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Introduction

This manuscript surveys some of my research of the past decade by exploring specific
aspects of polyhedra. Two different properties of polyhedra are discussed, principally under a
matricial point of view, and this work is organized in two parts that can be read independently.
Each part consists of two chapters: a first chapter that overviews theoretical results, and a
second chapter in which a few applications are put forward.

It is intended as an introduction to the addressed topics. Only basic algebra should be
needed, yet some familiarity with polyhedra, integer programming, and combinatorial opti-
mization might be helpful for the reader. Mainly, intuitive arguments will be given, and there
will be few formal proofs. For the complete proofs, the reader is referred to the corresponding
papers, which can be found in the appendix.

A polyhedron is the intersection of a finite number of half-spaces, or, equivalently, the set
of points satisfying a finite number of linear inequalities. When an affine space intersects only
the boundary of a polyhedron, the intersection is called a non trivial face of the polyhedron1.
Faces of dimension zero are vertices and faces of dimension one less than the dimension of
the polyhedron are facets. Particular families of polyhedra will play an important role here:
polytopes, which are bounded polyhedra; cones, which are polyhedra containing a point that
lies on all its nonempty faces; and integer polyhedra, which are polyhedra having an integer
point in each nonnempty face.

Many polyhedra arise from combinatorial optimization problems. Imagine being interested
in the sets of pairwise nonadjacent nodes of a given graph, called stable sets. To each stable
set is associated its incidence vector, which is the vector indexed by the nodes of the graph and
whose coordinate equals one when the node is in the stable set and zero otherwise. The convex
hull of these incidence vectors forms the stable set polytope of the graph. Now, if each node
has a cost, finding a stable set of maximum total cost reduces to optimizing a linear function
over this polytope. This is how a combinatorial problem can be modeled with a polyhedron.

This polyhedral point of view allows the use of geometric and algebraic tools from polyhe-
dral theory to derive new insights towards the essential properties of the underlying combina-
torial problem.

There may be various alternatives to model a given combinatorial problem as a polyhedron.
The first part of this document is devoted to the systematic study of these models. Roughly
speaking, we shall introduce a measure of how good a model is, with the following question in
mind: when does a problem admit a good model?

The second part studies a specific family of polyhedra. In a few words, we are interested in
the geometric properties of these polyhedra, especially with respect to the integer points of the

1Trivial faces are the emptyset and the polyhedron itself.
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space. The question behind it is: are there alternative expressions of these properties, and how
can they be used in practice?

Essentially, in both parts, we discuss the matricial counterparts implied in and by the poly-
hedral representation.

Extended Formulations

The first part of this document is devoted to extended formulations. An extended formula-
tion of a given polyhedron is a polyhedron in a higher dimensional space that can be projected
onto the original polyhedron.

This is an important notion regarding complexity questions in combinatorial optimization.
When the number of inequalities describing a polyhedron is polynomial, one can find an op-
timal solution in polynomial time, whichever objective function is chosen. It turns out that
adding extra variables might reduce the number of inequalities needed to describe the polyhe-
dron. For instance, the hexagon in Figure 1 is described by 6 inequalities, and it can be seen as
the projection of a prism, for which 5 inequalities suffice.

Figure 1: The hexagon as the projection of a prism.

The minimum number of inequalities in an extended formulation of a given polyhedron is
called its extension complexity. Thus, if a polyhedron has polynomial extension complexity,
then the associated optimization problem is solvable in polynomial time, even if the original
polyhedron is described by an exponential number of inequalities. This is indeed the case for
several well studied polytopes, such as the spanning tree polytope, which is the convex hull of
incidence vectors of the spanning trees of a graph, or the permutohedron, which is the convex
hull of all permutations of (1, 2, . . . , n).

Beside these complexity aspects, extended formulations can be a powerful tool to find the
inequalities describing the convex hull of a finite set of points. It is not always obvious how to
describe such a set by means of linear inequalities: sometimes it is easier to obtain a description
of the points by adding extra variables. Then, one can use projection techniques to get rid of
these extra variables and thereby find a description in the original space.

The notion of extension complexity is intertwined with the factorization properties of a
particular family of matrices called slack matrices. In essence, the slack matrix of a polytope
encodes the distances from each vertex to each facet of the polytope. Such a matrix is always
nonnegative. The nonnegative rank, which is an analogue of the rank for nonnegative matrices,
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plays an important role in our context. It is the smallest number of nonnegative rank one ma-
trices whose sum is the starting matrix. Yannakakis [63] proved that the extension complexity
of a polytope equals the nonnegative rank of its slack matrix.

The first chapter of Part I of this manuscript is devoted to the study of slack matrices.
We first characterize them in geometric and combinatorial ways, and discuss their recognition
problem. One geometric characterization involves the cone and the space generated by the
columns of the matrix. Another one, of more combinatorial nature, relies on the structure of
the zeros of the matrix. Cones play an significant role here because a polyhedron is a section
of its homogeneization cone.

Finally, we explain how the nonnegative rank can be computed by using randomized com-
munication protocols.

These results come from joint works with J. Gouveia, V. Kaibel, K. Pashkovich, R. Z.
Robinson, and R. R. Thomas [38] and with Y. Faenza, S. Fiorini, and H. R. Tiwary [29].

The second chapter of Part I presents examples and techniques to derive extended formula-
tions. These techniques are used to obtain the description of the lexicographical polytope in its
original space. We also explain how to combine induction and a theorem of Balas [6] to obtain
an implicit extended formulation of the circuit polytope of a series-parallel graph.

These are joint works with M. Barbato, M. Lacroix, and C. Pira [5] and S. Borne, P. Fouil-
houx, M. Lacroix, and P. Pesneau [8].

Box-Totally Dual Integral Polyhedra
The second part of this manuscript studies a certain class of polyhedra called box-totally

dual integral polyhedra. They play an important role in combinatorial optimization because
they are associated to linear systems that have strong integrality properties.

In combinatorial optimization, many important results come from min-max relations. Let
us mention two famous examples. The MaxFlow-MinCut theorem of Ford and Fulkerson [31]
states that, in a directed graph having a source s, a sink t, and flow capacities on its arcs, the
maximum amount of flow from the source to the sink without exceeding the capacities of the
arcs equals the minimum capacity of a set of arcs to be removed to disconnect s from t. Another
example is König’s theorem [56, Theorem 16.2], which asserts that, in a bipartite graph, the
maximum number of disjoint edges equals the minimum number of nodes that cover every edge
of the graph. Often, and it is the case for these two examples, min-max relations come from
integrality properties of some linear systems.

A linear problem is a problem where one has to optimize a linear objective function over a
linear system. To each linear problem is associated another linear problem called its dual. The
original problem is then called the primal. The strong duality in linear programming states that
when the optima of these problems are finite, they have the same value. Moreover, when the
inequalities of the primal problem describe an integer polyhedron, there always exist an integer
optimal solution. Such an integer solution can be interpreted as a combinatorial object, like a
flow in a graph. It is similar when the dual has an integer optimal solution, for instance these
solutions are associated to st-cuts in the case of the dual of the maximum flow problem. Linear
systems with the property that there always exists an integer optimal solution in their dual1 are

1When the optimum is finite.
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called totally dual integral systems. The linear system behind the MaxFlow-MinCut theorem
is an example of totally dual integral system.

Among totally dual integral systems, there are some systems that yield stronger min-max
relations: box-totally dual integral systems. These systems are those that remain totally dual
integral when lower and upper bounds are imposed on some variables. The effect of being
box-totally dual integral in the dual is that one can modify the objective function of the primal
problem by an integer amount and at a certain cost before solving the resulting dual problem.
Depending on what the primal variables represent, this can have various combinatorial inter-
pretations.

These systems were introduced around the eighties, yet not much was known about them
before the last twenty years. One of our recent referees describes the situation as follows:
“Box-totally dual integrality is not that well-studied as totally dual integral systems, but the
list of illustrious results from the last two decades shows that it is indeed an interesting notion
that is worth considering”. For instance, until recently, the vast majority of known box-totally
dual integral systems were defined by a totally unimodular matrix, which is a matrix whose
subdeterminants are all 0, 1, or −1. This is the case for the MaxFlow-MinCut theorem and
König’s theorem mentioned above. In particular, the linear systems behind these results are
box-totally dual integral.

The polyhedra described by such systems are called box-totally dual integral polyhedra and
they are the main subject of my research since 2016. Incidentally, in this part, we will meet
several open problems along the way1.

In the first chapter of Part II, we review several recent characterizations of these polyhedra,
essentially geometric and matricial ones. A geometric characterization involves the integrality
of the polyhedron and its dilations when being intersected with integer boxes. Other char-
acterizations involve matrices defining the faces of the polyhedron. We will see how these
characterizations allow us to easily recover several previously known results, and what new
insights they provide. A new class of matrices, that we call totally equimodular and that gener-
alize totally unimodular matrices, will come up naturally. They are the matrices for which all
the associated polyhedra are box-totally dual integral, and we will briefly discuss some of their
properties.

These characterizations and their consequences mostly come from joint work with P. Chervet
and L.-H. Robert [14]. Results on totally equimodular matrices come from an ongoing work
with and P. Chervet, M. Lacroix, F. Pisanu, L.-H. Robert, and R. Wolfler Calvo [13].

In the second chapter of Part II, we provide concrete examples of box-totally dual integral
systems and polyhedra. Most of these examples show how the matricial characterization gives
an easy way to disprove box-total dual integrality. For instance, we use it to refute a conjecture
on box-perfect graphs. Then, we discuss possible connections between box-total dual integral-
ity and the integer decomposition property. We also explain the relation between two results
about Mengerian clutters. Finally, we provide several box-totally dual integral systems and
polyhedra in series-parallel graphs.

The results mentioned in this chapter come from joint works with D. Cornaz and M.
Lacroix [21], P. Chervet and L.-H. Robert [14], M. Barbato M. Lacroix, E. Lancini, and R.
Wolfler Calvo [4] and M. Barbato, M. Lacroix, and E. Lancini [3].

1The hungry reader can find them directly Page 61.
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Chapter 1

Extended Formulations, Slack Matrices,
and Communication Protocols

This chapter is devoted to the interplays between extended formulations, slack matrices,
and communication protocols. The first section explains the link between the extension com-
plexity of a polytope and nonnegative factorizations of its slack matrices, a result due to Yan-
nakakis [63]. The next two section build on this result to present my work on this topic.

In Section 1.2, we overview geometric and combinatorial characterizations of slack matri-
ces. Cones play an important role because any polyhedron is a section of its homogeneization
cone. We will also discuss the complexity of recognizing whether a given matrix is a slack
matrix. These results come from joint work with J. Gouveia, V. Kaibel, K. Pashkovich, R. Z.
Robinson, and R. R. Thomas [38]

In Section 1.3, we show another way to compute the nonnegative rank of a nonnegative
matrix by adapting tools from communication complexity theory. Namely, we prove that the
nonnegative rank of a matrix equals the minimum complexity of a randomized protocol com-
puting the matrix. The results of this section are joint work with Y. Faenza, S. Fiorini, and H.
R. Tiwary [29].

1.1 Extended Formulations and Slack Matrices . . . . . . . . . . . . . . . . . . . 4
1.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Extended Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Slack Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.4 Yannakakis’ Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Characterizations of Slack Matrices . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1 Geometric Characterizations . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.2 A Combinatorial Characterization of Slack Matrices . . . . . . . . . . 12
1.2.3 Recognition of Slack Matrices . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Slack Matrices and Communication Protocols . . . . . . . . . . . . . . . . . . 14
1.3.1 Deterministic Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.2 Randomized Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . 17
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1.1 Extended Formulations and Slack Matrices

In this section, we define extended formulations and slack matrices of a given polyhedron.
Then, we explain the connection, due to Yannakakis, between these two notions. First, let us
introduce the necessary notation.

1.1.1 Notation

An element M of Rm×n will be thought of as a matrix with m rows and n columns, and
an element b of Rm as a column vector. Given a set of vectors M , we denote by vect(M) the
linear space they generate, by aff(M) their affine hull, by cone(M) the set of their nonnegative
combinations, that is, the cone generated by M , and by conv(M) the convex combinations of
these vectors. The set vect(M) is also called the column span of M , and conv(M) its convex
hull. The transpose of a matrix M will be denoted by M>. Thus, vect(M>) is the linear space
generated by the rows of M , also called the row span of M . We will often consider a matrix
M as the set of its column vectors.

A polyhedron is the intersection of a finite number of half spaces a>i x ≥ bi, for i =
1, . . . ,m. We write this P = {x : Ax ≥ b}. By Minkowski-Weyl’s theorem [18, Theo-
rem 3.13], there exists a set of points V and a set of vectors R such that P = conv(V ) +
cone(R). Vectors in R are called rays. The dimension dim(P ) of P is the dimension of its
affine hull. The faces of P are the polyhedra obtained by imposing some equalities among
Ax ≥ b. A face of dimension zero is a vertex, and a face of dimension dim(P ) − 1 is a
facet. The set cone(R) is the set of directions in which we can move towards +∞ while stay-
ing inside P , and is the recession cone of P , denoted by rec(P ). The lineality space of P is
lin(P ) = rec(P )∩ rec(−P ). It is the set of directions in which we can move towards both +∞
and−∞ within P . The polyhedron P has vertices if and only if lin(P ) is empty, that is, rec(P )
contains no line. Polyhedra having vertices are pointed, and we can choose V to be their set of
vertices in the above description.

A polytope is a bounded polyhedron, or equivalently a polyhedron whose recession cone is
empty. A polytope of R2 is a polygon. We mention that a cone C = cone(R) is equivalently a
polyhedron which contains the origin in all its nonempty faces, that is, the cone C is a polyhe-
dron of the form C = {x : Ax ≥ 0}. The polar of C is the cone {x : R>x ≤ 0}. A closely
related cone is the dual cone of C, which is the cone C◦ = {x : R>x ≥ 0} = cone(A>). For
λ in R, the dilation λP of P is the polyhedron λP = {x : Ax ≥ λb}.

To ease the definitions introduced, we assume our polyhedra to be full-dimensional and
pointed. Thanks to this assumption, we may assume that the descriptions of our polyhedra are
irredundant, that is, there are no unnecessary inequalities, points in V , or rays. We explain in
Remark 1.3 how the results mentioned here extend to the case where P is not full-dimensional
or P has no vertices.

1.1.2 Extended Formulations

In combinatorial optimization, the set of solutions to a given problem is often described
as a polytope. Surprisingly, many reasonable combinatorial problems, solvable in polynomial
time, admit unreasonable descriptions in their natural space, involving an exponential number
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of inequalities. This is the case for instance for the matching polytope, which is, given a graph,
the convex hull of the incidence vectors of subsets of edges covering each vertex at most once.

The question of the number of inequalities needed to describe a polytope is usually related
to the computational difficulty of the underlying combinatorial problem. To try to obtain a
smaller description, an idea is to add extra variables and find another formulation in an extended
space.

An extension of a polyhedron P of Rn is a polyhedron Q in a higher dimension p such
that P is the image of Q under a linear projection π : Rp → Rn. More precisely, P = π(Q)
is the set of x such that there exists y in Q with x = π(y). An extended formulation of P is
a linear description of Q by means of linear inequalities and equations. The minimum number
of inequalities in an extended formulation of P is called the extension complexity of P , and is
denoted by xc(P ). The polyhedron P can be though of as the shadow of Q.

PP

Q
ππ

Q

Figure 1.1: Examples of extended formulations.1

For instance, the octahedron in Figure 1.1, which is described by 8 inequalities, has an
extended formulation described by 6 inequalities. Thus, its extension complexity is at most 6:
adding extra variables might decrease the number of inequalities required.

In 1991, Yannakakis [63] developped tools to derive bounds on the extension complexity of
a polytope. Among other things, he proved that there are no symmetric2 extended formulations
for the traveling salesman polytope. The traveling salesman polytope is the convex hull of the
incidence vectors of the tours of the complete graph, a tour being a cycle going through each
vertex exactly once. Finding a tour of minimum cost is a well-known NP-hard problem, thus if
there were a polynomial size extended formulation of this polytope, it would imply that P = NP.
He concluded his paper with the following impression about the symmetry assumption: “We
do not think that asymmetry helps much”. Afterwards, for almost two decades, extended for-
mulations were rather used as a tool than they were the object of a systematic study.

Extended formulations returned to the front stage approximately ten years ago, mainly
thanks to three papers. The first one answers negatively Yannakakis’ conjecture about the im-
pact of symmetry: Kaibel, Pashkovich, and Theis exhibit in [44] specific matching polytopes
for which there are non-symmetric extended formulations of polynomial size, while no sym-
metric extended formulation of polynomial size exists. In the same period, for the first time3,
the exact extension complexity of a polyhedron was determined, by Goemans in [37]: therein,
an upper bound for the extension complexity of the permutohedron is provided, together with

1This nice picture and many others in this section are to be credited to Samuel Fiorini.
2Roughly speaking, symmetric means that the formulation remains invariant under all permutations of the

nodes of the graph.
3To the best of my knowledge.
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an extended formulation achieving this bound. Almost simultaneously, Conforti, Cornuéjols,
and Zambelli wrote a thorough survey [17] on extended formulations in combinatorial opti-
mization that made the topic accessible to a broader audience.

Since then, many deep results were published about extended formulations. An important
one is due to Rothvoß [52] and proves that there exists 0/1 polytopes having exponential exten-
sion complexity. More concrete results followed, such as the proof that the traveling salesman
polytope has no extended formulation of polynomial size, symmetric or not4, due to Fiorini,
Massar, Pokutta, Tiwary, and de Wolf [30]. Surprisingly, it was also shown by Rothvoß [53]
that the matching polytope has no polynomial size extended formulation. Most of these results
use the relation between the extension complexity of a polytope and the nonnegative factoriza-
tions of its slack matrices.

1.1.3 Slack Matrices

The slack of a point v with respect to an inequality a>x ≥ b is a>v−b. Slack matrices were
originally introduced for polytopes. The slack matrix of a polytope contains the slack of each
vertex with respect to each facet of the polytope. Essentially, this matrix encodes the distances
from each vertex to each facet.

vj

Hi

sij

Figure 1.2: Slack sij of vertex vj with respect to facet Hi.

The notion of slack matrices can be extended to general polyhedra, even if its meaning
somewhat loses this visual interpretation. Slack matrices for cones were introduced in [38],
and an extension to polyhedra is provided below.

More precisely, for a polytope P = {x : Ax ≥ b} = conv(V ) of Rn, the slack of vertex vj
with respect to facet a>i x ≥ bi is a>i vj− bi. Up to to normalizing a>i x ≥ bi, the slack represents
the distance from the point vj to the facet Hi = {x : a>i x = bi}. In particular, if vj belong to
Hi, then the slack is zero. The slack matrix of P with respect to these descriptions is the m×n
matrix SP whose entry (i, j) is a>i vj − bi. In other words,

SP = [A,−b] ·
[
V
1>

]
. (1.1)

Let C = {x : Ax ≥ 0} = cone(R) be a pointed cone. The slack matrix of C with respect
to these representations is the matrix SC = AR. Let P = {x : Ax ≥ b} = conv(V ) + cone(R)
be a polyhedron. The slack matrix of P with respect to these representations is the matrix
SP = [W,T ], where Wij = a>i vj − bi is the slack of vertex vj with respect to inequality

4This problem was posed 20 years before by Yannakakis [63].
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a>i x ≥ bi and Tij = a>i rj is the slack of rj with respect to inequality a>i x ≥ 0. In matricial
form, it is written as follows:

SP = [A,−b] ·
[
V R
1> 0>

]
. (1.2)

In other words, SP is composed of the slacks of the vertices with respect to the facets and of the
slack matrix of the recession cone of P . This definition contains the two previous ones: when
the polyhedron is a cone, then V is empty; and when P is a polytope, the set R is empty.

