interpretation of the

other connectives is standard, structural subsumption implies extensional subsumption. To

prove the converse, note that an interpretation is made up of an interpretation of �, of �

and the remainder. The properties satis�ed by � and � allow us to restrict our attention to

the standard part. Because there is no bottom, we need the unemptiness condition on the

denotations in order to avoid inconsistency (cf. the following remark). The proof is then

similar to the classical one.

In fact the only di�erences between extensional and structural subsumption concern \incon-

sistency" (empty extension). Indeed, the structural algebra matches the intentional point of

view since P

1

u:P

1

is structurally di�erent from P

2

u:P

2

when they are both extensionally

equivalent to ;.

In order to illustrate the subsumption relation

13

let us look again at the de�nitions of

the example in section 3.3. Figure 7 is a graphical representation of these de�nitions. A thin

arrow represents a `by default concept', a heavy one a strict concept, a dashed one an excep-

tion to a concept, a square represents a role, and a circle a concept. A star near a concept

means that the concept is primitive or partially de�ned (necessary but not su�cient con-

ditions). A �rst set of obvious subsumptions is given by strict links and by the transitivity

13 In the remainder of the paper < will be used to denote a subsumption relation.
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number-affected

(1,maxi)

number-overcall*

at-least-200-affected-people*equipment-dependent*

equipment-incident

incident*

serious-incident

more-than-10-minutes*

service-number-affected*

serious-service-incident

serious-service-
equipment-incident

service*

Figure 7: Concept terminology

of the subsumption relation. For example serious-service-incident is subsumed by service-

number-a�ected and by number-overcall. Other subsumptions are shown by default links.

Thus serious-incident is subsumed by �at-least-200-a�ected-people (but not by at-least-200-

a�ected-people). In addition to these obvious subsumptions other subsumption relations can

be computed. For example serious-service-equipment-incident is subsumed by equipment-

incident and serious-service-incident because it contains in its de�nition all the properties

of equipment-incident and serious-service-incident. There is also a subsumption between

serious-service-incident and serious-incident because serious-service-incident contains in

its de�nition all the properties of serious-incident except �at-least-200-a�ected-people but

it contains an exception to this property (at-least-200-a�ected-people

�

) and as at-least-200-

a�ected-people

�

is subsumed by �at-least-200-a�ected-people (�3 equation), serious-service-

incident is subsumed by serious-incident. These implicit subsumptions are computed by

the classi�er which inserts a new de�ned concept C \under" the most speci�c concepts it is

subsumed by and \above" the most general concepts it subsumes. In �gure 8 the concepts

have been classi�ed.

3.4.5 Inheritance relations

Subsumption relation allows in particular to know that a concept D is more speci�c than a

concept �C. However, for inheritance, it is necessary to detect that D is subsumed or not

by an exception to C to know if D's are probable instances or not of C. The inheritance

matches the classical default inference point of view for default where an exception has

an inhibitory e�ect on a default (i.e. a counter-exception (C

�

�

) as a inhibitory e�ect on a

default exception (�(C

�

))). Thus if a concept C is subsumed by �A and by A

�

then C does

not inherit A, but if C is subsumed by �A, �(A

�

) and by A

�

�

then C inherits A (it is a

counter-exception). We chose the normal-form of our structural subsumption such that the

inheritance relation computations are very easy ((Coupey and Fouquer�e, 1994a, 1994b)). In

fact this normal form is the smallest one because it corresponds to the use of the equations
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at-least-200-affected-people*equipment-dependent*

equipment-incident

incident*

serious-incident

more-than-10-minutes*

number-affected

(1,maxi)

number-overcall*

service-number-affected*serious-service-incident

service*

serious-service-
equipment-incident

Figure 8: Classi�cation

such that it reduces the computed form at each step (e.g. �A u A

�

\is rewritten in" A

�

).

Thus the resulting form does not contain all the concepts which have been excepted.

Let us simply consider that if the set of the most speci�c concepts that subsume D

include an exception to C at an odd level (e.g. C

�

, C

�

�

�

, etc.) then C is said to be

\excepted" (i.e. the inheritance of �C is inhibited). On the contrary if this set includes

no exception to C or an exception to C at an even level (i.e. a counter-exception) then C

is said to be not excepted (i.e. the inheritance of �C is not inhibited). Two inheritance

relations (sure and probable) can be distinguished whose de�nitions are

14

:

De�nition 3

� A concept C is in a sure inheritance relation with a concept D (C

s

! D) i� C is

subsumed by D (it is said that C s-inherits D).