These three definitions can be unified with another point of view. The homogenization
cone CP of a polyhedron P = {x : Ax ≥ b} is the set of (x, λ) with x ∈ λP .

x

λ

P

CP

Figure 1.3: A one-dimensional polytope P = conv((1), (2)) and its homogenization
cone CP = cone((1, 1), (2, 1)).

When P is a cone, P is its own homogenization cone (up to removing λ). When P =
conv(V ) is a polytope, CP is described as follows:

CP = {(x, λ) ∈ Rn × R : Ax ≥ λb}.

Note that the slack matrix of the polytope P is also the slack matrix of CP with respect to the
representations

CP = {(x, λ) : [A,−b]
[
x
λ

]
≥ 0} = cone

([
V
1>

])
.

This remark straightforwardly extends to polyhedra. To sum up, the slack matrix of a polyhe-
dron is a slack matrix of its homogenization cone.

By definition, slack matrices are nonnegative matrices, that is, all their entries are nonneg-
ative. Moreover, the zeros of the slack matrix of a polytope P record the face lattice of P , and
hence the combinatorial structure of P .

To derive connections between extensions and slack matrices, we need to consider the non-
negative rank of a matrix. This notion adds nonnegativity constraints to the classical notion of
rank for general matrices. Recall that rank(M), the rank of a matrix M of size m × n, is the
smallest integer r such that M = AB, where A and B are matrices of size m × r and r × n,
respectively. Equivalently, the rank of M is the smallest r such that M can be written as the
sum of r matrices of rank one.

The nonnegative rank of a nonnegative matrix M of size m × n is the smallest integer r
such that M = AB, where A and B are nonnegative matrices of size respectively m × r and
r × n. It is denoted by rank+(M). Here, AB is called a nonnegative factorization of M . Note
that, when M = AB, we have M =

∑r
i=1AiB where the ith column of Ai is that of A and Ai
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has zeros everywhere else. Thus, similarly to the rank, the nonnegative rank of M is also the
minimum integer r such that M is the sum of r nonnegative matrices of rank one.

For a given (full-dimensional) polyhedron, the facet-defining inequalities can be defined up
to any positive scaling factor. Moreover, the rays of the recession cone can be chosen up to a
positive factor. Thus different slack matrices are possible, depending on the chosen description.
They are obtained from one another by multiplying some rows and some columns by a positive
factor. As these scaling can be integrated in either matrices of a nonnegative factorization, such
operations do not change the nonnegative rank. Therefore, we have the following.

Observation 1.1. If R and S are two slack matrices of the same polyhedron, then their noneg-
ative ranks are equal.

1.1.4 Yannakakis’ Theorem
For polytopes, Yannakakis [63] proved the following connection between slack matrices

and extensions. We mention that his proof and his result extend to polyhedra with the definition
of slack matrices of polyhedra given in Section 1.1.3. His result is generalized to convex sets
by J. Gouveia, P. A. Parrilo, and R. R. Thomas in [39].

Theorem 1.2 (Yannakakis [63]). The extension complexity of a polytope of dimension at least
one is equal to the nonnegative rank of any of its slack matrices.

Let us explain why the extension complexity of a polytope is at most the nonnegative rank
of its slack matrices. The other direction is slightly more technical and we refer the interested
reader to [63] for more details.

Let P = {x ∈ Rn : Ax ≥ b} = conv(V ) be a polytope with m facets and let S be a slack
matrix of P . Actually, Yannakakis [63] proves the stronger statement that any nonnegative
factorization S = TU with T of size m× r yields an extended formulation of P with at most r
facets.

Let S = TU be such a factorization. Then, Q = {(x, y) ∈ Rn+r : Ax − Ty = b, y ≥ 0}
is an extended formulation of P . Indeed, since y ≥ 0 and T is nonnegative, each x in the
projection of Q onto the x variables satisfies Ax ≥ b. That is, projx(Q) is contained in P .
Moreover, by definition of the slack matrix, for each vertex v of P the vector Sv = TU v

contains the slacks of v with respect to each facet of P . Hence Av − TU v = b, and then, for
each vertex v of P , the point (v, U v) is in Q because U is nonnegative. We thus get the reverse
inclusion, hence Q is an extension of P .

Notice that all the facets of Q are among y ≥ 0, thus Q has at most r facets. Therefore,
we have xc(P ) ≤ r, and taking r = rank+(S) implies xc(P ) ≤ rank+(S). Recall that, by
Observation 1.1, all the slack matrices of a given polytope have the same nonnegative rank.

We mention that this result is existential: it does not provide explicitly an extended formula-
tion of appropriate size of the polytope, even if the nonnegative factorization of the slack matrix
is explicit. Indeed, to get an explicit formulation one should “clean” the system Ax− Ty = b,
that is, remove redundant equalities to get n+ r − dim(Q) equalities.

We conclude this section by explaining briefly how these results extend when the polyhe-
dron is not full-dimensional or has no vertices.

8



Remark 1.3. When the polytope is not full-dimensional, it can be written P = {x : Ax ≤
b, Cx = d} where {x : Cx = d} is the smallest affine space containing P . Since the slack of
every vertex of P with respect to the equalities is zero, the above results are straightforwardly
extended to this case by integrating Cx = d into any extended formulation of P and removing
the rows of zeros added to the slack matrix of P .

When the polyhedron P has no vertices, intersect it with a hyperplane orthogonal to lin(P ),
then take the slack matrix of the resulting polyhedron. Nonnegative factorizations of this matrix
correspond to extensions of the starting polyhedron.

Theorem 1.2 is the cornerstone in the study of extended formulations. It is the reason why
we study slack matrices in the next section, where we characterize them in several ways.
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1.2 Characterizations of Slack Matrices
Determining the nonnegative rank of a nonnegative matrix is NP-complete in general, as

shown in [62]. Yet the complexity of this problem remains open for slack matrices, which form
a strict subclass of nonnegative matrices.

In this section, we characterize these matrices in geometric and combinatorial ways. The
provided characterizations are restricted to nonnegative matrices of rank at least two, as it is
easy to see that no matrix of rank at most one is a slack matrix of a nontrivial polytope.

1.2.1 Geometric Characterizations
The first characterizations involve properties of the cones, vector spaces, and affine spaces

generated by either the rows or the columns of the matrix.

Slack Matrices of Cones

A necessary and sufficient condition for a nonnegative matrix S to be the slack matrix of
some cone is that the cone generated by the columns of S coincides with the nonnegative part
of column span of S. Let us explain why this is necessary, and we refer the reader to [38] for
sufficiency.

Let S = AR be the slack matrix of C = {x : Ax ≥ 0} = cone(R). Then, cone(S) is
the set K = {y ≥ 0 : y = Sx for some x ∈ Rn}. Indeed, since S is nonnegative, we have
cone(S) ⊆ K. To see the converse, take y in K. Since y is nonnegative and y = Sx = ARx,
we have ARx ≥ 0, that is, z = Rx belongs to C. Therefore, z is a nonnegative combination of
the generators R of C, namely z = Rx′ for some x′ ≥ 0. Hence, y = Az = ARx′ = Sx′ is
in cone(S).

This, which is Statement 2 of Theorem 1.4 below, characterizes slack matrices of cones.

Theorem 1.4 ([38]). For a matrix M of Rp×q
+ with rank(M) ≥ 2, the following statements are

equivalent.

1. M is the slack matrix of a cone.

2. cone(M) = vect(M) ∩ Rp
+.

3. cone(M>) = vect(M>) ∩ Rq
+.

Statement 3 of Theorem 1.4 is the polar version of Statement 2. Indeed, if M = AR is the
slack matrix of a cone C = {x : Ax ≥ 0} = cone(R), then M> = R>A> is the slack matrix
of its dual cone C◦ = {x : R>x ≥ 0} = cone(A>). Applying Statement 2 of Theorem 1.4
to M> gives Statement 3 of Theorem 1.4.

In other words, Statement 3 of Theorem 1.4 means that the cone generated by the rows
of M coincides with the nonnegative part of the space generated by the rows of M .

Slack Matrices of Polytopes

As we saw in Section 1.1.3, the slack matrix of a polytope is the slack matrix of its homog-
enization cone. Thus, for a matrix to be the slack matrix of some polytope, it has to be the slack
matrix of some cone.
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There is another condition for that to happen. Recall that a cone is a polyhedron which
contains the origin in every facet. This is not true for polytopes1. It means that if P = {x :
Ax ≥ b} is a polytope, then Ax = b has no solution. When a system of linear equalities has no
solution, then one can write any absurdity such as “zero equals one” using linear combinations
of these equalities. For instance, there exists y such that b>y = −1 and A>y = 0. Note that,
for such a y and for a slack matrix SP of P , we have

S>P · y = [V >, 1] ·
[
A>

−b>
]
· y = [V >, 1] ·

[
0

1

]
= 1.

In other words, the all one vector has to be in the linear space generated by the rows of SP .
These two conditions characterize slack matrices of polytopes.

Theorem 1.5 ([38]). For a matrix M of Rp×q
+ with rank(M) ≥ 2, the following statements are

equivalent.

1. M is the slack matrix of a polytope.

2. cone(M) = vect(M) ∩ Rp
+ and 1 belongs to vect(M>).

3. cone(M>) = vect(M>) ∩ Rq
+ and 1 belongs to vect(M>).

The polarity result that holds for cones breaks down for polytopes, and we refer to [38,
Example 15] for an example where it fails. Nevertheless, a polarity result holds for polytopes
if one is allowed to chose which slack matrix one prefers. The polar of a polytope P of Rn is

P ∗ = {y ∈ Rn : x>y ≤ 1 for all x ∈ P}.

Since translating P does not change its slack matrices, we may assume that the origin is in the
interior of P , and it is well-known [55, Theorem 9.1] that in this case P ∗ is also a polytope.
Then, after scaling its inequalities, P can be described by P = {x ∈ Rn : Ax ≤ 1} and then
P ∗ = conv(A>). Similarly, if P = conv(V ), then P ∗ = {x ∈ Rn : V >x ≤ 1}. This implies
that, with respect to these representations, the slack matrix of P is the transpose of the slack
matrix of P ∗.

Proposition 1.6 ([38]). For any polytope P , there exists a slack matrix M of P such that M>

is also a slack matrix of a polytope.

In the light of Theorem 1.5, this says that slack matrices of polytopes (which already have 1
in their row span) allow positive scalings of their rows that puts 1 into their column span as well.

Slack Matrices of Polyhedra

Recall that the slack matrix of a polyhedron is also the slack matrix of its homogeneization
cone. Since a cone is a polyhedron, a matrix is the slack matrix of a polyhedron if and only if it
is the slack matrix of a cone. Thus, Theorem 1.4 also characterizes slack matrices of polyhedra.

1Provided that the polytope is of dimension at least one, which we assume for the rest of this paragraph (note
that a polytope of dimension zero is a cone).

11



1.2.2 A Combinatorial Characterization of Slack Matrices

When trying to build a nonnegative matrix M such that cone(M) = vect(M) ∩ Rp
+, one

quickly gets the feeling that the zero coordinates of its column vectors have to be structured in
some combinatorial sense. For instance, any p × p nonsingular matrix M satisfies vect(M) ∩
Rp

+ = Rp
+. Therefore, for such an M to be a slack matrix of some cone, that is by Theorem 1.4

to satisfy cone(M) = Rp
+, the matrix M has to contain a positive scaling of each unit vector

of Rp
+. That is, up to positive scalings, M is the identity matrix.

To interpret this phenomenon combinatorially, let us introduce incidence matrices. For
a matrix M , we denote by Minc the 0/1 matrix with (Minc)ij = 1 if and only if Mij = 0.
A matrix Minc arising from a slack matrix M of a polytope P is called an incidence matrix
of P . In this case, (Minc)ij is 1 if and only if vertex i belongs to facet j.

x

y

v1

v2

v3

a1

a2

a3



v1 v2 v3

a1 1 0 1
a2 1 1 0
a3 0 1 1




Figure 1.4: A triangle and its incidence matrix.

Clearly, if M is the slack matrix of a polytope P , then Minc is an incidence matrix of P .
Moreover, by the definition of a slack matrix of a polytope, if P is full-dimensional, then
rank(M) = dim(P ) + 1. These two conditions yield the characterization below.

We give the characterization of slack matrices of polytopes, since the corresponding state-
ment for cones is immediately deduced by removing the condition that 1 is in the row span of
the matrix.

Theorem 1.7 ([38]). A nonnegative matrix M with rank(M) ≥ 2 is a slack matrix of some
polytope if and only ifMinc is an incidence matrix of some (rank(M)−1)-dimensional polytope
and 1 is contained in the row span of M .

In dimension two, since polygons have a very simple combinatorial structure, Theorem 1.7
readily yields a characterization of their slack matrices. Here, a facet-vertex slack matrix of a
polygon P is a slack matrix of P whose rows and columns are in one-to-one correspondence
with the vertices and facets of P , respectively. In particular, the following characterizes slack
matrices of rank three.

Corollary 1.8 ([38]). A matrix M ∈ Rn×n
+ (n ≥ 3) is a facet-vertex slack matrix of a polygon

with n vertices if and only if rank(M) = 3 and its rows and columns can be permuted such
that the non-zero entries appear exactly at the positions (i, i) for 1 ≤ i ≤ n, and (i, i − 1) for
2 ≤ i ≤ n, and (1, n).

The graph associated to a polytope has the vertices of the polytope as nodes and an edge
connects two nodes when the corresponding vertices lie on a same face of dimension 1. Steinitz’
theorem [61] says that a graph G is associated to a three-dimensional polytope if and only
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if G is planar and three-connected. Using this, it can be checked in polynomial time whether
a given 0/1 matrix is an incidence matrix of a three-dimensional polytope. For every fixed
d ≥ 4, it is however NP-hard to decide whether a given 0/1 matrix is an incidence matrix of a
d-dimensional polytope [51].

1.2.3 Recognition of Slack Matrices
In this section, we discuss complexity aspects of the slack matrix recognition problem,

which is the problem of deciding whether a given nonnegative matrix is the slack matrix of
some polytope. By Theorems 1.4 and 1.5, since deciding whether the all one vector is in the
linear space generated by the rows of a matrix can be done in polynomial time (by solving a
linear system) the complexity is the same if we ask whether a matrix is the slack matrix of a
cone, a polytope, or a polyhedron.

First, the slack matrix recognition problem is in co-NP because of Theorem 1.5. For a
decision problem, to be in co-NP means that there is a polynomial certificate proving that the
answer is no. Here, it means that when the matrix is not a slack matrix, then there exists a proof
for it, and that this proof has polynomial size.

For any nonnegative matrix M , we have cone(M) ⊆ vect(M) ∩ Rp
+. By Theorem 1.4, M

is the slack matrix of some cone if and only if equality holds. Therefore, to prove that M is
not a slack matrix, one has to verify that the inclusion is strict. This can be done by exhibiting
a point in vect(M) ∩ Rp

+ that does not belong to cone(M) and a hyperplane separating this
point from cone(M). The coordinates of the point and the hyperplane can be chosen with
encoding lengths bounded polynomially in the encoding length of M , hence they form the
desired polynomial certificate.

Theorem 1.9 ([38]). The slack matrix recognition problem is in co-NP.

It is unkown whether the slack matrix recognition problem is NP-hard or solvable in poly-
nomial time. It seems unlikely to determine its complexity easily as it is equivalent to the
polyhedral verification problem [45], whose complexity is unknown. The polyhedral verifica-
tion problem is the problem of deciding, given A, b, and V , whether {x : Ax ≥ b} = conv(V ).

An intuition of why these two problems are connected lies in the definition of a slack matrix.
Recall that a slack matrix of a polytope P = {x : Ax ≥ b} = conv(V ) can be expressed as:

SP = [A,−b] ·
[
V
1>

]
. (1.3)

Thus, a nonnegative matrix M is the slack matrix of some polytope if and only if M can
be decomposed as in (1.3), where A, b, and V are such that the polytopes {x : Ax ≥ b}
and conv(V ) coincide. Proving that the slack matrix recognition problem and the polyhedral
verification problem are indeed polynomially equivalent requires a bit more work, and we refer
to [38] for a proof of the following.

Theorem 1.10 ([38]). The slack matrix recognition problem can be reduced in polynomial time
to the polyhedral verification problem, and conversely.
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1.3 Slack Matrices and Communication Protocols
Along with his result connecting extended formulation of a polytope and the nonnegative

rank of its slack matrices, Yannakakis [63] provides a method to derive upper bounds on the
nonnegative rank of a 0/1 matrix. His method relies on tools from communication complexity
and involves deterministic communication protocols.

Here, we first explain how his idea works. Then, we extend the notion of communication
protocols by involving randomization. This extension allows to capture exactly the nonnegative
rank of any nonnegative matrix, hence the extension complexity of a polytope when applied to
one of its slack matrices.

1.3.1 Deterministic Protocols
Let X and Y be two finite sets and f : X ×Y → R+ be a function. Two players, Alice and

Bob, wish to compute f(x, y) for some inputs x in X and y in Y . Alice knows only x and Bob
knows only y. They must therefore exchange information to be able to compute f(x, y). (We
assume that each player possesses unlimited computational power.)

The communication is carried out as a protocol that is agreed upon beforehand by Alice
and Bob, on the sole basis of the function f . At each step of the protocol, one of the players
has the token. Whoever has the token sends a bit to the other player, that depends only on their
input and on previously exchanged bits. This is repeated until the value of f on (x, y) is known
to both players. The complexity of a protocol is the maximum number of bits exchanged over
all possible inputs x and y. The minimum number of bits exchanged between the players in
the worst case to be able to evaluate f by any protocol is called the communication complexity
of f . In other words, it is the minimum complexity of a protocol cumputing f .

A protocol can be viewed as a rooted binary tree where each node is associated to either
Alice or Bob. The leaves contain the values of the function. An execution of the protocol on a
particular input is a path in the tree starting at the root and ending at a leaf. At a node owned
by Alice, following the path to the left subtree corresponds to Alice sending a zero to Bob and
taking the right subtree corresponds to Alice sending a one to Bob; and similarly for nodes
owned by Bob.

When presenting a protocol, we will often say that one of the two players sends an integer k
rather than a binary value. This should be interpreted as the player sending the binary encoding
of k, or as a (sub)tree of height dlog(k)e.

The function f : X×Y → R+ can be represented as a nonnegative matrix of size |X|×|Y |
whose entry (x, y) is f(x, y) for all (x, y) ∈ X × Y . We will also denote this matrix by f . In
the matrix setting, this means that Alice is given a row index x and Bob a column index y of
the matrix, and that they want to compute the entry (x, y) of the matrix.

Let us consider an example. The following matrix represents the function f for which Alice
and Bob want to develop a communication protocol.

y1 y2 y3 y4
x1 0 0 0 1
x2 0 0 0 1
x3 0 0 0 0
x4 0 1 1 1
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For a given function f , numerous communication protocols are possible. Here is an exam-
ple of such a protocol computing the function f above.

Alice

Alice

Bob Bob

0 1 0

1 0

x ∈ {x1, x2} x ∈ {x3, x4}

y ∈ {y1, y2, y3} y ∈ {y4} y ∈ {y2, y3, y4} y ∈ {y1}

x ∈ {x4} x ∈ {x3}

Note that, in such a protocol, each leaf corresponds to a rectangle of the matrix containing
a unique value. The indices of the entries of this rectangle are given by the couples (x, y) of
inputs of Alice and Bob leading to the leaf. For instance, the leaf on the left of the above
protocol corresponds to the rectangle {x1, x2} × {y1, y2, y3}. The deterministic property of
the protocol implies that these rectangles are disjoint, and hence this induces a partition of the
matrix into rectangles containning a unique value, as follows.

y1 y2 y3 y4
x1 0 0 0 1
x2 0 0 0 1
x3 0 0 0 0
x4 0 1 1 1

Any communication protocol computing f yields such a partition. Conversely, one can
check that a partition of the matrix into rectangles containing a unique value provides a com-
munication protocol.