� A concept C is in a probable inheritance relation with a concept D (C

p

! D) i�

C 6

s

! D, C 6

s

! :D, C is subsumed by �D and neither D nor a concept s-inherited by

D is excepted for C (it is said that C p-inherits D).

Moreover among these sure and probable inheritance relations it is possible to distinguish

those which are typical from those which are exceptional:

� An inheritance is typical (C

t

! D) when all the concepts inherited by D are also

inherited by C.

14 cf. (Coupey and Fouquer�e, 1994a, 1994b) for detailed de�nitions.
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equipment-incident

incident*
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more-than-10-minutes*
number-overcall*
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s,t

s,t
s,e

serious-service-
equipment-incident

Figure 9: Inheritance relations

� An inheritance is exceptional (C

e

! D) when there exists at least one concept inherited

by D which is not inherited by C.

Remark 3

1. We say that C inherits D (C ! D) i� C

s

! D or C

p

! D.

2. Ambiguities and inconsistencies are detected in our system. A concept C is ambiguous

i� it p-inherits both a primitive concept and its negation or a role of C inherits

an ambiguous value restriction. A concept C is inconsistent i� it s-inherits both

a primitive concept and its negation or a role of C inherits an inconsistent value

restriction.

Figure 9 shows the inheritance relations beween all concepts. For example serious-

service-incident s-inherits serious-incident and this inheritance is exceptional because it

does not inherit at-least-200-a�ected-people. serious-service-equipment-incident s-inherits

serious-service-incident and this inheritance is typical because it inherits all concepts in-

herited by serious-service-incident.

3.4.6 Instance-concept relations

So far now we have seen relations between concepts, where the instance-concept relations

correspond to the relations between objects (or individuals) and concepts. From the de-

scription of an object, the aim is to determine all the concepts of the terminology of which

the object is an instance. In description logics without � and � connectives, this process is

based on subsumption relation and can be globally de�ned in the following way:

� From the de�nition of the object o, an abstract concept

15

O is created (cf. (Nebel,

1990) for a detailed description of abstraction) which is in fact the most speci�c

15 In the remainder of the paper we note C the abstract concept of an object c.
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concept which generalizes o. For example let the set of facts fo1 ::more-than-10-

minutes, o1 ::number-a�ected: o2, o1 ::incidentg (i.e. o1 is an incident which lasts

more than 10 minutes and which a�ects the number o2) be associated with o1 and

the set of facts fo2 :::serviceg (i.e. o2 is not a service number) be associated with o2;

the de�nition of the abstract concept 01 is 01 � more-than-10-minutes u 8number-

a�ected::service

16

u number-a�ected AT-LEAST 1 u number-a�ected AT-MOST 1u

incident.

� o is an instance of all the concepts which subsume 0.

In our description logic the connectives � and � allow the instance-concept relations to be

distinguished (as for inheritance relations). An object can be a sure or a probable instance

and an instance can be typical or exceptional. The de�nitions are:

De�nition 4

� o is a sure instance of a concept C i� 0

s

! C,

� o is a probable instance of a concept C i� 0

p

! C,

� o is a typical instance of a concept C i� 0

t

! C,

� o is an exceptional instance of a concept C i� 0

e

! C,

Example 4

Let us give the following descriptions for o2 and o3 :

o2 ::equipment-dependent,

o2 ::serious-incident,

o2 ::defective-equipment :o3,

o3 ::switch

The abstract concept is de�ned as 02� serious-incident u equipment-dependentu 8defective-

equipment :switch.

02 is therefore subsumed by:

incident

serious-incident

more-than-10-minutes

equipment-dependent

equipment-incident

�at-least-200-a�ected-people.

02 is in a sure and typical inheritance relation with:

incident

serious-incident

16 All the roles are closed when computing the abstract concept.

22



more-than-10-minutes

equipment-dependent

equipment-incident

o2 is therefore a sure and typical instance of these concepts.

02 is in a probable and typical inheritance relation with:

at-least-200-a�ected-people

o2 is therefore a probable and typical instance of this concept.

Remark 4 If we add the fact o2 ::service-number-a�ected, o2 will no longer be an instance

of at-least-200-a�ected-people.

4. The retrieval process

Our retrieval process is based on the classi�cation process and the inheritance relations to

retrieve similar incidents to a new incident and apply some preference criteria to perform

a suitable display to the user. There are two levels in this process. The conceptual level

consists in �nding similar incident concepts of the index base in order to access their action

forms which are displayed to the user. In the instance level old incident instances which

are similar to the new incident are retrieved and the user can access their form. For each

level (conceptual and instance), criteria which are totally independent of any application

are �rstly described and then it is shown how they are used in the application.