Moreover, each of these rectangles is a nonnegative matrix of rank one, and hence a partition
into such rectangles allows us to write the matrix f as a sum of nonegative rank one matrices.
Therefore, it provides a nonnegative factorization of f . Since a binary tree of height c has at
most 2c leaves, this gives the following observation.

Observation 1.11. If a communication protocol of complexity c computes f , then rank+(f) ≤
2c.

Let us apply this on a concrete example: the stable set polytope of a claw-free perfect graph.
This example builds on some ideas of Yannakakis and comes from joint work Y. Faenza, S.
Fiorini et H. R. Tiwary [29]. A graph is claw-free when it does not contain the graph of
Figure 1.5 as an induced subgraph.

Figure 1.5: A claw.
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Recall from the introduction that the stable set polytope STAB(G) of a graph G is the
convex hull of the incidence vectors of the stable sets of G, and that the latter are sets of
pairwise nonadjacent nodes. A clique is a set of pairwise adjacent nodes. As a clique and a
stable set have at most one node in common, the system in the theorem below always contains
the stable set polytope of the graph. It describes exactly the stable set polytope of G when G is
a perfect graph, as shown by Chvátal [16].

Theorem 1.12 (Chvátal [16]). A graph G is perfect if and only if STAB(G) = {x ∈ RV
+ :

x(K) ≤ 1, for each clique K of G}.

By exhibiting a well chosen communication protocol computing the slack matrix SG arising
from the description given in Theorem 1.12 when G is claw-free and perfect, we will obtain
the following.

Theorem 1.13 ([29]). For a claw-free perfect graph G with n nodes, we have xc(STAB(G)) =
O(n3).

The protocol relies on the following properties of the slack matrix of the stable set polytope
of a perfect graph. First, for a perfect graph G, note that SG has only 0/1 entries. Indeed, a row
of SG correspond to a clique K, a column to a stable S of G, and the slack of S with respect to
K is 1− |S ∩K|. This is either 0 or 1 since a clique and a stable set have at most one node in
common. Therefore, we want to devise a protocol in which, Alice is given a clique K and Bob
a stable set S and they want to determine whether K and S intersect each other, by exchanging
a minimum number of bits in the worst case.

K S

Alice Bob

Alice picks a node u of her clique and sends this node to Bob. Since there are n nodes,
sending the name of this node u costs log2(n) bits.

u ∈ K

K S

Alice Bob

u

Now, Bob knows a node u of Alice’s clique. In particuler, he knows that every node that
Alice has is a neighbor of u: Alice’s clique is contained in the closed neighborhood N(u) of u.

16



u ∈ K

K S

Alice Bob

u N(u)

Since the graph is claw-free, the stable set of Bob has at most two nodes in the closed
neighborhood of u. Bob sends the name of these possible nodes to Alice.

S ∩N(u)

SK

Alice Bob

u N(u)

Alice now has sufficient information to decide whether K and S intersect: they intersect if
and only if one of the nodes that Bob sent her is in her clique. Therefore, Alice can send the
slack of S with respect to K.

0/1

SK

Alice Bob

u N(u)

In the worst case, by communicating following this protocol, Alice sends the name of a node
and Bob the name of two nodes, which gives 3 log2(n) to be exchanged. By Observation 1.11
and Theorem 1.2, this protocol gives the bound announced in Theorem 1.13.

1.3.2 Randomized Protocols
The previous section revealed the potential of the idea of Yannakakis. Recall that the proto-

cols introduced therein give a partition of the matrix into disjoint rectangles containing a unique
value. Therefore, it only gives an upper bound on the nonnegative rank of the matrix. How can
the protocols be modified in order to capture better the nonnegative rank of the considered
matrix?

With Y. Faenza, S. Fiorini et H. R. Tiwary [29], we introduce randomized communication
protocols and it allows to capture exactly the nonnegative rank of any nonnegative matrix. The
version of the randomized protocols presented here will be less technical than that of [29] as
some technical aspects are left aside to ease the exposition of the concept.

Let us make more formal what we mean by randomized communication protocol. The
process is similar to the deterministic case: Alice and Bob agree on a decision tree. The
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random aspects come into play at each node of the tree, where Alice and Bob can send their bit
randomly. More precisely, if node i of the tree representing the protocol concerns Alice, who
knows x ∈ X , then she will send 0 with probability pi(x) and 1 with probability 1 − pi(x),
where pi(x) is a value between 0 and 1.

i

1− pi(x)pi(x)

Consequently, given an entry (x, y), the value output by the protocol is random. We say
that the protocol computes f on average if for every (x, y) in X × Y , the mean of the values
output by the protocol is equal to f(x, y):

E[value output by the protocol for the entry (x, y)] = f(x, y).

The complexity of such a protocol is the height of the associated binary tree.
Note that randomized communication protocols generalize the deterministic protocols seen

in the previous section. Indeed, the latter can be seen as randomized protocols where all the
probabilities are either 0 or 1. For instance, below, the vector (1, 1, 0, 0)> on the left of the top
node contains the values (p1(x1), p1(x2), p1(x3), p1(x4)). The present values mean that Alice
will send a 0 with probability 1 if her input is in {x1, x2} and with probability 0 if it is in
{x3, x4}.

Alice

Alice

Bob Bob

0 1 0

1 0

( 1 , 1, 0, 0)T (0, 0, 1, 1)T

(1, 1, 1, 0) (0, 0, 0, 1) (0, 1, 1, 1) (1, 0, 0, 0)

(0, 0, 0, 1)T (1, 1, 1, 0)T

It turns out that these randomized communication protocols capture exactly the nonnegative
rank of any nonnegative matrix.

Theorem 1.14 ([29]). If cmin(S) is the minimum complexity of a randomized protocol comput-
ing a nonnegative matrix S on average, then cmin(S) = dlog2(rank+(S))e.

For the first direction of this theorem, that is, if there exists a randomized communication
protocol computing S on average, then rank+(S) ≤ 2c, we refer the reader to [29] to see
how randomness allows to cover the matrix with not necessarily disjoint rectangles, each one
containing a unique (nonnegative) value, hence to write the matrix as a sum of nonnegative
rank one matrices. Each of these rectangles corresponds to a leaf of the tree associated to the
protocol, and the latter, of complexity c, has at most 2c leaves, which gives the announced upper
bound.
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For the other direction, we provide a randomized communication protocol computing the
matrix S on average, of complexity log2(rank+(S)).

First, we chose a normalized version of the matrix S. Let r = rank+(S) and S = TU be
a nonnegative factorization of S, where T is in Rm×r

+ and U in Rr×n
+ . Recall that if we divide

row i of S by a strictly positive λ, then the matrix S ′ we obtain satisfies rank+(S
′) = rank+(S).

Indeed, S ′ = T ′U where T ′ is obtained from T by dividing the ith row of T by λ. That way, by
dividing each row of S by the sum of the coefficients of the corresponding row of T , we may
assume that S = TU where T is a matrix in which the sum of the coefficients of each row is
equal to 1. Then, each row of T corresponds to a probability distribution on its columns.

Then, here is a randomized communication protocol computing S on average:

1. Alice is given a row index i, Bob is given a column index j.

2. Alice picks randomly a column index k of T , with probability Tik, and sends it to Bob.

3. Bob outputs the value Ukj .

On average, given the entry (i, j), this protocol outputs the value
r∑

k=1

TikUkj = Sij , hence

indeed computes S on average. The complexity of this protocol is the complexity of sending
the index of a column of T , which has r columns. Therefore, its complexity is log2(r) =
log2(rank+(S)), which gives the desired bound for Theorem 1.14.

The combination of Theorem 1.14 and Theorem 1.2 gives the following characterization of
the extension complexity of a polytope.

Note that the trick of the previous proof of replacing the matrix S by its normalized version
also makes sense in the context of slack matrices, as different equivalent descriptions of a given
polytope can be obtained by dividing inequalities by a strictly positive value.

Corollary 1.15 ([29]). If cmin(S) is the minimum complexity of a randomized communication
protocol computing a slack matrix S of a polytope P on average, then, cmin(S) = dlog2(xc(P )e.
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Chapter 2

Examples of Extended Formulations

In this chapter, we overview two different techniques to derive extended formulations. In
Section 2.1, we obtain the description of lexicographical polytopes by projecting an extended
formulation based on paths in a digraph. In Section 2.2, we will combine induction and Balas’
union theorem [6] to obtain an implicit extended formulation for the circuit polytope of series-
parallel graphs. These results are joint works with M. Barbato, M. Lacroix, and C. Pira [5] and
S. Borne, P. Fouilhoux, M. Lacroix, and P. Pesneau [8], respectively.
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2.1 Lexicographical Polytopes
In this section, `, u, s will denote integer points of Zn satisfying ` ≤ s ≤ u, that is, s is

within [`, u]1. An integer point x of Zn is lexicographically smaller than s, denoted by x 4 s, if
x = s or the first nonzero coordinate of s− x is positive. In other words, the first coordinate in
which x differs from s is smaller than that of s, and the following coordinates are unconstrained.
For instance, (2, 1), (2, 0), and (1, 3) are lexicographically smaller than (2, 1), but (2, 2) and
(3, 1) are not.

The top-lexicographical polytope L4s
`,u = conv(x ∈ Zn : ` ≤ x ≤ u, x 4 s) is the convex

hull of the integer points within [`, u] that are lexicographically smaller than s. The goal of
this section is to provide the description of a top-lexicographical polytope by means of linear
inequalities. First, we study the polytope formed by the componenwise maximal points of a
top-lexicographical polytope.

Here is an example in dimension 2.

x

y

s

Figure 2.1: The top-lexicographical polytope L4s
`,u with ` = (0, 0), u = (3, 3), and s = (2, 1).

The submissive of a set of points Y of Rn is the set {x : x ≤ y for some y in Y } and can
be written Y +Rn

−. Observe that L4s
`,u is the intersection of the submissive of the blue polytope

conv(s, p1, p2) with the nonnegative orthant. That is, L4s
`,u = (conv(s, p1, p2)+R2

−)∩{x ≥ 0}2.
The blue polytope is the convex hull of the componentwise maximal integer points of the top-
lexicographical together with p2.

x

y

s

p1

p2
nonnegative orthant

submissive of conv(s, p1, p2)

conv(s, p1, p2)

Figure 2.2: L4s
`,u = (conv(s, p1, p2) + R2

−) ∩ {x ≥ 0}.
1For sake of simplicity, we assume that si > `i for i = 1, . . . , n, and we refer to [5] for the extra details needed

when this does not hold.
2This equality holds also without the point p2 in the blue polytope. Adding this point simplifies the projection

of the extended formulation given later.

22



It turns out that this observation holds in general. More precisely, let X4s
`,u be the set of the

componentwise maximal integer points of L4s
`,u together with pn = (s1, . . . , sn−1, sn − 1). In

other words, since we assumed si > `i for i = 1, . . . , n, the set X4s
`,u is composed of the points

pk = (s1, . . . , sk−1, sk − 1, uk+1, . . . , un), for k = 1, . . . , n+ 1, where pn+1 = s by definition.
By definition of the submissive and since x ≤ y implies x 4 y, the set (conv(X4s

`,u)+Rn
−)∩

{x ≥ `} is contained in L4s
`,u. Moreover, since conv(X4s

`,u) is integer and contained in {x ≥ `},
the polyhedron (conv(X4s

`,u) + Rn
−) ∩ {x ≥ `} is integer. Therefore, we have the following.

Observation 2.1. L4s
`,u = (conv(X4s

`,u) + Rn
−) ∩ {x ≥ `}.

Let us model the integer points in X4s
`,u as paths in the digraph given in Figure 2.3, and this

will give an extended formulation of their convex hull. This digraph is composed of n+1 layers,
each containing two nodes except the first and the last ones. There are three arcs connecting
the layer k to the layer k + 1, an upper arc yk, a diagonal arc tk, and a lower arc zk. The only
exception concerns the first level, which does not have the upper arc.

n

yk

zk

n+ 1

tk

1 2 k

source

sink

Figure 2.3: Path representation of the points of X4s
`,u.

Each path P from the source to the sink corresponds to a point x in X4s
`,u as follows. Given

the structure of the digraph, the path P contains exactly one diagonal arc. This diagonal arc
connects a horizontal path composed of lower arcs starting from the source to a horizontal path
composed of upper arcs ending at the sink. One of these horizontal paths might be empty. The
lower arcs represent the coordinates in which the point x of X4s

`,u meets s, the diagonal arc is
the first coordinate of x different from that of s, and the upper arcs are the coordinates where x
meets the upper bound. More precisely:

xk =





uk if yk ∈ P,
sk − 1 if tk ∈ P,
sk if zk ∈ P,

There are n + 1 different paths from the source to the sink, and each of them yields a point
of the type (s1, . . . , sk−1, sk − 1, uk+1, . . . , un), that is, a point of X4s

`,u. This correspondence
between a path P from the source to the sink and a point x of X4s

`,u can be expressed linearly

xi = uiyi + (si − 1)ti + sizi for i = 1, . . . , n, (2.1)

where yk, tk, zk are respectively associated to each upper arc, diagonal arc, and lower arc and
have value 1 when they belong to the path P , and 0 otherwise. Therefore, if Q denotes the
convex hull, in the (y, z, t) variables, of the incidence vectors of the paths from the source to
the sink in our digraph, then we have the following extension of conv(X4s

`,u):

conv(X4s
`,u) = projx{(x, y, z, t) : x satisfies (2.1) for some (y, z, t) in Q}.

By [56, Theorem 13.10], since the digraph is acyclic, Q is described by:
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• the sum of the values of the arcs entering the sink has to be 1,

• the sum of the values of the arcs entering each node but the source and the sink equals
the sum of the values of the arcs leaving the node,

• nonnegativity of the variables.

Given the structure of the digraph in Figure 2.3, the projection of the above extended for-
mulation onto the x variables (hence, the description of conv(X4s

`,u)) is not difficult to obtain by
induction, see [5]. Then, no inequality ax ≤ b with a negative coefficient in a is valid for a sub-
missive. Therefore, thanks to Observation 2.1, to retrieve from the description of conv(X4s

`,u)
that of the associated top-lexicographical polytope, one first discards from the resulting inequal-
ities the ones having negative coefficients. Let us skip the details, the inequalities obtained are:

(xk − sk) + (uk − sk)
k−1∑

i=1

(
k−1∏

j=i+1

(uj − sj + 1)

)
(xi − si) ≤ 0, for k = 1, . . . , n. (2.2)

To conclude, a small geometric argument shows that no other inequalities are needed. We refer
to [5] for a detailed proof of the following.

Theorem 2.2 ([5]). L4s
`,u = {x ∈ Rn satisfying (2.2) and ` ≤ x ≤ u}.
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2.2 The Circuit Polytope in Series-Parallel Graphs
In this section, we will study the circuit polytope in a specific class of graphs. A circuit in

an undirected graph is a subset of edges inducing a connected subgraph in which every node
has degree two1. To each circuit C of a graph G = (V,E) is associated its incidence vector
χC in {0, 1}E , whose eth coordinate equals 1 if and only if e is in C. The convex hull of these
incidence vectors of circuits forms the circuit polytope of G, denoted by C(G). Since finding
a circuit of maximum cost in a planar graph is NP-complete [32], it is unlikely to obtain a
complete description of the circuit polytope associated to such graphs. We consider a subclass
of planar graphs: series-parallel graphs.

We explain how induction combined with Balas’ Theorem [6] implicitely gives an extended
formulation for the circuit polytope of a series-parallel graph. This idea can be applied to
various combinatorial optimization problems.

To be able to retrieve the description of the polytope into the original space2, one has to have
a good guess of the result so that induction can be used confortably in the projection. Such a
guess might come from the study of a bunch of examples. This is what we did with S. Borne, P.
Fouilhoux, M. Lacroix, and P. Pesneau in [8] for the circuit polytope of a series-parallel graph.

Here, we shall only explain how to obtain an implicit extended formulation, and we will not
explain how to use it to obtain the description in the original space, the reason being that the
resulting description is rather technical. For these details, we refer the interested reader to [8].

Note that an edge whose removal disconnects the graph belongs to no circuit, hence we will
assume that there are no such edges. A graph is 2-connected if it remains connected after the
removal of any node. A circuit of a graph G is a circuit of one its 2-connected components,
where a 2-connected component of G is a maximal 2-connected subgraph of G. Thus, we will
restrict ourselves to 2-connected graphs.

There is a constructive characterization of series-parallel graphs, and we shall use it here as
a definition. 2-connected series-parallel graphs are built as follows: starting from the circuit
of length two, one repeatedly performs one of the following operations:

• parallelization: add an edge parallel to an existing one;

• subdivision: replace an edge by a path of length two.

These operations allows induction to be used because the set of circuit of a 2-connected
series-parallel graphs is deduced straightforwardly from the circuits of the smaller graph it was
obtained from.

More precisely, let G = (V,E) be a 2-connected series-parallel graph. When G is obtained
from a graphH by replacing an edge e ofH by a path of length two {e, f}, the circuits ofG are
either circuits of H not containing e, or circuits C ∪ {f} for each circuit C of H containing e.

Therefore, the circuits of G contain either both e and f or none of them, and their incidence
vectors can be described as follows according to a description of the circuits of H .

Observation 2.3. Suppose G is obtained from H by replacing an edge e of H by a path of
length two {e, f}. Then, adding a variable xf to any extended formulation of C(H) and im-
posing xe = xf provides an extended formulation for C(G).

1We also consider that the emptyset is a circuit.
2That is, to project the implicit formulation.
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When G is obtained from a graph H by adding an edge f parallel to an edge e of H , then
the circuits of G are each circuit of H , the circuits obtained from those of H containing e by
replacing e by f , and the circuit of length two {e, f}. Then, here is how to derive an extended
formulation for the circuit polytope of G if we have one for the circuit polytope of H .

Lemma 2.4 ([8]). SupposeG is obtained fromH by adding a parallel edge f to an edge e ofH
and let Q(H) be an extended formulation of C(H). Then,

1. The polytope S(G) obtained by replacing xe by xe + xf in Q(H) and setting 0 ≤ xe
and 0 ≤ xf is an extended formulation of the convex hull of the incidence vectors of all
the circuits of G different from χe,f .

2. The convex hull of S(G) union χe,f is an extended formulation of C(G).

Lemma 2.3 and Statement 1 of Lemma 2.4 can be applied immediately to any extended
formulation of the circuit polytope of H . To obtain an extended formulation of the circuit
polytope ofG, one has to handle Statement 2 of Lemma 2.4, and this is done using the following
theorem of Balas [6]. His result gives an extended formulation for any finite union of polyhedra,
yet we only state what we need here, the union of two polytopes.

Theorem 2.5 (Balas [6]). Given two polytopes P1 = {x ∈ Rn : A1x ≤ b1} and P2 = {x ∈
Rn : A2x ≤ b2}, we have conv(P1 ∪ P2) = projx(Q), where Q = {x = y1 + y2, A1y1 ≤
(1− λ)b1, A2y2 ≤ λb2, 0 ≤ λ ≤ 1}.

The idea in Balas’ result is to express in a linear way that x is a convex combination x =
λx1 + (1− λ)x2 of x1 in P1 and x2 in P2 with 0 ≤ λ ≤ 1. Since λx1 is not a linear expression,
this is done by replacing λx1 by y1 and saying that y1 belongs to λP1. Similarly, (1 − λ)x2 is
replaced by y2 which belongs to (1− λ)P2, and x is simply y1 + y2.

An immediate consequence of Theorem 2.5 is the following.