4.1 Presentation of the reasoning

Figure 10 shows the succession of steps required to go from case description c

new

to obtaining

the set of similar old cases. Each step will be further developped. The scenario is as follows:

1. The abstract concept C

new

is created from the description of the new incident c

new

given by the operator, as described in the section 3.4.

2. All the (sure, probable, typical, exceptional) inheritance relations between C

new

and

the concepts of the index base are then computed. This set of index concepts which

are inherited by C

new

is the set of similar concepts to C

new

.

3. Criteria are applied to these similar index concepts in order to discriminate and present

them in a suitable display to the operator.

4. In order to �nd other index concepts, C

new

is re�ned by adding exceptions to its

description (partial matching). This operation is an extrapolation of the new case

that considers C

new

exceptional w.r.t. certain default knowledge, in order to �nd

some other index concepts C

new

inherits.

5. From these similar index concepts:

(a) Associated action forms are accessed (cf. �gure 2).
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Action form base

Description of the incident
x with the DL.

Description of the incident
y with the DL.

Description of the incident
cnew with the DL.

Incident base
(A-BOX)

Index base (T-BOX)

C-incidentiC-incidentl

C-incidentk

C-incidentj

cnew:: D1 DN

cx:: A1 AN

cy:: B1 BN

Cnew

(abstraction)

p,t
s,t s,e

p,e

instances s,t

instances s,e
instances p,tinstances p,e

action form

Figure 10: Processing a new incident
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(b) Their instances are accessed. This link has already been described in �gure

2. It symbolizes the instance-concept speci�city relation de�ned in the previous

section. The most representative instances of the new case are chosen. From

these instances the incident forms to be presented to the operator are obtained

(cf. �gure 2).

6. Once the incident has been resolved, the operator makes an incident form for the new

incident and this form is integrated in the incident base.

4.2 An example

The reader may �nd in the appendix a presentation of the implementation of our system.

This presentation includes an example we formally describe here. The de�nitions

17

of six

incident concepts (i.e. they are subsumed by incident concept) and the de�nitions of three

other concepts are given:

serious-incident � incident u more-than-10-minutes u

�at-least-200-people-a�ected,

CTU-duplex-stopping � incident u total-busy-beam AT-LEAST 1 u

ine�ective-beam AT-LEAST 2 u CTU-dependent

u �(ine�ective-overowing-beam AT-LEAST 1),

CTU-EM-DS � CTU-duplex-stopping u CTU-EM-dependent,

equipment-incident � equipment-dependent u incident,

serious-CTU-EM-DS � CTU-EM-DS u serious-incident,

CTU-�re � �re-alarm u �CTU-duplex-stopping,

CTU-dependent < �equipment-dependent,

CTU-EM-dependent � CTU-dependent u

(ine�ective-overowing-beam AT-LEAST 1)

�

,

high-temperature < ��re-alarm,

Let c1

new

be a new incident whose description is:

c1

new

::incident,

c1

new

::CTU-dependent,

c1

new

::ine�ective-beam AT-LEAST 3,

c1

new

::total-busy-beam AT-LEAST 2,

c1

new

::ine�ective-overowing-beam AT-MOST 0,

c1

new

::more-than-10-minutes,

c1

new

::at-least-200-a�ected-people,

c1

new

::high-temperature

c1

new

is therefore an incident which depends on a CTU which has at least 3 ine�ective beams,

2 totally busy beams, which does not have ine�ective overowing beams

18

, which lasts more

than 10 minutes, which a�ects at least 200 people and for which a high temperature is

detected. Its abstract concept is:

17 CTU: urban transit switch, CTU-EM: electro-mechanical CTU and DP: duplex stopping.

18 Using R AT-MOST 0 allows to state that a concept has no relation R.
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C1

new

� incident u CTU-dependent

u ine�ective-beam AT-LEAST 3

u total-busy-beam AT-LEAST 2

u ine�ective-overowing-beam AT-MOST 0

u more-than-10-minutes u at-least-200-a�ected-people

u high-temperature.

Comparing the description of C1

new

and the description of the above concepts, some

inheritance relations can be detected. For example

19

:

C1

new

s;t

! serious-incident,

C1

new

p;t

! equipment-incident,

but C1

new

6! CTU-duplex-stopping

20

.

4.3 The conceptual level

The �rst phase of the conceptual level in our retrieval process consists in comparing the

abstract concept of the new case (incident) with the index concepts of the index base

to retrieve similar indexes to the new abstract concept incident. The inheritance relation

allows all the index concepts which are inherited by the new incident concept to be retrieved.