Corollary 2.6. Given two polytopes P1 and P2, there exists an extended formulation of conv(P1∪
P2) whose size is two plus the sizes of P1 and P2.

Note that the extended formulation given by Statement 1 of Lemma 2.4 involves two new
inequalities, and that applying Corollary 2.6 in Statement 2 of Lemma 2.4 provides an extended
formulation with two more inequalities. Thus, if G is obtained from H by adding a parallel
edge, then an extended formulation for the circuit polytope ofG has four more inequalities than
an extended formulation for C(H). Moreover, if G is obtained from H by subdividing an edge,
then an extended formulation for C(G) has the size of an extended formulation for C(H).

By construction of 2-connected series-parallel graphs, and since the circuit polytope of the
circuit of length two {e, f} is described by the inequalities xe = xf , xe ≥ 0, xf ≥ 0, xe+xf ≤
2, repeatedly applying the above observations gives the following: there exists an extended
formulation for the circuit polytope of G of size O(|E|).

The extended formulation is implicit. We refer to [8] for how to use the above remarks to
explicitly obtain the description of the circuit polytope of a series-parallel graph.
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Part II

BOX-TOTALLY DUAL INTEGRAL
POLYHEDRA
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Chapter 3

Box-Total Dual Integrality,
Box-Integrality, and Equimodular
Matrices

Box-total dual integral (box-TDI) systems are the linear systems that yield the strongest
min-max relations. To introduce this concept, we will overview the MaxFlow-MinCut theorem
of Ford and Fulkerson [31]: the linear system behind it is a box-TDI one.

Then, we will get to the main topic of this chapter: box-TDI polyhedra, the polyhedra that
can be described by such systems. The goal here is to provide and explain several characteri-
zations of these polyhedra. Cones play an important role towards that again, but not in the way
they did in Part I. Indeed, a crucial observation here is that every polyhedron is the intersection
of its minimal tangent cones.

Thus, we will first characterize box-TDI cones, in two ways. The first is about their integral-
ity properties; and the second involves matrices defining their faces. Thanks to the connection
between a polyhedron and its minimal tangent cones, these characterizations of box-TDI cones
will offer characterizations of box-TDI polyhedra. We will use these characterizations to re-
trieve easily well-know properties of box-TDI polyhedra. To conclude, we introduce a class
of matrices generalizing totally unimodular matrices: they are the matrices for which all the
associated polyhedra are box-TDI, and they are called totally equimodular matrices. We will
briefly discuss some of their properties.

This chapter is mainly based on joint work with P. Chervet and L.-H. Robert [14], and
also on a ongoing work with P. Chervet, M. Lacroix, F. Pisanu, L.-H. Robert, and R. Wolfler
Calvo [13].
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3.1 MaxFlow–MinCut: A Celebrated Box-TDI System
Consider a directed graph having a source s and a sink t, in which each arc has an integer

capacity. A flow in this graph is composed of a nonnegative value on each arc not exceeding
its capacity so that the amount of flow entering each node other than the source and the sink
equals the amount of flow leaving the node. It can be tought of as water running trough a set
of pipes. The value of the flow is the amount of flow leaving the source. The maximum flow
problem asks to send a maximum amount of flow from the source to the sink.

Ford and Fulkerson [31] proved that the value of a maximum flow is always equal to the
minimum capacity of an st-cut, an st-cut being a set of arcs leaving a set of nodes containing
the source but not the sink. Their result, called the MaxFlow-MinCut theorem, is probably the
most famous result in combinatorial optimization. They used it as a stopping criterion to devise
a combinatorial algorithm that finds a maximum flow in polynomial time.

Beside the immediate applications of water transit or running fuel through pipelines, the
maximum flow problem can also model assignment problems for instance. It is also a powerful
theoretical tool to model new problems. We saw an example in Section 2.2 where we modeled
the componentwise maximal points of the lexicographical polytope as paths from the source to
the sink of a particular digraph, and actually such a path is nothing but a flow of value 1. The
problem of finding an st-cut of minimum capacity also has applications in network design and
image segmentation.

The maximum flow problem starts this chapter because of the integrality properties of its
formulation as a linear problem, thus let us write down this linear problem. Let D = (V,A) be
a directed graph, with a source s in V and a sink t in V , and a capacity ca ∈ Z+ for each arc
a in A. Associate to each arc a in A a variable xa ∈ R that will represent the amount of flow
going through the arc. The maximum flow problem is expressed as follows by means of linear
equalities and inequalities:

max x(δ+(s))

x(δ+(v)) = x(δ−(v)), for all v ∈ V \ {s, t},
xa ≤ ca, for all a ∈ A,
xa ≥ 0, for all a ∈ A,

(3.1)

where δ+(v) is the set of arcs leaving node v, δ−(v) is the set of arcs entering node v, and for
B ⊆ A we denote x(B) =

∑

b∈B
xb. The function x(δ+(s)) is called the objective.

In System (3.1), the family of equalities ensures the flow conservation at each node but the
source and the sink, and the two families of inequalities impose nonnegativity of the values and
respecting the capacities. This system has strong integrality properties that we explain below,
and so does the associated polyhedron, the one described by the equalities and inequalities in
System (3.1).

Indeed, Ford and Fulkerson [31] proved that there always exists a maximum flow with only
integer values. Actually, this also holds whichever objective function is chosen in System (3.1).
This implies that the associated polyhedron is integer, which means here that all its vertices
are integer. Moreover, it is also the case in the dual problem — recall that to every linear
problem is associated a dual that has the same value. Here, for all integer objective functions
in System (3.1), there exists an integer optimal solution in the dual. Systems with this property

30



are called totally dual integral (TDI) systems — thus, System (3.1) is TDI. We mention that its
dual problem amounts to finding an st-cut of minimum capacity.

TDI systems are systems that yield min-max relation between combinatorial objects, and
numerous graph theoretical results can be seen as the TDIness of a specific linear system. We
refer the reader to [56] for many such examples. A more formal definition will be given in the
next section.

Not only that, but all the integrality properties of the dual hold for any choise of capacities,
and still hold if lower bounds are imposed on the variables xa. Such bounds are sometimes
called box-constraints — they mean intersecting the polyhedron with a box — and TDI systems
that remain TDI after the addition of any box-constraints are called box-totally dual integral
(box-TDI) systems. Not all TDI systems are box-TDI, hence the latter systems yield stronger
min-max relations.

There is a somewhat combinatorial interpretation of box-TDIness compared to TDIness,
further than the possibility of adding bounds to the variables while preserving the existence of
integer solutions in the dual. Each addition of bound on the primal variables makes a new vari-
able appear in the dual. Its cost is given by the value of the bound. These variables represent
the following variant of the original dual problem: one is allowed to decrease or increase at
a certain cost, by an integer amount, the primal objective function before solving the result-
ing dual problem. Depending on what the primal variables represent, this can have various
combinatorial interpretations.

The scope of this chapter is the study of the polyhedra associated to box-TDI systems.
These polyhedra are called box-TDI polyhedra, as they are the ones that can be described by
box-TDI systems — which is not the case of all polyhedra. We will characterize them in
several ways, matricially and geometrically. To get a hint of where matrices come into play,
we mention that the box-TDIness of System (3.1) comes from the total unimodularity of the
incidence matrix of a directed graph. We shall briefly review this in the next sections, and
strengthen the link between box-TDI polyhedra and totally unimodular matrices. An interesting
generalization of these matrices will appear along the way, and we will make a small detour to
talk about some of their properties.

Box-TDI systems and polyhedra received a lot of attention from the combinatorial opti-
mization community around the eighties. Originally, box-TDI systems were closely related to
totally unimodular matrices. Indeed, any system with a totally unimodular matrix of constraints
is box-TDI. Actually, until recently, the vast majority of known box-TDI systems were defined
by a totally unimodular matrix, see [56] for examples. When the constraint matrix is not totally
unimodular, proving that a given system is box-TDI can be quite a challenge: one has to prove
its TDIness, and then to deal with the addition of box-contraints that perturb the combinatorial
interpretation of the underlying min-max relation. Ding, Feng, and Zang prove in [24] that it is
co-NP-complete to recognize box-TDI systems.

They are the center of a renewed interest since the last decade and many deep results ap-
peared about them. This renewed interest in box-TDI systems might be due to the development
of new tools to prove box-TDIness, such as the ESP property of Chen, Chen, and Zang [10],
which is a sufficient condition for some systems to be box-TDI. Due to its purely combinatorial
nature, the ESP property is successfully used to characterize: box-Mengerian matroid ports
in [10], the box-TDIness of the matching polytope in [25], subclasses of box-perfect graphs
in [26]. Prior to the development of the ESP property, the main tool to prove box-TDIness
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was [55, Theorem 22.9] of Cook. Its pratical application turns out to be quite technical as one
has to combine polyhedral and combinatorial considerations, such as in [12] where the box-
TDIness of a system describing the 2-edge-connected spanning subgraph polytope on series-
parallel graphs is proved.

Despite the recent progress, Ding, Tan, and Zang [25] write in 2018 that there still “lacks a
proper tool for establishing box-total dual integrality”. The characterizations we explain next
might be useful in that regard as they allow to prove the box-TDIness of systems in two disjoint
steps: find a TDI system describing the polyhedron on the one hand, and, on the other hand,
apply one of the characterizations to prove the box-TDIness of the polyhedron. In particular,
when a TDI system that describes the polyhedron is already known, these characterizations al-
low to pick whichever system — TDI or not — describing the polyhedron, and to use algebraic
tools to prove the “box” part.
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3.2 Characterizations of Box-TDI Polyhedra

3.2.1 Preliminaries
In this section, we provide the definitions and a few results that will be used in this chapter.

This section might feel a bit terse, and some readers could prefer skipping it and coming back
to it punctually, when needed. Throughout, all entries will be rational.

Lattices

The lattice generated by a set V of vectors of Qn is the set of integer combinations of
these vectors, and is denoted by lattice(V ) = {∑v∈V λvv : λv ∈ Z for all v ∈ V }. The lattice
generated by the column vectors of a matrix A is denoted by lattice(A). A basis of a lattice L
is a set B of independent vectors such that L = lattice(B). When a lattice in dimension n is
generated by n independent vectors, it is well-known [55, Page 49] that all the bases of this
lattice yield matrices with the same determinant in absolute value.

Matrices

An element A of Qm×n will be thought of as a matrix with m rows and n columns, and
an element b of Qm as a column vector. When all their entries belong to Z, we will call them
integer. The ith row vector of A will be denoted by a>i . When rank(A) = m, we say that A has
full row rank.

A matrix is totally unimodular if the determinants of its square submatrices are equal to
−1, 0, or 1. A rational r × n matrix is equimodular if it has full row rank and its nonzero
r × r determinants all have the same absolute value. Equimodular matrices are studied under
the name of matrices with the Dantzig property in [42] or as unimodular sets of vectors in [41].
In particular, we have the following.

Theorem 3.1 (Heller [41]). For a full row rank r × n matrix A, the following statements are
equivalent.

1. A is equimodular.

2. For each nonsingular r × r submatrix D of A, lattice(D) = lattice(A).

3. For each nonsingular r × r submatrix D of A, D−1A is totally unimodular.

4. There exists a nonsingular r× r submatrix D of A such that D−1A is totally unimodular.

The last two statements say that equimodular matrices are totally unimodular matrices writ-
ten in another basis (of the columns).

Polyhedra

Polyhedra and faces. Given A in Qm×n and b in Qm, the set P = {x ∈ Rn : Ax ≤
b} = {x ∈ Rn : a>i x ≤ bi, i = 1, . . . ,m} is a polyhedron. We will often simply write
P = {x : Ax ≤ b}. The matrix A is the constraint matrix of P . The translation of P by
w ∈ Rn is P + w = {x+ w : x ∈ P}.

33



A face of P is a nonempty1 set obtained by imposing equality on some inequalities in the
description of P , that is, a nonempty set of the form F = {x : a>i x = bi, i ∈ I} ∩ P where
I ⊆ {1, . . . ,m}. A row a>i or an inequality a>i x ≤ bi with F ⊆ {x : a>i x = bi} is tight
for F , and AFx ≤ bF will denote the inequalities from Ax ≤ b that are tight for F . The
set of points contained in F and in no face F ′ ⊂ F forms the relative interior of F . Let
lin(F ) = {x : AFx = 0} and aff(F ) = {x : AFx = bF}. The dimension dim(F ) of a face F
is the dimension of its affine hull aff(F ). A facet is a face that is inclusionwise maximal among
all faces distinct from P . A face is minimal if it contains no other face of P . Minimal faces are
affine spaces. A face of dimension 0 is called a vertex.

A polyhedron is integer if each of its minimal faces contains an integer point. An integer
box is a polyhedron of the type {x : ` ≤ x ≤ u}, with ` and u in Zn. A polyhedron is
box-integer if its intersection with any integer box {` ≤ x ≤ u} is integer2.

Cones. A polyhedral cone is a polyhedron of the form C = {x : Ax ≤ 0}. Since all the
cones involved here are polyhedral, we simply write cone. A cone C can also be described
as the set of nonnegative combinations of a finite set of vectors R ⊆ Rn, and we say that
C = cone(R) is generated by R. By Minkowski-Weyl’s theorem [18, Theorem 3.13], P is
a polyhedron if and only if there exists a finite set of points V and of vectors R such that
P = conv(V )+ cone(R). The set cone(R) is called the recession cone of P , and is denoted by
rec(P ). When P = {x : Ax ≤ b}, its recession cone is described by rec(P ) = {x : Ax ≤ 0}.
A conic polyhedron is a rational translation of a cone, that is, a set of the form t+{x : Ax ≤ 0}
for some t ∈ Qn.

The polar cone of a coneC = {x : Ax ≤ 0} is the coneC∗ = {x : z>x ≤ 0 for all z ∈ C}.
Equivalently, C∗ is the cone generated by the columns of A>. Note that C∗∗ = C.

Given a face F of a polyhedron P = {x : Ax ≤ b}, the tangent cone associated to F is
the conic polyhedron CF = {x : AFx ≤ bF}. When F is a minimal face of P , its associated
tangent cone is a minimal tangent cone of P . Informally speaking, the tangent cone associated
with a face F is what you see of the polyhedron when you sit at a point which is in the relative
interior of F .

Face-defining matrices. Let P = {x : Ax ≤ b} be a polyhedron of Rn and F be a face of P .
A full row rank matrix M such that aff(F ) can be written {x : Mx = d} for some d is face-
defining for F . Such matrices are called face-defining matrices of P 3. Note that face-defining
matrices need not correspond to valid inequalities for the polyhedron. A face-defining matrix
for a facet of P is called facet-defining.

In practice, we shall use the following observation to prove that a matrix is face-defining.
It says that for a matrix M to be face-defining for a given face, sufficiently many affinely
independent points of the face have to belong to an affine space defined by M .

Observation 3.2. A full row rank matrix M ∈ Qk×n is face-defining for a face F of a polyhe-
dron P ⊆ Rn if and only if there exist a vector d ∈ Qk and a family H ⊆ F ∩ {x : Mx = d}
of dim(F ) + 1 affinely independent points such that |H|+ k = n+ 1.

1In the standard definition, the emptyset is a face. It is not the case here in order to lighten some statements.
2Allowing infinite values for ` and u yields an equivalent definition.
3When we write that a face F has a face-defining matrix M , we mean that M is face-defining for the face F

of P , which is more restrictive than being a face-defining matrix of the polyhedron F .
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Linear systems

TDI systems. A linear system Ax ≤ b is totally dual integral (TDI) if the minimum in the
linear programming duality equation max{w>x : Ax ≤ b} = min{b>y : A>y = w, y ≥ 0}
has an integer optimal solution for all integer vectors w for which the optimum is finite. Every
polyhedron can be described by a TDI system [55, Theorem 22.6]. Moreover, the right hand
side of such a TDI system can be chosen integer if and only if the polyhedron is integer [28],
as stated in the following theorem.

Theorem 3.3 ([55, Theorem 22.6(i)]). For each polyhedron P there exists a TDI-system Ax ≤
b with A integer and P = {x : Ax ≤ b}. Here b can be chosen to be integer if and only if P is
integer.

We will also use that dilation preserves TDIness [55, Page 312], that is, if Ax ≤ b is TDI,
then so is Ax ≤ αb for all α in Q+.

Box-TDI systems. A linear system Ax ≤ b is a box-totally dual integral if Ax ≤ b, ` ≤ x ≤
u is TDI for each pair of rational vectors ` and u. In other words, Ax ≤ b is box-TDI if

min{b>y + u>r − `>s : A>y + r − s = w, y ≥ 0, r, s ≥ 0} (3.2)

has an integer solution for all integer vectors w and all rational vectors `, u1 for which the
optimum is finite.

Since dilation preserves TDIness and since box-TDIness involves all rational bounds, di-
lation also preserves box-TDIness: if Ax ≤ b is box-TDI, then so is Ax ≤ αb for all α in
Q+. It is well-known that box-TDI systems are TDI [55, Theorem 22.7]. General properties of
such systems can be found in [19], [56, Chap. 5.20] and [55, Chap. 22.4]. Though not every
polyhedron can be described by a box-TDI system, the result of Cook [19] below proves that
being box-TDI is a property of the polyhedron.

Theorem 3.4 (Cook [19, Corollary 2.5]). If a system is box-TDI, then any TDI system describ-
ing the same polyhedron is also box-TDI.

This theorem justifies the following definition due to Cook [19]: a polyhedron that can
be described by a box-TDI system is called a box-totally dual integral polyhedron. Note that
dilation also preserves box-TDIness of a polyhedron.

3.2.2 Box-Integer Cones
The results presented in this section and the next are taken from [14]. The exposition

proposed in these sections is quite different from that of the paper as we chose a more geometric
approach.

By definition of box-TDI systems and by Theorem 3.3, given a box-TDI cone C = {x :
Ax ≤ 0} of Rn with Ax ≤ 0 box-TDI, the polyhedron {x : Ax ≤ 0, ` ≤ x ≤ u} is integer
for all ` and u in Zn. In other words, C is box-integer. It turns out that the converse holds, that
is, box-integer cones are precisely box-TDI cones. The proof of the following can be found
in [14].

1Allowing infinite values for ` and u yields an equivalent definition.
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Lemma 3.5 ([14]). A cone is box-TDI if and only if it is box-integer.

In this section, we will focus on box-integer cones because box-integrality is easier to han-
dle than box-TDIness. In particular, we will characterize box-integer cones with a matricial
point of view. First, let us investigate the two dimensional case: what does destroy the box-
integrality of a two-dimensional cone?

x

y

C

x

y

C
x−

2y
= 0

x
=

1

Figure 3.1: A two-dimensional cone that is not box-integer.

In the figure above, the cone C is not box-integer. Indeed, as we can see in the left figure,
when intersected with the integer box {(x, y) : 1 ≤ x ≤ 2, 0 ≤ y ≤ 1}, a noninteger vertex
appears, (1, 1

2
) to be precise. The figure on the right suggests another way of looking at this

phenomenon. First, this vertex lies on the facet of the cone defined by x − 2y = 0. Since
the coefficient of x and that of y differ in absolute value, the point obtained from this facet by
imposing x = 1 is the noninteger point (1, 1

2
). Note that {(x, y) : x = 1} is an integer box.

This argument holds in general: if a two-dimensional cone has a facet with different co-
efficients in absolute value, then one can build a noninteger vertex as we just did. Moreover,
all vertices of a two-dimensional cone intersected with an integer box are obtained in such a
manner. Therefore, a two-dimensional cone is box-integer if and only if all its facet-defining
inequalities have their nonzero coefficients equal in absolute value.

Let us confront this first intuition in a higher dimensional case: let us try dimension three.
Clearly, the condition we saw in dimension two is still necessary: if a facet has two variables
which have different nonzero coefficients in absolute value, then one can build a noninteger
vertex as above. This does not happen in the example below, and yet the cone is not box-
integer.

x

y

z

x−
y =

0
x + y − z = 0

Figure 3.2: The cone C.
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The cone C in Figure 3.2 is described by

x+ y − z ≤ 0,
x− y ≤ 0,

y ≥ 0.

When intersected with the unit cube {x : 0 ≤ x ≤ 1}, we get a noninteger vertex (1
2
, 1
2
, 1), as

highlighted on the left figure below.

x

y

z

x−
y =

0
x + y − z = 0

The cone C intersected with the 0/1 box.

x

y

z

z = 1

H

x−
y =

0
x + y − z = 0

The face H intersected with {z = 1}.

Let us interpret that in the light of the two-dimensional case. This noninteger vertex lies on
the face H of the cone which is the intersection of the facets defined by x + y − z = 0 and
x − y = 0. Written in a matricial form, the face H is the set of solution of the system below
that satisfy y ≥ 0.

[
1 1 −1
1 −1 0

]
·



x
y
z


 =

[
0
0

]
.

In the matrix above, the two first column have determinant −2, whereas the two last
columns have determinant −1. This means that these sets of columns do not generate the
same lattice, and for instance here the third column cannot be written as an integer combina-
tions of the two first columns. Thus, imposing z = 1 on this face yields a noninteger point,
which is precisely the vertex (1

2
, 1
2
, 1) seen above.

Again, this observation holds in general. When some face of the cone has its affine hull
described by Mx = d and M has two nonzero determinants of different absolute values, then
the cone is not box-integer. Indeed, it means that the corresponding sets of columns do not
generate the same lattice. Thus, one of these columns is a (unique) noninteger combination of
a set B of the other columns. Imposing value 1 on the variable associated to this column and
0 to the variables not in B yields a noninteger point, intersection of the cone with an integer
box. Actually, there is a little technicality that has to be taken care of: it might be that the
resulting point lies outside the cone. But if that happens, then we can always find a suitable
integer translation bringing the point back in the cone. This preserves the point’s nonintegrality
and ensures that the cone is not box-integer.

We recall two definitions introduced in Section 3.2.1: a full row rank matrix is face-defining
if it describes the affine hull of some face, and equimodular when all its nonzero maximal
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determinants have the same absolute value. The above necessary condition for a cone to be box-
integer can then be phrased as follows: each of its face-defining matrices has to be equimodular.
It turns out that the converse holds, and we refer to [14] for the complete proof of the following
result.

Corollary 3.6 ([14]). A cone is box-integer if and only if all its face-defining matrices are
equimodular.

Since rational translations preserve both box-TDIness and the equimodularity of the face-
defining matrices, this result combined with Lemma 3.5 has the following consequence.

Corollary 3.7 ([14]). A conic polyhedron is box-TDI if and only if all its face-defining matrices
are equimodular.

We mention that Lemma 3.5 has a polar counterpart. Indeed, its proof involves the polar
of the cone and the following is implied therein, see [14]: a cone is box-integer if and only if
its polar is. Given this specific behaviour, the recognition of box-integer cones might have a
different complexity status than the following related problems, which are all co-NP-complete:
deciding whether a given polytope is integer [50], deciding whether a given system is TDI or
box-TDI [24], deciding whether a given conic system is TDI [49].

Open problem 3.8. Can box-integer cones be recognized in polynomial time?

We observe that the general case is hard.

Observation 3.9. Deciding whether a polyhedron is box-integer is co-NP-complete.

Indeed, for a polytope contained in the 0/1 box, box-integrality is equivalent to integrality.
The above observation follows because deciding whether a polytope contained in the 0/1 box
is integer is co-NP-complete [24].

3.2.3 Characterizations of Box-TDI Polyhedra
In this section, we shall see how the previous characterizations of box-TDI cones and conic

polyhedra yield characterizations of box-TDI polyhedra.
A first connection between the box-TDIness of a polyhedron and that of a specific set of

conic polyhedra is given in the following result, which can be proved straightforwardly using
only the definition of box-TDIness, see [14].

Lemma 3.10 ([14]). A polyhedron is box-TDI if and only if all its minimal tangent cones are.

This lemma will allow us to transfer the previous characterizations of box-TDI cones to
box-TDI polyhedra: there will be matricial and geometric counterparts.

Matricial Characterizations

Since minimal tangent cones are conic polyhedra, their box-TDIness is characterized in
Corollary 3.7, namely, box-TDI conic polyhedra are the ones for which every face-defining
matrix is equimodular. As in Figure 3.4, note that each face of P is contained in a face of some
minimal tangent cone of P having the same affine hull. Conversely, each face of a minimal
tangent cone of P contains some face of P having the same affine hull. Therefore, Corollary 3.7
and Lemma 3.10 give the following matricial characterization of box-TDI polyhedra.
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Theorem 3.11 ([14]). A polyhedron is box-TDI if and only if all its face-defining matrices are
equimodular.

This characterization gives an easy way to disprove box-TDIness: it is enough to exhibit a
face-defining matrix having two maximal nonzero determinants of different absolute values. In
particular, this provides a simple co-NP certificate for the box-TDIness of a polyhedron.

We mentioned that, if a face has an equimodular face-defining matrix, then all the matrices
defining this face are equimodular. Indeed, the other face-defining matrices for this face are
obtained by a basis change of the columns, and such a basis change preserves equimodularity as
it multiplies all the maximal determinants by the same value. Among all these possible changes
of basis, as Statement 3 of Theorem 3.1 says, if we chose a basis within the given matrix, then
we obtain a totally unimodular matrix. Therefore, Theorem 3.11 can be reformulated using
totally unimodular matrices.

Theorem 3.12 ([14]). A polyhedron is box-TDI if and only if each of its faces has a totally
unimodular face-defining matrix.

We conclude the matricial characterizations with a remark about polarity. The polar of a
polyhedron P is the set P ◦ = {x : x>y ≤ 1 for all y ∈ P}. The polarity result we mentioned
for cones in the previous section does not extend to polyhedra, that is, the polar of a box-TDI
polyhedron need not be box-TDI. For instance, the polyhedron conv ((2,−1), (−2,−1), (0, 1))
is integer and box-TDI, and its polar conv ((1, 1), (−1, 1), (0,−1)) is integer but not box-
integer.

x

y

P ◦

P

Figure 3.3: An integer box-TDI polyhedron P with a polar P ◦ that is not box-TDI.

Nevertheless, since the affine hull of each face of P is the translation of a cone, Theo-
rem 3.12 and polarity applied to these cones imply the following characterization.

Theorem 3.13 ([14]). A polyhedron P is box-TDI if and only if for every face F of P , there
exists a basis of lin(F ) which forms a totally unimodular matrix.

A Geometric Characterization

If one combines Lemma 3.10 with Lemma 3.5, that is, with the fact that the box-TDI cones
are precisely the box-integer cones, one gets another characterization of box-TDI polyhedra,
essentially more geometric. To see how, let us first show that:

An integer polyhedron P is box-TDI if and only if kP is box-integer for all k ∈ Z>0. (3.3)

Let P be an integer polyhedron. Suppose that P is box-TDI and described by the box-
TDI system Ax ≤ b with A and b integer, which exists by Theorem 3.3. Recall that dilation
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preserves box-TDIness: for k ∈ Z>0, the polyhedron kP is integer, box-TDI, and described
by the box-TDI system Ax ≤ kb. In particular, by definition of box-TDI systems and by
Theorem 3.3, the polyhedron {x : Ax ≤ kb, ` ≤ x ≤ u} is integer for all ` and u in Zn. In
other words, kP is box-integer for all k ∈ Z>0.

Let us mention a more geometric way of proving this direction, without using Theorem 3.3.
The following picture shows that every polyhedron is the intersection of its minimal tangent
cones.

C
minimal tangent cones of P

P

Figure 3.4: Every polyhedron is the intersection of its minimal tangent cones.

Actually, as Figure 3.5 suggests, this somewhat also holds for kP with k ∈ Z>0.

C

P

2P

C + t2

t2

Figure 3.5: kP is the intersection of integer translations of the minimal tangent cones of P .

More precisely, since P was assumed to be integer, kP is the intersection of integer trans-
lations of the minimal tangent cones of P . Now, suppose that kP is not box-integer for some
k ∈ Z>0, that is, kP ∩ {x : ` ≤ x ≤ u} has a noninteger vertex z, for some `, u ∈ Zn. Let
Cz be a minimal tangent cone of kP having z on its boundary. Clearly, Cz ∩ {x : ` ≤ x ≤ u}
has z as a noninteger vertex, thus Cz is not box-integer. But Cz is the integer translation of
some minimal tangent cone of P , therefore some minimal tangent cone of P is not box-integer.
Since integer translations preserve box-integrality, this minimal tangent cone is not box-TDI
by Lemma 3.5, and hence P is not box-TDI by Lemma 3.10.

For the other direction, suppose that P is not box-TDI. Since P is integer, and since integer
translations preserve box-integrality, Lemmas 3.5 and 3.10 implies that some minimal cone C

40



of P is not box-integer. As the following picture shows, the cone C is the union of integer
translations of the dilations of P .

C

P + r1

2P + r2

3P + r3

Figure 3.6: C is the union of integer translations of kP over k ∈ Z>0.

Therefore, since C ∩ {x : ` ≤ x ≤ u} has a noninteger vertex z, for some `, u ∈ Zn, there
exists a integer translation kP + rk of a dilation kP of P such that kP + rk ∩ {x : ` ≤ x ≤ u}
has a noninteger vertex z. That is, kP+rk is not box-integer. Since integer translations preserve
box-integrality, kP is not box-integer.

When the polyhedron P is not integer, by the rationality of the entries, there exists a smallest
q ∈ Z>0 such that qP is an integer polyhedron. Note that P is box-TDI if and only if qP is box-
TDI. Moreover, the minimality of q implies that the set of k ∈ Z>0 such that kP is integer is
qZ>0 (this is easy to see using Bézout’s Lemma, see [14, Proposition 1]). Thus, applying (3.3)
to the integer polyhedron qP , we have the following characterization of box-TDI polyhedra.

Theorem 3.14 ([14]). A polyhedron P is box-TDI if and only if the polyhedron kP is box-
integer for each k such that kP is integer.

3.2.4 Consequences
Here, we review several known results about box-TDI polyhedra that can be derived from

the results presented in Sections 3.2.2 and 3.2.3. We provide the proofs because almost each of
them is immediate. The dominant of a polyhedron P of Rn is dom(P ) = P + Rn

+.

Consequence 3.15 ([19, Theorem 3.6] or [55, Theorem 22.11]). The dominant of a box-TDI
polyhedron is box-TDI.

Proof. A face of dom(P ) is the sum of a face of P and a cone generated by unit vectors. By
Theorem 3.13, and since adding unit vectors preserves total unimodularity, the dominant of a
box-TDI polyhedron is box-TDI.

Consequence 3.16 ([55, Remark 2.21]). If P is a box-TDI polyhedron, then aff(P ) = {x :
Cx = d} for some totally unimodular matrix C.
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Proof. If P is a box-TDI polyhedron, then by Theorem 3.12, since P is a face of P , its affine
hull can be described using a totally unimodular matrix.

Consequence 3.17 ([55, Remark 2.22]). Each edge and each extremal ray of a pointed box-TDI
polyhedron is in the direction of a {0,±1}-vector.

Proof. This is Theorem 3.13 applied to the faces of dimension one of the polyhedron.

Using Theorem 3.12 instead of Theorem 3.13 in the above proof shows that every full-
dimensional box-TDI polyhedron can be described using a {0,±1}matrix. Edmonds and Giles
prove in [28] that it is still true without the full-dimensional hypothesis.

Consequence 3.18 ([28, Theorem 2.16]). If P is a box-TDI polyhedron, then P = {x : Ax ≤
b} for some {0,±1} matrix A and some vector b.

Proof. Let P be a box-TDI polyhedron. By Consequence 3.16, we have aff(P ) = {x : Cx =
d} for some full row rank totally unimodular matrix C. By Theorem 3.12, for each facet F
of P , there exists a totally unimodular matrix DF such that aff(F ) = {x : DFx = dF}. Then,
one of the rows aFx = bF of DFx = dF does not contain aff(P ). Possibly multiplying by −1,
we may assume that aFx ≤ bF is valid for P because F is a facet of P . Then, the matrix A
whose rows are those of C and every aF yields a description of P as desired.

The projection of a box-integer polyhedron along coordinate axes is box-integer. Indeed,
if P = {x : there exists y such that (x, y) ∈ Q} with Q box-integer, then P intersected with
an integer box is integer because it is the projection onto the x variables of the intersection
of Q with the same integer box. Let us skip a few details: this, together with the geometric
characterization of box-TDI polyhedra, yields the following well-known result [55, Page 323].

Consequence 3.19 ([55, Page 323]). The projection of a box-TDI polyhedron along coordinate
axes is box-TDI.

The following is new and came up thanks to conversations with András Frank. Since it is
unpublished, a proof is provided.

Consequence 3.20. The recession cone of a box-TDI polyhedron is box-TDI.

Proof. Let P = Q+ rec(P ) be a box-TDI polyhedron of Rn, where Q is a polytope. The result
comes from the connection between faces of rec(P ) and faces of P explicited in Claims 3.21
and 3.22.

Claim 3.21 ([36]). Each face of rec(P ) is the recession cone of some face of P .

Proof. Let F be a face of rec(P ). There exists a in Rn such that F is the face of rec(P )
maximizing a>x over rec(P ), that is, F is the set of points of rec(P ) achieving max{a>x : x ∈
rec(P )}.

Let H be the face of P maximizing a>x over P . Then, H = R + F , where R is the face
of Q maximizing a>x over Q. Indeed, let h in H . Since h is in P , h = q + c for some q
in Q and c in rec(P ). Note that q maximizes a>x over Q, as if some q′ in Q had aq′ > aq,
then h′ = q′ + c would be in P and would satisfy a>x′ > a>h, contradicting the fact that h
is in H . That is, q is in R, and similarly rec(P ) is in F . Since R + F ⊆ H is immediate, we
have H = R + F , that is, F is the recession cone of H .
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Claim 3.22. For each face of rec(P ), there is a face of P with the same affine full, up to
translation.

Proof. Let F be a face of rec(P ). By Claim 3.21, there exists a face H of P such that F is the
recession cone of H , that is, H = R + F where R is a polytope. Take such an H of minimum
dimension, and let us prove that then aff(H) = aff(F ), up to translation. First, since H =
R + F , one can replace P by some translation of P in order to assume aff(F ) ⊆ aff(H).

We proceed by contradiction and assume that equality does not hold. Then, there exists u
in aff(H)\aff(F ), and we can take such a u to be orthogonal to aff(F ). LetHu be the face ofH
maximizing u>x over H . Then, Hu is a proper face of H . Indeed, Hu is nonempty because u
is orthogonal to aff(F ) and F is the recession cone of H; and Hu 6= H because u is in aff(H).
In particular, dim(Hu) < dim(H).

Beside, F is the recession cone of Hu. Indeed, since Hu is a face of H , we have rec(Hu) ⊆
rec(H) = F . Moreover, for y in Hu and z in F , the choice of u implies u>(y + z) = u>y.
Since F is the recession cone of H , we have y + z in H , and since y maximizes u>x over H ,
we have y + z in Hu. Therefore, rec(Hu) ⊇ rec(H), and we get the equality.

Since Hu is a face of H , and the latter is a face of P , we have that Hu is a face P .
Then, dim(Hu) < dim(H) contradicts the minimality assumption on the dimension of H .

We now apply twice Theorem 3.11. Since P is box-TDI, each face of P has an equimodular
face-defining matrix. This is a property of the affine hull of the face, and it is preserved under
translation. By Claim 3.22, each face of rec(P ) inherits this property. Therefore, rec(P ) is
box-TDI.
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3.3 Totally Equimodular Matrices
Here, we introduce a generalization of totally unimodular matrices for which the associated

polyhedra still have nice properties: they are all box-TDI.
Hoffman and Kruskal [43] proved that an integer matrix A is totally unimodular if and only

if the polyhedron {x : Ax ≤ b} is box-integer for all b in Zm. As noticed by Schrijver [55,
Page 318], their result implies the following characterization.

Theorem 3.23 ([55, Page 318]). A matrix A of Zm×n is totally unimodular if and only if the
system Ax ≤ b is box-TDI for all b ∈ Zm.

An equivalent definition of total unimodularity is to ask for every set of linearly independent
rows to be unimodular. In this light, it is natural to define totally equimodular matrices as those
for which all sets of linearly independent rows form an equimodular matrix.

Let A ∈ Qm×n be such a matrix. For all b ∈ Qn, each face of the polyhedron {x : Ax ≤ b}
has a face-defining matrix which is formed by a subset of rows of A. By definition of total
equimodularity, this matrix is equimodular, hence each face of this polyhedron has an equimod-
ular face-defining matrices. This implies that the polyhedron is box-TDI by Theorem 3.11 and
the remark thereafter. In fact, this characterizes totally equimodular matrices. Indeed, suppose
that {x : Ax ≤ b} is box-TDI for all b ∈ Qm. Let B be a collection of rows of A of full row
rank. By chosing b to be 0 on the coordinates associated to B and a sufficiently large number
elsewhere, we ensure that B is face-defining for {x : Ax ≤ b}. The latter being box-TDI, B is
equimodular by Theorem 3.11.

Thus, we have the following, which says that relaxing total unimodularity to total equimod-
ularity might not preserve the box-TDIness of the associated linear systems but maintains the
box-TDIness of the associated polyhedra.

Theorem 3.24 ([14]). A matrix A of Qm×n is totally equimodular if and only if the polyhedron
{x : Ax ≤ b} is box-TDI for all b ∈ Qm.

Since deciding whether a given matrix is totally unimodular can be done in polynomial
time, see e.g. [55, Chapter 20], Statement 3 of Theorem 3.1 implies that deciding whether a
given matrix is equimodular can be done in polynomial time. However, for totally equimodular
matrices, the recognition problem remains open.

Open problem 3.25. Can totally equimodular matrices be recognized in polynomial time?

Interestingly, it is enough to study totally equimodular matrices with 0, ±1 coefficients.
Indeed, in a totally equimodular matrix, the nonzero coefficients of a given row all have the
same absolute value. Thus, such a matrix can be scaled row by row into a 0, ±1 matrix. This
scaling preserves total equimodularity and does not change the family of associated polyhedra.

For totally unimodular matrices, the positive answer to their recognition problem comes
from Seymour’s decomposition theorem [55, Theorem 19.6]. The starting point of this decom-
position theorem is the study of operations preserving total unimodularity. With P. Chervet, M.
Lacroix, F. Pisanu, L.-H. Robert, and R. Wolfler Calvo, we started the study of which operations
preserve total equimodularity, with the following question in mind.

Open problem 3.26. Is there a decomposition theorem for totally equimodular matrices?
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We conclude this section by a exhibiting a class of totally equimodular matrices. We believe
that this class makes the two open problems above substantial.

The edge-vertex incidence matrix of a graph G = (V,E) is the matrix M of {0, 1}E×V
such that Mev = 1 if and only if the edge e is incident to the node v. It is well-known that
the edge-vertex incidence matrix of a graph is totally unimodular if and only if the graph is
bipartite. Hence, in this case, it is totally equimodular. We show below that the edge-vertex
incidence matrix of a graph is totally equimodular even when the graph is not bipartite. This
result is unpublished and is a part of the ongoing work mentioned above, which is why a proof
is provided.

Theorem 3.27 ([13]). The edge-vertex incidence matrix of a graph is totally equimodular.