However, it is possible to discriminate between these indexes using criteria (speci�city, sure,

typical) formalized below.

The second phase is a direct application of exception and default knowledge in the de-

scription logic and involves considering the new case as a possible exceptional case w.r.t.

certain default knowledge of the index concepts. It corresponds to the following question.

If I extrapolate from the new case and consider that it is exceptional w.r.t. certain default

knowledge, could I �nd some other index concepts C

new

inherits? The operation which

adds exceptions to the initial description of a concept is called \concept re�nement". Each

\re�ned concept" may inherit index concepts that the initial description does not inherit.

Then, a preference criterion (exception criterion) between re�ned concepts, based on the

number of exceptions added, is de�ned. The objective of our concept re�nement operation

is similar to the weak classi�cation of Koehler (cf. introduction) i.e. trying to �nd concept

which are partially similar to the new case. However our partial matching is \semantically

bounded" by the kind of knowledge since only defaults (and no strict knowledge) can be

excepted therefore avoiding unjusti�ed \similarity".

Speci�city criterion: Let us �rst look at the formal de�nition of the speci�city prop-

erty. Among the set of concepts S, we can distinguish concepts which have no inheritance

relations with the other concepts. These concepts are in fact the leaves of the inheritance

graph reduced to the set S. They are called the most speci�c concepts.

De�nition 5 The function which selects the most speci�c concepts from a set of concepts

is de�ned as follows:

19 p is for probable, s for sure, t for typical and e for exceptional.

20 C1

new

should be known to be exceptional w.r.t. (ine�ective-overowing-beam AT-LEAST 1) in order

to have C1

new

p;e

! CTU-duplex-stopping.
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MS : 2

ALN

��

! 2

ALN

��

S 7! fD

i

2 S; 8D

j

(j 6= i) 2 S; D

j

6! D

i

g

Let us de�ne the following sequence U :

U : 2

ALN

��

! 2

ALN

��

:

U

1

(S) = MS(S)

U

n

(S) = MS(Sn

S

n�1

1

U

i

(S))

Then the de�nition of the function H which gives the speci�city value of a concept in a set

S of concepts (i.e. a kind of height in the inheritance graph S) is:

H : ALN

��

� 2

ALN

��

! IN*:

(C;S) 7! i s.t. C 2 U

i

(S)

The more speci�c a concept that C

new

inherits is (i.e. lower its speci�city value is) the more

preferred it is relative to the speci�city criterion. For example the most speci�c concepts

that C1

new

inherits are serious-incident and equipment-incident.

The common-sense justi�cation is that the more speci�c a concept that C

new

inherits is,

the more properties it has in common with C

new

.

Sure criterion: If C

new

s

!C

old

and C

new

p

!C

0

old

then C

old

is preferred relatively to the sure

criterion. The common-sense justi�cation of this criterion is that what is sure is preferable

to what is probable. For example, serious-incident is preferred to equipment-incident be-

cause C1

new

s

!serious-incident, whereas C1

new

p

! equipment-incident.

Typical criterion: If C

new

t

!C

old

and C

new

e

!C

0

old

then C

old

is preferred relative to the

typical criterion. This is justi�ed by the fact that \typical" means (in opposition to \ex-

ceptional") that C

new

inherits all the concepts that C

old

inherits (including the default ones).

Exception criterion: Let us begin by de�ning the notion of re�nement of a concept

C. Re�ning a concept C consists in adding exceptions to its description.

A re�ned concept of a concept C is a concept C

ex

s.t. there exists a �nite set of concepts F

i

and C

ex

= C u u

i

F

�

i

g

Theorem 2 The re�nement preserves the subsumption relation.

Let C

ex

be a re�ned concept of C, if C < D then C

ex

< D.

Proof The proof obviously follows from the monotonicity property of the subsumption

relation. 8C;D;E 2 ALN

��

, if C < D then CuE < D therefore in particular Cuu

i

F

�

i

< D

For example the re�nement of C1

new

, which consists in adding an exception to ine�ective-

overowing-beam AT-LEAST 1, inherits CTU-EM-dependent, CTU-EM-DS, serious-CTU-

EM-DS and CTU-duplex-stopping.
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The exception criterion is then de�ned as follows:

Let C

ex

new

1

= C

new

u u

n

i=1

F

�

i

and C

ex

new

2

= C

new

u u

m

j=1

F

�

j

be two re�ned concepts of C

new

then C

ex

new

1

is preferred relatively to the exception criterion i� n < m.