Proof. Let G = (V,E) be a graph and let M be a full row rank matrix formed by a subset of k
rows of the edge-vertex incidence matrix ofG. Let us prove thatM is equimodular by induction
on its number of rows: the base case is whenM has one row, and thenM is equimodular since a
row has only values in {0, 1}. The matrixM encodes a subgraphH = (V, F ) ofGwith k = |F |
edges. Let W be the vertices of H incident to an edge of F .

We have |W | ≥ |F |, as otherwise M would have too many columns of zeros to have full
row rank. If |W | = |F |, then M has exactly one nonsingular k × k submatrix, hence M is
equimodular. If |W | > |F |, then H has a vertex u of degree one. Indeed, if every vertex of W
had degree at least two we would have 2|F | = ∑

w∈W
d(w) ≥ 2|W |, a contradiction.

The column of u in M contains a single one, in uv’s row, where v is the neighbor of u in H .
LetM ′ be the matrix obtained fromM by removing uv’s row. A nonsingular k×k submatrixN
of M has to contain at least one of u and v, as otherwise it has only zeros in uv’s row. When N
contains exactly one of them, then develop with respect to uv’s row. When N contains both of
them, then develop with respect to u’s column. In both cases, this yields a (k − 1) × (k − 1)
nonzero determinant of N , up to the sign. By the induction hypothesis, N is equimodular,
hence all these determinants are equal in absolute value. Therefore, so are the nonzero k × k
determinants of M , and M is equimodular.

Let AG be the edge-vertex incidence matrix of a graph G = (V,E). Since multiplying a
row by −1 preserves total equimodularity, Theorem 3.24 implies that every polyhedron of the
form {x ∈ RE : AGx Q b} with b rational is box-TDI, where “Q” means that each inequality
can be of type “≤”, “≥”, or “=”.

In particular, {x ∈ RE
+ : AGx ≤ 1} is box-TDI. This polyhedron is called the edge re-

laxation of the stable set polytope of G, because its integer points are precisely the stable sets
of G. Since finding a maximal stable set in a given graph is NP-complete [46], Theorem 3.27
implies that integer programming over a box-TDI polyhedron is NP-complete.

Corollary 3.28 ([13]). Given a box-TDI polyhedron P and a cost vector c, finding an integer
point x maximing c>x over P is NP-complete.
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Chapter 4

Examples of Box-TDI Polyhedra

This chapter is devoted to examples of box-TDI systems and polyhedra. The results pre-
sented here heavily rely on the characterizations of box-TDI polyhedra of Chapter 3.

First, we disprove a conjecture of Ding, Zang, and Zhao [26] about box-perfect graphs.
Then, we discuss possible connections between box-total dual integrality and the integer de-
composition property. We also shed lights on the equivalence between two results concerning
Mengerian clutters. Finally, we provide several box-TDI systems in series-parallel graphs.

4.1 Box-Perfect Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
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4.4.2 The Flow Cone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4.3 The k-Edge-Connected Spanning Subgraph Polyhedron . . . . . . . . 55
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4.1 Box-Perfect Graphs
Recall that the stable set polytope of a graph is the convex hull of the incidence vectors of its

stable sets, and a clique is a set of pairwise adjacent nodes. Perfect graphs [47] are known to be
those whose stable set polytope is described by the system composed of the clique inequalities
and the nonnegativity constraints:

{
x(C) ≤ 1 for all cliques C,
x ≥ 0.

A box-perfect graph is a graph for which this system is box-TDI. Since this system is known
to be TDI if and only if the graph is perfect [47], a graph is box-perfect if and only if it is
perfect and its stable set polytope is box-TDI. The characterization of box-perfect graphs is a
long standing open question raised by Cameron and Edmonds [9] in 1982. Recent progress has
been made on this topic by Ding, Zang, and Zhao [26]. They exhibit several new subclasses
of box-perfect graphs, and in particular prove the conjecture of Cameron and Edmonds [9]
that parity graphs are box-perfect. They also propose a conjecture for the characterization of
box-perfect graphs.

Before stating their conjecture, we provide the necessary definitions. Given an undirected
graph G = (V,E) and a node v in V , we denote by G \ {v} the graph obtained from G by
removing v. For a node subset W ⊆ V , the graph G[W ] is the graph induced by W , that is,
the graph obtained by removing all nodes not in W . The graph G is bipartite when V can be
partitionned into two nonempty sets U and W such that all its edges lie between U and W . In
this case, we denote G by (U,W,E). The biadjacency matrix of such a graph is the matrix M
of {0, 1}U×W such that Muw = 1 if and only if uw is in E.

The conjecture of Ding, Zang, and Zhao [26] involves the class of graphsR built as follows.
Let G = (U,W,E) be a bipartite graph whose biadjacency matrix M is not totally unimodular
but all submatrices of M are. Add a set of edges F between nodes of W such that the neigh-
borhood NG′(u) of u in G′ = (U ∪W,E ∪ F ) is a clique for all u ∈ U . If there exists u ∈ U
such that NG′(u) = W , then the graph G′ \ {u} is inR, otherwise G′ is inR.

Conjecture 4.1 (Ding, Zang, and Zhao [26]). A perfect graph is box-perfect if and only if it
contains no graph fromR as an induced subgraph.

In [14], we provide a construction which preserves non box-perfection, and use it to build
the graph below, which is not box-perfect and has no graph fromR as an induced subgraph. It
is a counter-example to Conjecture 4.1.

1 2 3

4 5

678

Figure 4.1: A counter-example to Conjecture 4.1.
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It can be checked that this graph is perfect. Let us exhibit a nonequimodular face-defining
matrix for the stable set polytope of this graph, which will imply that it is not box-perfect.

M =




1 2 3 4 5 6 7 8

{1,2,4} 1 1 0 1 0 0 0 0
{2,3,5} 0 1 1 0 1 0 0 0
{5,6} 0 0 0 0 1 1 0 0
{6,7} 0 0 0 0 0 1 1 0
{4,7,8} 0 0 0 1 0 0 1 1




The matrix M is not equimodular because the determinant formed by the columns 2,5,6,7,4 is
that of a 5-cycle, thus equals 2 in absolute value, whereas the determinant of columns 1,2,5,6,7
equals 1, as the corresponding matrix is triangular with ones on the diagonal.

By Observation 3.2, to prove that M is face-defining, it is enough to exhibit 8− 5 + 1 = 4
affinely independent stable sets intersecting every clique defining the matrix, namely the cliques
{1, 2, 4}, {2, 3, 5}, {5, 6}, {6, 7}, {4, 7, 8}. Here are 4 stables sets intersecting each of these
cliques: {1, 3, 6, 8}, {1, 5, 7}, {2, 6, 8}, {3, 4, 6}. Note that each of them contains a node that
is not in the other ones, hence the are independent. Thus, M is face-defining for the stable
set polytope of the above graph. Since M is not equimodular, this graph is not box-perfect by
Theorem 3.11.

We refer to [14] for the proof that this graph has no graph from R as an induced subgraph,
and hence is indeed a counter-example to Conjecture 4.1.

We conclude with the following problem. To the best of my knowledge, there are no nice
conjectures about which graphs should be forbidden.

Open problem 4.2. Characterize box-perfect graphs by a list of forbidden induced subgraphs.
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4.2 Integer Decomposition Property
In this section, we discuss possible connections between box-total dual integrality and the

integer decomposition property. This property arises in various fields such as integer program-
ming, algebraic geometry, combinatorial commutative algebra. Several classes of polyhedra
are known to have the integer decomposition property, as for instance: projections of polyhe-
dra defined by totally unimodular matrices [57], polyhedra defined by nearly totally unimodular
matrices [34], certain polyhedra defined by k-balanced matrices [64], the stable set polytope of
claw-free t-perfect graphs and h-perfect line-graphs [7].

A polyhedron P has the integer decomposition property if for any natural number k and any
integer vector x in kP , there exist k integer vectors x1, . . . , xk in P such that x1+ · · ·+xk = x.
A stronger property is when the polyhedron P has the Integer Carathéodory Property, that is,
if for every positive integer k and every integer vector x in kP , there exist n1, . . . , nt in Z≥0 and
affinely independent integer points x1, . . . , xt in P such that n1+· · ·+nt = k and x =

∑
i nixi.

In [35], Gijswijt and Regts introduce a class P of polyhedra and show that they have the
Integer Carathéodory Property. They define P to be the set of polyhedra P such that for any k
in Z≥0, r in {0, . . . , k}, and w in Zn the intersection rP ∩ (w − (k − r)P ) is box-integer. They
also show [35, Proposition 4] that every P in P is box-integer. Given the definition of P , note
that if a polyhedron is in P , then so are all its integer dilations. Therefore, by Theorem 3.14,
this has the following consequence.

Corollary 4.3. Every P in P is box-TDI.

Box-TDI polyhedra do not inherit the Integer Carathéodory Property. Actually, they do not
even inherit the integer decomposition property, as the classical example of polytope without
the integer decomposition property P = conv ((0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)) is box-TDI.
To see that P is box-TDI, note that in the minimal linear description of P given below, the
matrix of constraints is totally equimodular, and apply Theorem 3.24. However, the point
(1, 1, 1) is in 2P and cannot be writen as an integer combination of the integer points of P ,
hence P does not have the integer decomposition property.

P =




x ∈ R3 :




1 −1 −1
−1 1 −1
−1 −1 1
1 1 1


x ≤




0
0
0
2








Nevertheless, given the strong integrality properties of box-TDI polyhedra, it might be that
many of them have the integer decomposition property. In this area, a long standing open
question is known as Oda’s question [48]: is it true that every smooth polytope has the integer
decomposition property? A full-dimensional integer polytope of Rn is smooth if for every
vertex v, there are exactly n generators of the associated minimal tangent cone, and these
generators form a basis of the lattice Zn.

The polyhedron of the example above is not smooth, and the following special case of Oda’s
question is a reasonable first step to determine which box-totally dual integral polyhedra have
the integer decomposition property.

Open problem 4.4. Do smooth box-totally dual integral polyhedra have the integer decompo-
sition property?
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4.3 Box-Mengerian Clutters
Here, we explain that the equivalence between the main result of Gerards and Laurent [33]

and that of Chen, Ding, and Zang [11] about binary clutters is actually a special case of Theo-
rem 3.14.

We briefly introduce the definitions we need about clutters. A collection C of subsets of a
set E is a clutter if none of its sets contains another one. We denote by AC the C ×E incidence
matrix of C and by PC = {x ∈ RE : ACx ≥ 1, x ≥ 0} the associated covering polyhedron. A
clutter C is binary if the symetric difference of any three elements of C contains an element of C.
A clutter C is box- 1

k
-integral if for all `, u ∈ 1

k
ZE , each vertex of PC ∩ {` ≤ x ≤ u} belongs

to 1
k
ZE . Equivalently, the polyhedron kPC is box-integer. A matrix A ∈ {0, 1}m×n is called

(box-)Mengerian if the system Ax ≥ 1, x ≥ 0 is (box-)TDI. A clutter C is (box-)Mengerian if
AC is (box-)Mengerian. Note that a clutter C is box-Mengerian if and only if it is Mengerian
and PC is box-TDI. Deleting an element e ∈ E means replacing C by C \ e = {X ∈ C : e /∈
X} and contracting an element e ∈ E means replacing C by C/e which is composed of the
inclusionwise minimal members of {X \ {e} : X ∈ C}. The minors of a clutter are the clutters
obtained by repeatedly deleting and contracting elements of E. The clutter Q6 is defined on
the set E4 of the edges of the complete graph K4, and its elements are the triangles of K4, see
Figure 4.2. The clutter Q7 is defined on E4 ∪ e where e /∈ E4, and its elements are X ∪ {e} for
each triangle or perfect matching X of K4.

In 1995, Gerards and Laurent [33] characterized the binary clutters that are box- 1
k
-integral

for all k ∈ Z>0 by forbidding minors.

Theorem 4.5 ([33, Theorem 1.2]). A binary clutter is box- 1
k
-integral for all k ∈ Z>0 if and

only if neither Q6 nor Q7 is its minor.

In 2008, Chen, Ding, and Zang [11] characterized box-Mengerian binary clutters by forbid-
ding minors. In [10], Chen, Chen, and Zang provide a simpler proof of this characterization,
based on the so called ESP property. We mention that none of the proofs of Theorem 4.6 rely
on Theorem 4.5.

Theorem 4.6 ([11, Corollary 1.2]). A binary clutter is box-Mengerian if and only if neither Q6

nor Q7 is its minor.

The combination of Theorems 4.5 and 4.6 implies that a binary clutter is box-Mengerian if
and only if it is box- 1

k
-integral for all d ∈ Z>0. We show in the following how this equivalence

is a special case of Theorem 3.14.
By Theorem 3.3 and (3.3) in Section 3.2.3, if a clutter C is box-Mengerian, then kPC is

box-integer for all k ∈ Z>0. Since, by definition, for kPC to be box-integer is exactly the same
as C being box- 1

k
-integral, this gives the first direction of the equivalence.

Conversely, by definition and by Theorem 3.14, if a clutter C is box- 1
k
-integral for all k ∈

Z>0, then PC is integer and box-TDI. To conclude, it is enough to prove that if PC is box-TDI,
then C is Mengerian. We apply Seymour’s characterization [58]: a binary clutter is Mengerian
if and only if it has no Q6 minor. The property of PC being box-TDI is closed under taking
minors since PC/e and PC\e are respectively obtained from PC ∩ {xe = 0} and PC ∩ {xe = 1}
by deleting e’s coordinate. Furthermore, PQ6 is not box-TDI. Indeed, the first three rows of
the matrix AQ6 of Figure 4.2 form a nonequimodular matrix M , as the determinant of the three
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first columns equals 2 and that of the three last columns equals 1. Moreover, M is face-defining
for PQ6 , by Observation 3.2 and because, if χi denotes the ith unit vector, χ1 + χ6, χ2 + χ5,
χ3 + χ4, and χ4 + χ5 + χ6 are affinely independent, belong to PQ6 , and satisfy Mx = 1.

AQ6 =




1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1
0 0 0 1 1 1




Figure 4.2: The matrix representation of the clutter Q6.

Therefore, if PC is box-TDI, then it has no minor Q6, hence C is Mengerian. That is, C is
box-Mengerian.
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4.4 Box-TDI Systems in Series-Parallel Graphs

As we shall see, the cuts defined by the nodes of the complete graph on four vertices K4

form a nonequimodular matrix. Thus, having the graph K4 as a minor will have a good chance
to forbid the box-TDIness of a polyhedron in which the cuts define either inequalities or form a
basis of some face. We shall see several examples where that happens. For each these examples,
it is then natural to wonder whether one gets box-TDIness when there is no minor K4. It will
be the case for each one, and we will provide several box-TDI polyhedra in the class of graphs
having no K4 minors: series-parallel graphs. We will also provide a box-TDI system with
integer coefficients describing each of these polyhedra.

In Section 4.4.1, we provide a box-TDI system describing the cut cone of a series-parallel
graph, joint work with D. Cornaz and M. Lacroix [21].

In Section 4.4.2, we provide the Schrijver system of the flow cone of a series-parallel graph,
the flow cone being the polar of the cut cone. The Schrijver system is the (unique) TDI system
having a minimum number of inequalities describing a given full-dimensional polyhedron. This
is joint work with M. Barbato, M. Lacroix, E. Lancini, and R. Wolfler Calvo [4].

In Section 4.4.3, we study the polyhedron related to k-edge-connected spanning subgraphs
of a given graph: they are the subgraphs that remain connected after the removal of any k − 1
edges. We first prove that this polyhedron is box-TDI if and only if the graph is series-parallel,
and then provide a integer box-TDI system for it. This is joint work with M. Barbato, M.
Lacroix, and E. Lancini [3] that has been accepted for publication recently.

We provide a few definitions for the subsequent sections. Let G = (V,E) be an undirected
graph. Two edges of G are parallel if they share the same endpoints, and G is simple if it
has neither parallel edges nor loops. A graph is 2-connected if it remains connected after the
removal of any node. A 2-connected component of G is a maximal 2-connected subgraph of G.
A 2-connected graph is trivial if it is composed of a single edge.

A subset of edges of G is called a circuit if, together with the nodes it covers, it forms a
connected graph in which these nodes all have degree two. Given a subset U of V , the cut
δ(U) is the set of edges having exactly one endpoint in U . A bond is a minimal nonempty
cut. Given a partition {V1, . . . , Vn} of V , the set of edges having endpoints in two distinct
Vi’s is called a multicut and is denoted by δ(V1, . . . , Vn). For every multicut M , there exists
a unique partition {V1, . . . , VdM} of the nodes of V such that M = δ(V1, . . . , VdM ), and G[Vi]
is connected for all i = 1, . . . , dM . We say that dM is the order of M and V1, . . . , VdM are
the classes of M . From now on, we will assume that multicuts are described in this way.
Note that δ(V1, . . . , VdM ) = δ(V1)∪ · · · ∪ δ(VdM ). Moreover, the incidence vector of a multicut
δ(V1, . . . , VdM ) is the half sum of the incidence vectors of the cuts δ(V1), . . . , δ(VdM ). Multicuts
are characterized in terms of circuits as follows: a set of edges M is a multicut if and only if
|M ∩ C| 6= 1 for all circuits C of G.

A graph is series-parallel if its nontrivial 2-connected components can be constructed from
a circuit of length 2 by repeatedly adding edges parallel to an existing one, and subdividing
edges, that is, replacing an edge by a path of length two. Equivalently, series-parallel graphs
are those having no K4-minor [27].
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4.4.1 The Cut Cone
The cut cone of an undirected graph G = (V,E) is the set of nonnegative combinations

of incidence vectors of cuts of G. Equivalently, it is the set of nonnegative combinations of
incidence vectors of multicuts of G, since cuts are multicuts and since the incidence vectors of
multicuts are the half sum of incidence vectors of some cuts. This cone satisfies the inequalities

{
x(C \ {e})− xe ≥ 0 for each circuit C and each edge e ∈ C,
x ≥ 0.

(4.1)

Indeed, multicuts are the sets of edges that intersect no circuit exactly once, and the constraints
above imply that, if a 0/1 vector contains an edge e of a circuit C, then it contains at least
another edge of C. Actually, the set of x in RE satisfying (4.1) is exactly the cut cone of G
when G has no K5-minor [60]. Schrijver [56, Corollary 29.9c] showed that System (4.1) is
TDI if and only if the graph is series-parallel.

In [21], with D. Cornaz and M. Lacroix1, we strenghten this TDIness result as follows.

Theorem 4.7 ([21]). A graph G is series-parallel if and only if System (4.1) is box-TDI.

We mention that this also strenghtens Corollary 4.1 of [20], which proves that adding x ≤ 1

to (4.1) preserves TDIness if and only if the graph is series-parallel. Previously, Chopra [15]
showed that adding x ≤ 1 to (4.1) preserves integrality if and only if the graphs is series-
parallel. Schrijver [56, Corollary 29.9c] also proved that a graph is series-parallel if and only
if the standard systems describing the cycle cone, the T -join polytope, the cut polytope, the
multicut polytope, and the T -join dominant are TDI. We also strenghten this in [21] by proving
that one can replace TDI by box-TDI for each of the systems in [56, Corollary 29.9c].

Therein, we also explicit a min-max relation implied by Theorem 4.7, and we refer the
interested reader to [21, Corollary 6].

4.4.2 The Flow Cone
The flow cone of a graph G = (V,E) is the polar of the cut cone. When G has no K5-

minor [59], it is described by x(C) ≥ 0, for all cuts C of G. As mentioned in Section 3.2.2,
polarity preserves box-TDIness for cones. Thus, the flow cone is box-TDI when the graph is
series-parallel. In fact, this is an equivalence.

Theorem 4.8 ([14]). The flow cone of a graph is box-TDI if and only if the graph is series-
parallel.