In other words, a re�ned concept C

ex

new

1

is preferred to C

ex

new

2

i� it contains less exceptions

than C

ex

new

2

. The common-sense justi�cation is that the greater the number of exceptions

that have been added to the initial concept, the further away the re�ned concept is from

the initial one.

The re�nement operation and the exception criterion can be viewed as partial matching

operations since the exceptions allow similar concepts to be found which are not similar to

the initial description. Moreover our approach has several advantages:

� it is formalized,

� it is independent of the application and is su�ciently general to be used in other

applications,

� the partial matching is semantically bounded by the kind of knowledge (only default

knowledge can be excepted) therefore avoiding unjusti�ed \similarity" and it can be

easily explained to the end-user.

Example 5 (continued): The two following tables summarize the incident concepts which

are similar to C1

new

with results concerning the preference criteria. The �rst one con-

cerns the initial description C1

new

and the second the re�ned concept C1

ex

new

= C1

new

u ine�ective-overowing-beam AT-LEAST 1

�

. The �rst column is the concept name, the

others are for criteria

21

:

concept name typical sure speci�city

serious-incident typical sure 1

equipment-incident typical probable 1

concept name typical sure speci�city

serious-incident typical sure 2

equipment-incident typical probable 1

CTU-EM-DS typical sure 2

serious-CTU-EM-DS typical sure 1

CTU-duplex-stopping exceptional sure 3

CTU-�re exceptional probable 1

In our application: Put simply, the order in which the above criteria are applied in our

application corresponds to a pragmatic necessity of a suitable display for the operators.

Thus it is considered that the most similar index incident concepts are those which are

not re�ned and which are most speci�c (speci�city criterion), typical (typical criterion),

sure (sure criterion) (in this order). For the re�ned concepts, those which have the least

exceptions (exception criterion) are chosen, then the same above order is applied. Although

21 Except the exception criterion since there is only one re�ned concept.
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the �rst results obtained are relevant and useful in our application, it is easy to modify this

order (for another application) thanks to the use of the symbolic criteria. This o�ers an

advantage over numerical criteria, where a di�erent order can only be obtained by modifying

a complicated weighting system. Another advantage of our symbolic criteria is the ability

to produce explanations to the end-user easily. Explanation such as \This incident concept

C is more similar than this other D because the new incident is a sure and typical instance

of C : : :" can easily be understood and evaluated by the end-user.

Finally note that the re�nement function is very important and useful in the application.

Indeed it gives some probable extrapolations of the incident (a kind of reasonning with

incomplete information) which can be very helpful to the operator. Indeed this information

can alert the operator on an incident which seems at �rst sight minor but for which one

extrapolation is very serious (as CTU-�re in the example). The operator can thus manage

this incident sooner and get more priority treatment of it than if the system did not give

him this information.

4.4 The instance level

Once the similar index concepts have been ordered as described above their action form

and their stored instances are accessed. Put simply, the conceptual description of each

index concept is the abstraction of a certain number of properties its instances have in

common. However the instances have some discriminating properties

22

. Therefore, among

these instances it is possible to distinguish some which are more similar than others to the

new incident. For example an instance which is an instance of both serious-incident and

high-temperature is more similar to C1

new

than an instance which is only an instance of

serious-incident. To discover them two phases are used: a terminology with the abstract

concepts of the old instances is created in order to �nd subsumption and inheritance rela-

tions between them and the properties that c

new

and the c

old

i

have in common are compared

using the least common subsumption (LCS) operation of description logic.

Terminology of C

old

i

: A terminology of the abstract concepts C

old

i

of all the retrieved

old incidents and C

new

is automatically

23

and temporarily created. The purpose of this

creation is to discover subsumption and inheritance relations between the C

old

i

and to (be

able to) apply conceptual preference (speci�city, typical, sure) criteria de�ned in the con-

ceptual level to select the most similar abstract instances.

However it may happen that C

new

does not inherit any abstract concepts of the old

instances. One solution to discover ever so similarity relations between c

new

and the c

old

i

consists in constructing concepts whose description is the common concepts of the de�nitions

of C

new

and each C

old

i

. This operation is known as the LCS (least common subsumption) in

description logic (Cohen and Hirsh, 1994; Ventos et al., 1995b). Then these LCS concepts

are classi�ed in the terminology of the abstract concepts C

old

i

and the (speci�city, typical,

sure) criteria can be applied to select the most similar instances.

22 These discriminating properties are indications for the learning process. The less these properties are

discriminating (i.e. the greater the number of stored instances which have these properties in common)

the more a learning process is necessary (this learning process is beyond the scope of this paper).

23 Remember that thanks to the classi�cation process this terminology is really created automatically.
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Least common subsumption operation:

LCS : ALN

��

�ALN

��

! ALN

��

:

(C1; C2) 7! D 2 ALN

��

; C1 < D and C2 < D and

6 9C3 / C1 < C3 and C2 < C3 and C3 < D

Let us suppose for example, two old incidents c1

old

and c2

old

, description of their abstract

concept being:

C1

old

� incident u CTU-dependent u more-than-10-minutes

u at-least-200-people-a�ected u ine�ective-beam AT-LEAST 4 u

total-busy-beam AT-LEAST 4 u high-temperature.

C2

old

� incident u CTU-dependent u more-than-10-minutes u

at-least-200-people-a�ected u ine�ective-beam AT-LEAST 5.

Neither C1

old

nor C2

old

is inherited by C1

new

and there is no inheritance relation between

C1

old

and C2

old

. However the LCS of C1

old

and C1

new

is

incident u CTU-dependentumore-than-10-minutes u at-least-200-people-a�ected u ine�ective-

beam AT-LEAST 3 u total-busy-beam AT-LEAST 2 u high-temperature

and the LCS of C2

old

and C1

new

is

incident u CTU-dependentumore-than-10-minutes u at-least-200-people-a�ected u ine�ective-

beam AT-LEAST 3.

As the LCS(C1

old

,C1

new

) inherits LCS(C2

old

,C1

new

), the instance c1

old

is preferred to

c2

old

(speci�city criterion). In other words the incidents c1

old

and c1

new

have more proper-

ties in common than the incidents c2

old

and c1

new

.

In our application: To be e�cient the process is divided into two steps. Firstly the

terminology of C

old

i

is created then the LCS operation is applied if no C

old

i

is inherited

by C

new

. For these two steps, the same strategy for (speci�city, typical, sure) criteria ap-

plication as in the conceptual level is used in order to display �rst of all the most similar

instance forms to the operators. As in the conceptual level, thanks to our symbolic criteria

the explanation process is easy to justify and can easily be evaluated by the operators.

Note that the terminology of abstract old instances is destroyed at the end of each retrieval

process to avoid space explosion in the conceptual base (i.e. the index base).

4.5 E�ciency

Subsumption, inheritance and abstraction in ALN

��

are computed in polynomial time. The

search for similar concepts to a concept C in a concept base, sure and typical criterion are

therefore polynomial in time. The re�nement function between a concept C and a concept

D is computed as follows:

1. We verify that C is subsumed by the strict part of the de�nition of D because only

default properties can be excepted (polynomial in time).
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2. We add to the de�nition of C the exceptions to the concepts which D p-inherits and

C does not (polynomial in time).

The search in a (�nite) concept base of the concepts which can be used to re�ne C is therefore

done in polynomial time. The MS function is in O(n

2

) (n is the number of concepts of

the set), the sequence U is obviously computed in a polynomial time as H therefore the

exception criterion is polynomial. Finally, the LCS operation between two concepts have

been shown polynomial in time (Ventos et al., 1995b).

In fact this retrieval process is bounded by the classi�cation of the abstract concept

C

new

in the index base which is in O(l

4

), l being the number of symbols occurring in the

de�nition of C

new

(Coupey and Fouquer�e, 1993).

5. Related works

Over the last few years, di�erent research has been undertaken to use the formalism and

(subsumption and classi�cation) inferences of description logics for CBR systems. However

none of these approaches enabled a partial matching to be formalized using description logic.

In addition to Koehler work described in the introduction several work can be cited. In

(Napoli, 1992; Napoli and Lieber, 1993; Napoli and Lauren�co, 1993) the authors described

the YCHEM system which uses subsumption and classi�cation to build organic synthe-

sis plans. The knowledge representation system they used is the object oriented language

YAFOOL (Ducourneau and Quinqueton, 1986). The authors de�ned a co-subsumption re-

lation (subsumption based on compound-component relations (partonomy)) which is closed

to the subsumption relation de�ned in description logics. Classi�cation was used �rst to

constitute the terminology of molecular structures and second to classify a new molecule to

be synthesized (target molecule). In brief, the target molecule (new case) is classi�ed and

synthesis plans of the molecules which subsume it were selected to plan the synthesis of the

target molecule. However the formal properties of the co-subsumption relation were not

described and no results concerning complexity of algorithms were given. In (Napoli and

Lauren�co, 1993) the authors proposed the premisses of an extension of YCHEM towards a

CBR system. The described results mainly concern the adaptation of a synthesis plan for a

similar old case in order to apply it to the target molecule. However only exact matchings

are considered and no solutions have been suggested concerning ways to order the similar

old cases.