Indeed, when the graph is not series-parallel, it has K4 as a minor. By Theorem 3.11, the
flow cone of K4 is not box-TDI: it is easy to check that the following nonequimodular matrix is
face-defining for its flow cone. Here, 1, 2, 3, 4 are the nodes of K4 and eij denotes the edge ij.

M =




e12 e13 e23 e14 e24 e34

δ(1) 1 1 0 1 0 0
δ(2) 1 0 1 0 1 0
δ(3) 0 1 1 0 0 1




1Little tear of emotion: this was my first box-TDIness result!
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This transfers straightforwardly to the case when the graph has K4 as a minor.
To the best of my knowledge, this is the first proof of the box-TDIness of some polyhedron

that does not rely on a box-TDI system describing the polyhedron.
Moreover, when the graph G is series-parallel, we provided with P. Chervet and L.-H.

Robert [14] the following box-TDI system describing its flow cone:

1

2
x(B) ≥ 0 for all bonds B of G, (4.2)

and asked for a box-TDI system with integer coefficients, which exists by [55, Theorem 22.6(i)]
and [19, Corollary 2.5].

We answer this question in [4] with M. Barbato, M. Lacroix, E. Lancini, and R. Wolfler
Calvo by exhibiting the Schrijver system [54] describing the flow cone of a series-parallel graph.
The Schrijver system of a full-dimensional polyhedron P is the unique minimal TDI system
Ax ≤ b describing P with A integer, minimal meaning that it has a minimum number of
inequalities.

A few definitions are needed to state the result: the reduced graph of a multicut δ(V1, . . . , Vd)
is the graph obtained by contracting each Vi into a single node; a graph is chordal when each
cycle has a chord; a multicut is chordal if every circuit of length four or more has a chord. Note
that bonds are chordal multicuts.

Theorem 4.9 ([4]). The Schrijver system for the flow cone of a series-parallel graph G is the
following:

x(M) ≥ 0 for all chordal multicuts M of G. (4.3)

Moreover, this system is box-TDI.

Moreover, it is proved in [4] that the system x(M) ≥ 0 for all multicuts M of G is TDI if
and only if G is series-parallel.

This last result and Theorem 4.9 can be rephrased using Hilbert basis. A set of vec-
tors {v1, . . . , vk} is a Hilbert basis if each integer vector that is a nonnegative combination
of v1, . . . , vk can be expressed as a nonnegative integer combination of them. The link between
Hilbert basis and TDIness is stated in the following theorem.

Theorem 4.10 (Theorem 22.5 of [55]). A system Ax ≥ b is TDI if and only if for every face F
of P = {x : Ax ≥ b}, the rows of A associated with tight constraints for F form a Hilbert
basis.

Then, in terms of Hilbert bases, the above results answer to the following questions:

• When do multicuts form a Hilbert basis? When the graph is series-parallel.

• Which multicuts form a Hilbert basis? When they contain all chordal multicuts (provided
that the graph is series-parallel).

4.4.3 The k-Edge-Connected Spanning Subgraph Polyhedron
In this section, we are interested in integrality properties of systems related to k-edge-

connected spanning subgraphs.
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A k-edge-connected spanning subgraph of a graph G = (V,E) is a graph H = (V, F ),
with F being a collection of elements of E where each element can appear several times, that
remains connected after the removal of any k− 1 edges. The incidence vector of a family F of
E is the vector χF of ZE+ such that e’s coordinate is the multiplicity of e in F for all e in E. The
convex hull of incidence vectors of all the families of E inducing a k-edge-connected spanning
subgraph of G forms a polyhedron, hereafter called the k-edge-connected spanning subgraph
polyhedron of G and denoted by Pk(G). Note that Pk(G) is the dominant of the convex hull
of incidence vectors of all the families of E containing at most k copies of each edge and
inducing a k-edge-connected spanning subgraph of G. Since the dominant of a polyhedron is
a polyhedron, Pk(G) is a full-dimensional polyhedron even though it is the convex hull of an
infinite number of points.

For k = 1, this polyhedron is the dominant of the spanning tree polytope, and is box-TDI
for all graphs. From now on, we assume that k ≥ 2. When G is series-parallel, Cornue-
jols, Fonlupt, and Naddef [22] provided a description of P2(G), that was later generalized to
P2h(G) by Didi Biha and Mahjoub [23]. In fact, Didi Biha and Mahjoub [23] gave a complete
description of Pk(G) for all k ≥ 2.

Theorem 4.11 ([23]). Let G be a series-parallel graph and h be a positive integer. Then,
P2h(G) is described by:

{
1
2
x(D) ≥ h for all cuts D of G,
x ≥ 0,

(4.4)

and P2h+1(G) is described by:
{

x(M) ≥ (h+ 1)dM − 1 for all multicuts M of G,
x ≥ 0.

(4.5)

Chen, Ding, and Zang [12] proved that, for h = 1, System (4.4) is box-TDI if and only if G
is series-parallel. Their result was our starting point on this topic, with two questions in mind,
in the light of Section 4.4.2:

• When the graph is series-parallel, is the polyhedron Pk(G) box-TDI for all k ≥ 2?

• Can we provide a box-TDI system describing Pk(G) with only integer coefficients, start-
ing with P2(G)?

We answer the first question by the affirmative.

Theorem 4.12 ([3]). For k ≥ 2, Pk(G) is a box-TDI polyhedron if and only if G is series-
parallel.

The case k even is obtained using the box-TDIness for k = 2 and the fact that dilations
maintain box-TDIness. For the case k odd, the proof relies entirely on Theorem 3.11. On the
contrary to what is generally done, the proof does not exhibit a box-TDI system describing
Pk(G). For this case, the proof is by induction on the number of edges of G. We prove
that series-parallel operations preserve the box-TDIness of the polyhedron. We first prove
that adding a parallel edge maintains equimodularity of the face-defining matrices. The most
technical part of the proof is the subdivision of an edge uw into two edges uv and vw. We
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proceed by contradiction: by Theorem 3.11, we suppose that there exists a face F of Pk(G)
defined by a nonequimodular matrix. We study the structure of the inequalities corresponding
to this matrix. In particular, we show that they are all associated with multicuts, and that these
multicuts contain either both uv and vw, or none of them. These last results allow us to build
a nonequimodular face-defining matrix for the smaller graph, which contradicts the induction
hypothesis. The detailed proof can be found in [3].

To the best of my knowledge, this is the second proof of the box-TDIness of a polyhedron
that does not exhibit a box-TDI system describing it. The first such proof is the polar one
mentioned in Section 4.4.2.

Concerning the second question, our idea was to start with P2(k) and to mimic the approach
we had for the flow cone: replace halfs of cuts by multicuts. Indeed, the description of P2h(G)
given in Theorem 4.11 and the decomposition of multicuts into cuts yields the following.

Observation 4.13. Let G be a series-parallel graph. The polyhedron P2(G) is described by:

{
x(M) ≥ dM for all multicuts M of G,
x ≥ 0.

(4.6)

We could prove that System (4.6) is TDI, and it turns out that it implies the same for all
even k ≥ 2. That is, we proved the following, where System (4.7) describes P2h(G) for G
series-parallel graph and h positive.

Theorem 4.14 ([3]). For a series-parallel graph G and a positive integer h, the system

{
x(M) ≥ hdM for all multicuts M of G,
x ≥ 0

(4.7)

is TDI.

Combining Theorem 4.12 and Theorem 4.14, we have that, for h positive, System (4.7) is
box-TDI if and only if the graph is series-parallel.

Then, the proof of Theorem 4.14 uses Hilbert bases. Indeed, it is based on the TDIness of
System (4.4) when h = 1 and the structure of inequalities of System (4.6). Their right-hand
sides are proportional to k, hence it is enough to prove the case k = 2. This allows us to use the
box-TDIness result of Chen, Ding, and Zang [12] to obtain a TDI system for P2(G), namely
System (4.4) with h = 1. In terms of Hilbert bases, the TDIness of this system implies that,
given a face F of P2(G), the integer points of the associated cone are the half sum of the cuts
tight for F . The technical part of the proof is to show that each integer point of this cone is also
the sum of incidence vectors of the multicuts tight for F . We refer the interested reader to [3]
for the details.

For the case when k ≥ 2 is odd, we prove that System (4.5) is TDI if and only if G is a
series-parallel graph.

Theorem 4.15 ([3]). For h positive and integer, System (4.5) is TDI if and only if G is series-
parallel.
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Proving the TDIness for k odd is considerably more involved than for k even. The first
difference with the even case is the lack of a known TDI system describing Pk(G) when k is
odd, even a noninteger one. Thus, no property of the Hilbert bases associated with Pk(G) is
known, and the approach used to prove Theorem 4.14 cannot be applied. Instead, following the
definition of TDIness, we prove the existence of an integer optimal solution to each feasible
dual problem.

Another difference with the case when k is even follows from the structure of the inequal-
ities in System (4.5). In particular, the presence of the constant “−1” in the right-hand sides
perturbs the structure of tight multicuts. Indeed, when k is odd, the tightness of δ(V1, . . . , Vn)
does not imply that of δ(V1), . . . , δ(Vn). Consequently, it is not clear how the contraction of an
edge impacts the tightness of a multicut δ(V1, . . . , Vn): merging adjacent Vi’s is not sufficient
to obtain new tight multicuts. Due to the link between tight multicuts and positive dual vari-
ables, the structure of the optimal solutions to the dual problem is completely modified when
subdividing an edge. Proving directly that subdivision preserves TDIness turned out to be chal-
lenging, and we overcome this difficulty by deriving new properties of series-parallel graphs.
More precisely, we prove that, when G is a nontrivial simple 2-connected series-parallel graph,
at least one of the following holds:

• two nodes of degree two are adjacent,

• a node of degree two belongs to a circuit of length three,

• two nodes of degree two belong to the same circuit of length four.

Then, the proof of Theorem 4.15 focuses on properties of nodes of degree two in a minimal
counterexample to the TDIness of System (4.5). In particular, we prove that no two nodes of
degree two are adjacent, or in the same circuit of length four. Moreover, no triangle contains
nodes of degree two. By the properties of series-parallel graphs mentioned above, this implies
that the graph is not series-parallel, the contradiction we desired. To derive these properties,
we study the interplay between cuts associated with nodes of degree two and dual optimal
solutions. Again, we refer to [3] for the complete proof.

We conclude this section with a question that Mourad Baïou asked me some time ago:
since many systems and polyhedra seem to be box-TDI for series-parallel graphs, what about
the Steiner 2-edge-connected subgraph polyhedron?

Given a graph G = (V,E) and a subset of nodes S ⊆ V , the Steiner 2-edge survivable
network problem is the problem of finding a minimum cost subgraph ofG spanning S such that
between every two nodes of S there are at least two edge-disjoint paths. The Steiner 2-edge-
connected subgraph polyhedron is the convex hull of the incidence vectors of such subgraphs.
In [2], it is proved that for a series-parallel graph G = (V,E) and S ⊆ V , this polyhedron is
described by:





x(δ(W )) ≥ 2 for all W ⊆ V such that W 6= S and W ∩ S 6= ∅,
x ≤ 1,
x ≥ 0.

(4.8)

Open problem 4.16. Is the Steiner 2-edge-connected subgraph polyhedron box-TDI when the
graph is series-parallel?
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Conclusion

Let me summarize the notable things, in my opinion, that we came accross throughout this
document. First, we discussed the complexity of polyhedra with the angle of how many in-
equalities are required to describe them. This made slack matrices appear, and we saw that
their nonnegative rank could be handled using randomized communication protocols. These
protocols are now a standard tool to derive the existence of some extended formulation. Re-
cently for instance, upper bounds for the extension complexity of matroid polytopes were given
by Aprile [1] using randomized communication protocols.

In a second part, we thoroughly studied box-TDI polyhedra. We saw that despite their
rather involved definition, we could characterize them in ways that are helpful in practice.
Nevertheless, these characterizations do not yield insights towards their recognition problem1.
Moreover, as we saw with several intriguing open problems, the topic is well alive and many
things remain to be understood. Among these problems, one of my favorites these days con-
cerns the matrices I called totally equimodular, and I currently advise a PhD student on the
subject.

Incidentally, beside these two topics, several other subjects winked at me these past years.
The one I got into the most concerns volumes of polyhedra. With T. Milcent, we are currently
revisiting the Moment-Of-Fluid method, which simulates interactions between fluids submitted
to a velocity field. This is a completely different area, which involves partial differential equa-
tion and numerical simulations, yet polyhedra come into play because the domain in which the
fluids interact is discretized into small polyhedral cells.

To conclude this document, in which we discussed two seemingly unrelated notions about
polyhedra, let us try to question how they intersect.

As mentioned in Section 3.2.4, projections along coordinate axes preserve box-total dual in-
tegrality. Therefore, when a polyhedron has a box-TDI extended formulation and the projection
is along coordinate axes, then the polyhedron is box-TDI. This might fail for other directions of
projection. For instance, we saw in Section 2.1 the lexicographical polytope as the projection
of a flow polyhedron. The latter is box-TDI as we mentioned in Section 3.1. Yet, because of the
direction of the projection (2.1), lexicographical polytopes do not inherit this box-TDIness: the
example in Figure 2.1 is not box-integer, hence not box-TDI. Thus, having a box-TDI extended
formulation does not guarantee being box-TDI.

On the other hand, one could wonder whether for a polyhedron to be box-TDI impacts its
extension complexity. Unfortunately, Rothvoß proves in [52] that there exist matroid polytopes
having an extension complexity exponential in their dimension. Since matroid polytopes are

1Spoiler alert: recently, with P. Chervet, M. Lacroix, F. Pisanu, L.-H. Robert, and R. Wolfler Calvo, we proved
that deciding whether a given polyhedron is box-TDI is co-NP-complete. Yet, Open Problem 3.8, the recognition
problem of box-TDI cones, remains open.
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box-TDI, there exists box-TDI polyhedra with exponential extension complexity. The proof
of [52] uses a counting argument, thus is purely existential: it does not provide an explicit
family of matroid polytopes having exponentially high extension complexity. Producing ex-
plicitly such a family would answer an almost thirty year old open question in communication
complexity [40, Page 174].

Maybe the question is easier in the more general class of box-TDI polyhedra, so let me
conclude with an open problem involving the two main notions of the document.

Open problem 4.17. Is there an explicit family of box-totally dual integral polyhedra having
exponential extension complexity?
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List of Open Problems

Open problem 3.8 (Page 38). Can box-integer cones be recognized in polynomial time?

Open problem 3.25 (Page 44). Can totally equimodular matrices be recognized in polynomial
time?

Open problem 3.26 (Page 44). Is there a decomposition theorem for totally equimodular ma-
trices?

Open problem 4.2 (Page 49). Characterize box-perfect graphs by a list of forbidden induced
subgraphs.

Open problem 4.4 (Page 50). Do smooth box-totally dual integral polyhedra have the integer
decomposition property?

Open problem 4.16 (Page 58). Is the Steiner 2-edge-connected subgraphs polyhedron box-TDI
when the graph is series-parallel?

Open problem 4.17 (Page 60). Is there an explicit family of box-totally dual integral polyhedra
having exponential extension complexity?
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Definitions Index

2-connected, 25, 53
component, 25, 53
series-parallel graph, 25

K4, 53
aff(F ), 34
aff(M), 4
lin(F ), 34
vect(M), 4

basis of a lattice, 33
biadjacency matrix, 48
bipartite graph, 48
bond, 53
box-integer, 34
box-perfect graph, 48
box-totally dual integral polyhedron, 35
box-totally dual integral system, 35

chordal graph, 55
chordal multicut, 55
circuit, 25, 53
circuit polytope, 25
claw-free, 15
clique, 16
co-NP, 13
column span, 4
cone, i, 4, 34
conic polyhedron, 34
constraint matrix, 33
convex hull, 4
cut, 53

dilation, 4
dimension of a face, 34
dual cone, 4

edge-vertex incidence, 45
equimodular matrix, 33

extended formulation, ii, 5
extension, 5
extension complexity, 5

face, i, 4, 34
face-defining matrix, 34
facet, 4, 34
facet-defining matrix, 34
full row rank, 33

Hilbert basis, 55
homogenization cone, 7

incidence vector, i
induced graph, 48
integer, 33
integer box, 34
Integer Carathéodory Property, 50
integer decomposition property, 50
integer polyhedron, i, 34

lattice, 33
lineality space, 4
linear problem, iii

matching polytope, 5
minimal face, 34
minimal tangent cone, 34
multicut, 53

nonnegative factorization, 7
nonnegative matrix, 7
nonnegative rank, 7

objective function, 30

parallel edges, 53
permutohedron, ii
pointed, 4
polar
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of a cone, 4, 34
of a polyhedron, 39

polygon, 4
polyhedral cone, 34
polyhedron, i, 33
polytope, i, 4

rank, 7
ray, 4
recession cone, 4, 34
reduced graph, 55
relative interior, 34
row span, 4

series-parallel graph, 53
simple graph, 53
slack, 6
slack matrix

of a cone, 6
of a polyhedron, 6
of a polytope, 6

smooth, 50
spanning tree polytope, ii
stable set, i
stable set polytope, i
submissive, 22

tangent cone, 34
totally dual integral system, 35
totally unimodular matrix, 33
tour, 5
translation, 33
traveling salesman polytope, 5
trivial graph, 53

vertex, i, 4, 34
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1. Introduction

This paper concerns a class of nonnegative matrices with real entries, called slack matrices, that
arise naturally from polyhedral cones and polytopes. Given a polytope P ⊂ Rn with vertices v1, . . . , v p

and facet inequalities aT
j x � β j for j = 1, . . . ,q, a slack matrix of P is the p × q nonnegative matrix

whose (i, j)-entry is β j − aT
j vi , the slack (distance from equality), of the ith vertex vi in the jth facet

inequality aT
j x � β j of P . A similar definition holds for polyhedral cones.

Slack matrices form an interesting class of nonnegative matrices with many special properties.
Most obviously, if M is a slack matrix of a polytope P , then the zeros in M record the face lattice
of P and hence the combinatorial structure of P . In its entirety, M specifies an embedding of P up to
affine transformation. However, slack matrices carry much more (and surprising) information about P .
In [14], Yannakakis proved that the nonnegative rank of a slack matrix of P is the minimum k such
that P is the linear image of an affine slice of the positive orthant Rk+ . We use R+ to denote the set

of nonnegative real numbers. The nonnegative rank of a matrix M ∈ Rp×q
+ is the smallest k such that

there exist vectors a1, . . . ,ap ∈ Rk+ and b1, . . . ,bq ∈ Rk+ such that Mij = aT
i b j . Affine slices of positive

orthants that project onto P are called polyhedral lifts or polyhedral extended formulations of P and the
smallest k such that Rk+ admits a lift of P is called the (polyhedral) extension complexity or nonnegative
rank of P . If the extension complexity of P is small (polynomial in the dimension of P ), then usually
it is possible to optimize a linear function over P in polynomial time by optimizing an appropriate
function on the lift. This is a powerful technique in optimization that yields polynomial time algo-
rithms for linear optimization over complicated polytopes. There are many instances of n-dimensional
polytopes with exponentially many (in n) facets that allow small polyhedral lifts.

Yannakakis’ result was generalized in [5] to lifts of convex sets by affine slices of convex cones via
cone factorizations of slack operators. Even in the larger context of cone lifts of convex sets, the case of
polytopes is the simplest and the theory relies on slack matrices of polytopes and their factorizations
through cones. Thus, understanding the structure of these matrices is fundamental for this theory.
There are several phenomena that occur in the class of nonnegative matrices that have not yet been
observed for slack matrices. For instance, an important open question is whether there exists a family
of slack matrices of polytopes that exhibit an exponential gap between nonnegative rank and positive
semidefinite rank. (If Sk+ denotes the cone of k × k real symmetric positive semidefinite matrices,

then the positive semidefinite rank of a matrix M ∈ Rp×q
+ is the smallest k such that there exist

matrices Ai ∈ Sk+ , i = 1, . . . , p, and B j ∈ Sk+ , j = 1, . . . ,q, such that Mij = 〈Ai, B j〉.) While there are
simple families of matrices that exhibit even arbitrarily large gaps between nonnegative and positive
semidefinite ranks [5, Example 5], no family of slack matrices with this property is known. Such a
family would be a clear witness for the power of semidefinite programming over linear programming
in lifts of polytopes.