H.W. Beck (Beck, 1991) used CANDIDE, a terminological system derived from KAN-

DOR (Patel-Schneider, 1984), in a CBR system. In particular the author used the subsump-

tion relation to evaluate similarity between two instances. Two processes are involved: a

deductive process which corresponds to the ideal solution where there is an exact match-

ing between two instances (abstraction + classi�cation) and an inductive process which

generates new concepts and enables partial matchings to be found and evaluated. When

there is no exact matching between two instances, the system creates a new concept, the

description of which is the abstraction of the properties common to the two instances. This

new concept is then classi�ed in the terminology and the similarity is evaluated through

its place in the terminology. Moreover Beck proposes a sort of exceptional instance when

an instance of a concept does not respect certain properties of the concept. However the

presentation is only operational and no formal description is given.
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In an application for computer-assisted diagnosis and search in a document database, G.

Kamp proposed a system based on the LOOM (MacGregor and Bates, 1987) terminological

system. The terminological system is used to index the instances from their descriptions,

and to search for similar cases. The retrieval process is classical: a concept is created from a

request which corresponds to the description of the new case, this concept is classi�ed in the

terminology and the instances of the concepts which subsume it are the similar instances.

An computer-assisted bicycle diagnosis and repair application is described in (Kamp, 1995).

However, only exact matching is considered.

6. Conclusion

The goal was to �nd symbolic criteria to evaluate similarity in the retrieval process and

to formalize them to de�ne a clear semantics which is independent of any application. It

has been shown that ALN

��

description logic with the two new connectives � and � is

a privileged formal framework to achieve this purpose. Thanks to default and exception

connectives, subsumption and inheritance relations, abstraction, classi�cation, re�nement

and LCS operations, it is possible to formally de�ne speci�city, sure, typical and exception

criteria and partial matching which are the foundations for the retrieval of similar old

cases. These criteria are homogeneous, can easily be evaluated by the end-user, can be

explained clearly and are useful in this computer-assisted application for the diagnosis of

incidents on the French telephone network. They take advantage of the formal semantics of

ALN

��

description logic and therefore the e�ciency of the retrieval process can be evaluated.

Thus it has been shown that it is polynomial in time and that C-CLASSIC

��

that is an

extension of ALN

��

(C-CLASSIC (Cohen and Hirsh, 1994) with � and � connectives) is

PAC-learnable (Ventos et al., 1995b) (which is an important result for the learning process

of the application). These criteria are independent of the application and su�ciently general

to be used in other applications. Of course we do not claim that they are universal and

that they can be used in all applications (for example numerical or fuzzy logic criteria can

be more adapted for certain applications). ALN

��

has been implemented in C++ and A

graet part of the CBR system has been also implemented. Part of the concept terminology

has been built and validated by an expert. The study currently under way by a team

from INRIA on a supervision site will make it possible to give a clear de�nition of the set of

knowledge of the supervision domain (alarm de�nitions and management, new action forms,

restructured incident forms, etc.). A prototype has been used for a demonstration for our

industrial partners and it has been judged as very satisfactory. The �nal prototype will

serve as the basis for the development of an operational system envisaged by CNET, our

industrial partner. Our prototype will be used in another project also involving CNET and

concerns the construction of a terminological knowledge base on human-computer interfaces

(IHM). Classes (concepts) of IHM will be de�ned from criteria (e.g. syntactic, functional,

ergonomic). The system must be able to classify a new IHM in the terminology and �nd

similar IHM to this one in the knowledge base. We conjecture that default and exception

knowledge will be also very useful in this project.
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7. Appendix

This section is devoted to present the prototype developed in C++ for our CBR applica-

tion. Concepts used in this presentation have already been de�ned in section 4.2. Figure

11 shows a tool implemented to graphically describe knowledge bases. This tool allows

to construct/delete/move all concepts and roles of a knowledge base. The terminological

knowledge base in �gure 11 is relative to our example in section 4.2. Heavy arrows are strict

links, thin arrows are default links, dashed arrows are exception links, circles are concepts

and squares are roles. Di�erent kind of concepts (primitive, partially de�ned and fully

de�ned) are distinguished in the tool by di�erent colors which unhappily do not appear in

this black and white �gure. This tool allows also to translate a graphic into an ascii text

which is the knowledge base in the description language of ALN

��

. The text below is the

translation of the knowledge base of the �gure 11: defprimc is the command to de�ne a

new primitive concept, defpconcept de�nes a new partially de�ned concept, de�concept is

to de�ne a new fully de�ned concept and defprimr is to de�ne a new primitive role. The

other commands are quite easy to understand (at-least, at-most, all, and).

The knowledge base in our description language:

(defprimc incident);

(defprimc more-than-10-minutes);

(defprimc at-least-200-people-affected);

(defprimc fire-alarm);

(defprimc equipment-dependent);

(defprimc service);

(defprimc number-overcall);

(defprimr number-affected);

(defprimr total-busy-beam);

(defprimr ineffective-beam);

(defprimr ineffective-overflowing-beam);

(deffconcept serious-incident

(and incident
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Figure 11: Graphic description of the knowledge base.

more-than-10-minutes

(default at-least-200-people-affected)));

(deffconcept equipment-incident

(and equipment-dependent

incident));

(defpconcept CTU-dependent

(default equipment-dependent));

(deffconcept CTU-duplex-stopping

(and incident

(at-least 1 total-busy-beam)

(at-least 2 ineffective-beam)

CTU-dependent

(default (at-least 1 ineffective-overflowing-beam))

(all ineffective-beam beam)

(all total-busy-beam beam)

(all ineffective-overflowing-beam beam)));

(deffconcept CTU-EM-dependent

(and CTU-dependent

(exception (at-least 1 ineffective-overflowing-beam))));

(deffconcept CTU-EM-DS
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(and CTU-duplex-stopping

CTU-EM-dependent));

(deffconcept serious-CTU-EM-DS

(and CTU-EM-DS

serious-incident));

(deffconcept CTU-fire

(and fire-alarm

(default CTU-duplex-stopping)));

(defpconcept high-temperature

(default fire-alarm));

(defpconcept service-number-affected

(and number-overcall

(all number-affected service)

(at-least 1 number-affected)

(exception at-least-200-people-affected)));

(deffconcept serious-service-incident

(and serious-incident

service-number-affected));

(deffconcept ser-service-equipment-incident

(and serious-service-incident

equipment-incident));

Figure 13 is the CBR interface (conceptual level) of our prototype. This interface

allows to load a knowledge base (the base loaded in this �gure is the knowledge base

shown in �gure 11) and to retrieve similar concepts to a source concept relatively to a

target concept. The retrieval is achieved thanks to the inference services (subsumption,

classi�cation, inheritance) proposed by the core of the whole system, the description logics

ALN

��

. In the example, all concepts similar to C

new

and which are incidents (target concept

is incident) have been retrieved. The list of similar concepts is displayed in the left of the

�gure. The description of the new incident is given in section 4.2 (c1

new

). C

new

is the

abstract concept of this new incident, a graphic representation of which is given in �gure

12.

The center bottom of this interface displays the set of properties of a selected simi-

lar concept in the list. In �gure 13, the current selected concept is serious-incident: its

speci�city value is 1,\sûr" and \typique" mean that the new incident is a sure and typical

incident of serious-incident and exception = 0 means that no exception has been added to

the description of the new incident to �nd serious-incident is similar to it (it is not a re�ned

concept). The order of the display of the list of similar concepts can be changed by varying

priority of preference criteria (in the right bottom of �gure 13). The highest priority is 4,

the lowest is 1, and 0 means that the criteria is not taken into account to order the similar

concepts. In the example the priority of the speci�city criterion is 4: it means that this

criterion is used at �rst to order the concepts in the list. Thus the �rst concepts displayed

in the list have their speci�city value equal to 1 then the following ones have their speci�city

value equal to 2 and so on. The priority of the sure criterion (3) means that inside a set of

concepts with the same speci�city value, those for which the new incident is a sure instance

are displayed before those for which the new incident is a probable instance. Finally in the

example the display of similar concepts in the list is given by applying at �rst the speci�city
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Figure 12: Graphic description of the abstract concept of the new incident.

criterion, then the sure, then the typical and �nally the exception criterion. The end-user

can change the priority value of the criteria to get di�erent displays.

The CBR interface allows also to display the action form of an incident concept and to

access to another CBR interface (instance level) to display the list of instances of a concept

and their incident forms (the implementation of this interface is in progress).

Figure 14 is the same interface (conceptual level) with the same knowledge base as

above but the source concept is the re�ned concept of C

new

, called C1

ex

new

in section 4.3.

An exception to at-least 1 ine�ective-overowing-beam has been added to the description

of the new incident. Thanks to the exception this re�ned concept inherits concepts which

are not inherited by C

new

. Thus in the example, the end-user can see that the new incident

could be a CTU-�re.
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Figure 13: The CBR interface (conceptual level).
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Figure 14: A re�ned concept of the new incident
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