This paper was motivated by the many open questions about slack matrices which rely on under-
standing the structure of these matrices. We establish two main characterizations of slack matrices
of polyhedral cones and polytopes. In Section 2 we establish linear algebraic characterizations: Theo-
rem 1 for cones and Theorem 6 for polytopes. In Section 4 we give combinatorial characterizations:
Theorem 22 for polytopes and Theorem 24 for polyhedral cones. In Section 3 we use our characteriza-
tion from Section 2 to give an algorithm for recognizing slack matrices. The computational complexity
of this problem is unknown and is equivalent to the polyhedral verification problem. There are several
further geometric and complexity results about slack matrices throughout the paper.

Notation: For a set of vectors A = {a1, . . . ,ap}, cone(A) := {∑λiai: λi � 0} is the cone spanned
by A; conv(A) := {∑λiai: λi � 0,

∑
λi = 1} is the convex hull of A; lin(A) := {∑λiai: λi ∈ R} is

the linear span of A, and aff(A) := {∑λiai:
∑

λi = 1} is the affine span of A. The above sets can
also be defined for an infinite subset A ⊂ Rn by taking unions over all finite subsets of A. For an
n × q matrix M , we let rows(M) and cols(M) denote the sets of all rows and columns, respectively,
of M . We let A · M be the set of vectors {xT M: x ∈ A}. For a set K ⊂ Rn , lineal(K ) is the largest
subspace contained in K , known as the lineality space of K . The dimension of a polytope P , dim(P )

is the dimension of aff(P ), the affine hull of P , and the dimension of a cone K is the dimension of
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lin(K ). For any matrix M ∈ Rp×q of rank k, we will call a factorization of the form M = AB with
A ∈ Rp×k , rank(A) = k and B ∈ Rk×q , rank(B) = k a rank factorization of M .

2. Geometric characterizations of slack matrices

2.1. Slack matrices of polyhedral cones

Consider the polyhedral cone

K = {
x ∈ Rn: xT B � O

} = Rp
+ · A

in Rn constrained by the columns of the matrix B ∈ Rn×q and generated by the rows of the ma-
trix A ∈ Rp×n . We call (the set of rows of) A a V-representation and (the set of columns of)
B an H-representation of K . The slack matrix of K with respect to the representation (A, B) is
S = AB ∈ Rp×q

+ . Its (i, j)-entry records the “slack” of the ith generator of K with respect to the jth
inequality of K in the given description of K .

Let SK denote the set of all slack matrices of K . For S ∈ SK , any matrix obtained by scaling
the rows and columns of S by positive reals is again in SK since scaling the vectors in a V and/or
H-representation of K does not change K . Also, SK can have matrices of different sizes as adding
redundant inequalities and/or generators to the representations of K does not change K . From(

Rn · B
) ∩ Rq

+ = K · B = (
Rp

+ · A
) · B = Rp

+ · S

⊆ (
Rp · S

) ∩ Rq
+ = (

Rp · AB
) ∩ Rq

+ ⊆ (
Rn · B

) ∩ Rq
+

we find that Rp
+ · S = Rp · S ∩ Rq

+ which says that the cone generated by the rows of S coincides with
the nonnegative part of the row span of S . In fact, this relation characterizes slack matrices of cones as
we now show.

Theorem 1. A nonnegative matrix M ∈ Rp×q
+ is a slack matrix of a polyhedral cone if and only if

Rp
+ · M = Rp · M ∩ Rq

+, (1)

or in other words, the cone spanned by the rows of M coincides with the nonnegative part of the row span
of M.

Proof. It remains to show that every matrix M ∈ Rp×q
+ with Rp

+ · M = Rp · M ∩Rq
+ is a slack matrix of

some cone. Let k = rank(M) and consider a rank factorization M = AB with A ∈ Rp×k and B ∈ Rk×q .
Let K = cone({a1, . . . ,ap}) and K̃ = {x ∈ Rk: xT b j � 0, j = 1, . . . ,q} where ai is the ith row of A and
b j is the jth column of B . We need to show that K = K̃ .

Since M is nonnegative, we get that K ⊆ K̃ . In order to show the inclusion K̃ ⊆ K , consider a
vector x from K̃ . Since the matrix A ∈ Rp×k has full column rank, the vector xT lies in Rp · A, and
thus xT B lies in Rp · M ∩ Rq

+ . Thus, due to Eq. (1) the vector xT B lies in Rp
+ · M , i.e. xT B lies in

Rp
+ · AB . Since the matrix B has full row rank the vector xT hence lies in Rp

+ · A, i.e. x lies in K . �
Recall that the dual cone of K is the cone

K � = {
y ∈ Rn: xT y � 0 for all x ∈ K

} = {
y ∈ Rn: Ay � 0

} = B · Rq
+.

Hence, S T is a slack matrix of K � and we get the following result.

Proposition 2. A nonnegative real matrix is a slack matrix of a polyhedral cone if and only if its transpose is
also the slack matrix of a polyhedral cone.

In particular, we obtain the following consequence of Theorem 1.
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Corollary 3. A nonnegative matrix M ∈ Rp×q
+ is a slack matrix of a polyhedral cone if and only if

M · Rq
+ = M · Rq ∩ Rp

+, (2)

or in other words, the cone spanned by the columns of M coincides with the nonnegative part of the column
span of M.

We say that a matrix M satisfies the row cone generating condition (RCGC) if (1) holds and the
column cone generating condition (CCGC) if (2) holds.

Corollary 4. For a nonnegative matrix M ∈ Rp×q
+ the following statements are pairwise equivalent:

• M is a slack matrix of a polyhedral cone.
• M satisfies the RCGC.
• M satisfies the CCGC.

The equivalence of RCGC and CCGC for a general nonnegative matrix is not obvious. However, its
proof becomes transparent via the theory of slack matrices of polyhedral cones and cone duality.

For a nonnegative M with RCGC/CCGC, the proof of Theorem 1 showed how to produce a cone K
such that M ∈ SK , which is captured by the next lemma.

Lemma 5. Let M ∈ Rp×q
+ be the slack matrix of a polyhedral cone and let M = AB be a rank factorization

of M. Then if K is the cone generated by the rows of A, the columns of B form an H-representation of K . In
particular, M ∈ SK .

Proof. For the slack matrix M Eq. (1) is valid, and thus the statement follows from the proof of
Theorem 1. �
2.2. Slack matrices of polytopes

We now investigate the slack matrices of polytopes. Let V ∈ Rp×n and P = conv(rows(V )) be the
polytope in Rn that is the convex hull of the rows of V . Suppose also that P = {x ∈ Rn: W x � w} with
W ∈ Rq×n and w ∈ Rq . To avoid unnecessary inconveniences, we assume that dim(P ) � 1. We call
(the set of rows of) V a V-representation and (the set of columns of) [w,−W ]T an H-representation
of P . The slack matrix of P with respect to the representation (V , W , w) is then

S = [1, V ] · [w,−W ]T ∈ Rp×q
+ . (3)

We denote the set of all slack matrices of P by SP . Clearly, scaling the columns of a slack ma-
trix of P by positive scalars yields another slack matrix of P , because scaling the vectors in an
H-representation of P yields another H-representation of P . However, we cannot scale the rows
of a matrix S ∈ SP and still stay in SP .

The matrix S is also the slack matrix of the homogenization cone of P :

P h = Rp
+ · [1, V ] = {

(x0, x) ∈ R × Rn: W x � x0 w
}

(4)

with respect to the representation
([1, V ], [ w T

−W T

])
. Since dim(P ) � 1, there is some c ∈ Rn with

max
{

cT x: x ∈ P
} − min

{
cT x: x ∈ P

} = 1,

and hence, due to LP-duality, we get(
1,OT ) ∈ Rq · (w, W ) and so also,

(
1,OT ) ∈ Rq · (w,−W ). (5)

From (3) and (5) we get that 1 ∈ S · Rq , the column span of S . These properties characterize the slack
matrices of polytopes of dimension at least one:
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Theorem 6. A matrix M ∈ Rp×q
+ with rank(M) � 2 is a slack matrix of a polytope if and only if M is a slack

matrix of a polyhedral cone and 1 ∈ M · Rq.

Proof. It suffices to show that a matrix M ∈ Rp×q
+ with 1 ∈ M · Rq that is the slack matrix of some

cone K ⊆ Rn with respect to a representation (A, B) is also the slack matrix of some polytope. To
construct such a polytope, choose any μ ∈ Rq such that 1 = Mμ and define c = Bμ. Then Ac = 1
since M = AB . Define P = conv(rows(A)). Then we have:

P = {
yT A: yT 1 = 1, y ∈ Rp

+
} = {

yT A: yT Ac = 1, y ∈ Rp
+
}

= {
x ∈ K : xT c = 1

} = {
x ∈ Rn: xT B � O, xT c = 1

}
.

Mapping the hyperplane in Rn defined by xT c = 1 isometrically to Rn−1 (as in the proof of Theo-
rem 1), we find that M is a slack matrix of the resulting image of P . �
Corollary 7. A matrix M ∈ Rp×q

+ with rank(M) � 2 is a slack matrix of some polytope if and only if it satisfies
the RCGC (or, equivalently, the CCGC) and 1 ∈ M · Rq holds.

Theorem 1 geometrically characterizes the slack matrices of cones as those matrices M ∈ Rp×q
+

that satisfy

cone
(
rows(M)

) = lin
(
rows(M)

) ∩ Rq
+. (6)

There is an analogous geometric characterization of slack matrices of polytopes.

Corollary 8. A matrix M ∈ Rp×q
+ with rank(M) � 2 is a slack matrix of some polytope if and only if

conv
(
rows(M)

) = aff
(
rows(M)

) ∩ Rq
+. (7)

Proof. First, suppose that M is a slack matrix of some polytope. Then by Corollary 7, we have that
M satisfies (6) and 1 ∈ M · Rq . Hence, there exists some c ∈ Rq such that Mc = 1 and the affine
hyperplane L = {x ∈ Rq: xT c = 1} contains the rows of M . Intersecting L with both sides of (6), we
obtain (7).

For the reverse implication, let M ∈ Rp×q
+ be a nonnegative matrix satisfying (7). Using any isom-

etry ϕ between the d-dimensional affine subspace aff(rows(M)) and Rd , we find that M is a slack
matrix of the ϕ-image of the polytope defined in (7). �

We have seen above that every slack matrix of a polytope P has the all-ones vector in its column
span and is also a slack matrix of the homogenization cone P h of P . The next example shows that not
all slack matrices of P h are slack matrices of P , in fact, this does not even hold for the slack matrices
of P h that have the all-ones vector in their column span.

Example 9. Let P be the square [−1,1]2. The matrix

M =
⎛⎜⎝

4
3 0 4

3 0

2 0 0 2
0 2 2 0
0 4 0 4

⎞⎟⎠ =
⎛⎜⎝

2
3

2
3

2
3

1 1 −1
1 −1 1
2 −2 −2

⎞⎟⎠( 1 1 1 1
1 −1 0 0
0 0 1 −1

)

is in SP h and 1 is in the column span of M . It is clear, however, that M is not in SP since each facet
of [−1,1]2 is equidistant from the two vertices not on the facet. On the other hand, since M has the
RCGC/CCGC and 1 is in its column span, it is the slack matrix of some other polytope Q . To obtain
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it, write a new rank factorization of M (note that rank(M) = 3) so that the first factor contains the
all-ones vector as its first column as follows:

M =
⎛⎜⎝

2
3

2
3

2
3

1 1 −1
1 −1 1
2 −2 −2

⎞⎟⎠ U U−1

(1 1 1 1
1 −1 0 0
0 0 1 −1

)
, U =

( 1 0 0
1/4 1 0
1/4 0 1

)

to get

M =
⎛⎜⎝

4
3 0 4

3 0

2 0 0 2
0 2 2 0
0 4 0 4

⎞⎟⎠ =
⎛⎜⎝

1 2
3

2
3

1 1 −1
1 −1 1
1 −2 −2

⎞⎟⎠( 1 1 1 1
3/4 −5/4 −1/4 −1/4

−1/4 −1/4 3/4 −5/4

)
.

By Lemma 5, M is the slack matrix of the cone with V-representation the rows of the first factor
and H-representation the columns of the second factor. Assuming the coordinates of this three-
dimensional cone are x0, x1, x2, and slicing the cone with the hyperplane {(x0, x1, x2): x0 = 1} gives
a polytope Q with vertices (2/3,2/3), (1,−1), (−1,1), (−2,−2) and H-representation given by the
columns of the second factor. Then M ∈ SQ .

2.3. Further results on slack matrices of cones and polytopes

In this section we derive some more insight into the geometric relations between cones, polytopes,
and their slack matrices that will be useful in later parts of the paper. We return to the setup used
earlier: K is assumed to be a cone and S the slack matrix of K with respect to its representation
(A, B) where A ∈ Rp×n and B ∈ Rn×q .

First, we will show that every slack matrix of a cone is the slack matrix of some pointed cone.
Recall that we use lin(K ) to denote the linear hull of K and lineal(K ) to denote the lineality space
of K . Then we have lin(K ) = Rp · A and lineal(K ) = leftkernel(B). A cone K is pointed if lineal(K ) =
{O}. Define

L := lin(K ) ∩ lineal(K )⊥ = (
Rp · A

) ∩ (
B · Rq).

Then we have

lin(K ) = L + lineal(K )

(where the summands are orthogonal to each other) and

K = (K ∩ L) + lineal(K ),

where K ∩ L ⊆ L is a pointed (i.e., having trivial lineality space) cone with dim(K ∩ L) = dim(L).
Denoting by A′ ∈ Rp×n the matrix obtained from A by orthogonal projections of all rows to L, we
have

K ∩ L = Rp
+ · A′ and S = A′B.

By mapping L isometrically to Rdim(L) , we thus find that S is a slack matrix of the pointed cone that
is the image of K ∩ L under that map and we get the following:

Lemma 10. A matrix is a slack matrix of a polyhedral cone if and only if it is a slack matrix of some pointed
polyhedral cone.

If the cone K is pointed, then for every zero-row of S = AB the corresponding row of A is a
zero-row as well. Hence, removing any zero-row from S results in another slack matrix of K . A similar
statement clearly holds for adding zero-rows.

Lemma 11. If a matrix S is a slack matrix of a pointed polyhedral cone K then every matrix obtained from S
by adding or removing zero-rows is a slack matrix of K as well.
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Lemmas 10 and 11 together also imply this statement:

Lemma 12. If a matrix is a slack matrix of some polyhedral cone then every matrix obtained from it by adding
or removing zero-rows is a slack matrix of some polyhedral cone as well.

Let us further investigate the linear map x �→ xT B . It induces the isomorphism

L ·B
isomorphism−−−−−−−→Rp · S (8)

between the linear space L and the row span of S because of the relations:

L ⊆ lineal(K )⊥ = leftkernel(B)⊥

and

L · B = (
L + lineal(K )

) · B = lin(K ) · B = (
Rp · A

) · B = Rp · S.

It also induces the isomorphism

K ∩ L ·B
isomorphism−−−−−−−→Rp

+ · S

between the cone K ∩ L and the cone spanned by the rows of S since (K ∩ L) · B = ((K ∩ L)+ lineal(K )) ·
B = K · B = (Rp

+ · A) · B = Rp
+ · S . In particular, we have shown the following result:

Lemma 13. A polyhedral cone K is pointed if and only if dim(K ) = rank(S) for any slack matrix S of K .

Recall that if P is a polytope with representation (V , W , w) and slack matrix S = [1, V ] · B where

B =
[

w T

−W T

]
,

then the homogenization P h of P is a pointed cone that also has S as a slack matrix. Since
P h is pointed, L contains the entire cone and we can restrict the isomorphism in (8) to the set
{1} × P = conv(rows([1, V ])). Thus we have that {1} × P is isomorphic to conv(rows([1, V ])) · B =
conv(rows(S)). This establishes the first part of the following:

Theorem 14. If S is a slack matrix of the polytope P , then P is isomorphic to conv(rows(S)). In addition, we
have dim(P ) = rank(S) − 1.

Proof. To prove the second statement, note that dim(P h) = dim(P ) + 1. By Lemma 13, we have that
dim(P h) = rank(S). �

In the conic case, we had that M ∈ SK if and only if MT ∈ SK ∗ . This correspondence breaks
down for polytopes as we see in the example below. The reason behind this is that we cannot scale
V-representations of polytopes by positive scalars.

Example 15. The matrix

M =

⎛⎜⎜⎜⎜⎜⎝
1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1

⎞⎟⎟⎟⎟⎟⎠
is a slack matrix for the triangular prism in R3. Thus, by Corollary 7, M satisfies both the RCGC and
the CCGC, and the all-ones vector is in the column span of M . However, the all-ones vector is not in
the row span of M , so MT is not the slack matrix of any polytope.
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Despite this complication, we can still derive some results for transposes of slack matrices of
polytopes. Recall that the polar of a polytope P ⊂ Rn is

P ◦ = {
y ∈ Rn: xT y � 1 for all x ∈ P

}
.

Then P ◦ is a polytope whenever 0 ∈ int(P ), the interior of P . Since translating P does not change
its slack matrices, we may assume that 0 ∈ int(P ). Therefore, P has an H-representation of the form
P = {x ∈ Rn: W x � 1} and P ◦ = conv(rows(W )). Similarly, if P = conv(rows(V )), then P ◦ = {x ∈
Rn: V x � 1}. This implies that the slack matrix of P with respect to the representation (V , W ,1) is
the transpose of the slack matrix of P ◦ with respect to the representation (W , V ,1) and we get the
following result that is analogous to Proposition 2 for cones.

Proposition 16. For any polytope P , there exists a slack matrix M ∈ SP such that MT is also a slack matrix of
a polytope.

In the light of Theorem 6, this says that slack matrices of polytopes (which already have 1 in their
column span) allow positive scalings of their columns that puts 1 into their row span as well. This is
false for general nonnegative matrices.

Example 17. Continuing Example 15, we see that the following matrix M ′ obtained by scaling the
columns of M is also a slack matrix of the same prism and does have 1 in its row span:

M ′ =

⎛⎜⎜⎜⎜⎜⎝
2 2 0 0 0
2 0 4 0 0
2 0 0 4 0
0 2 0 0 2
0 0 4 0 2
0 0 0 4 2

⎞⎟⎟⎟⎟⎟⎠ .

The prism has vertices:

(0,1,−1), (2,−1,−1), (−2,−1,−1), (0,1,1), (2,−1,1), (−2,−1,1)

and M ′ comes from the facet description:

z � 1,−y � 1,−x + y � 1, x + y � 1,−z � 1.

Therefore, P ◦ has vertices (0,0,1), (0,−1,0), (−1,1,0), (1,1,0), (0,0,−1) and is a bisimplex with
slack matrix M ′ T .

We can also show a converse to Proposition 16.

Proposition 18. Suppose M ∈ Rp×q
+ such that M and MT are both slack matrices of polytopes. Then there

exists a polytope P , with 0 ∈ int(P ), such that M ∈ SP and MT ∈ SP◦ .

Proof. Since MT is a slack matrix of a polytope, we have that 1 ∈ Rp
+ · M . Without loss of generality,

we can scale M by a positive scalar so that 1 ∈ conv(rows(M)).
Let M be a slack matrix of a polytope R with dim(R) = d. By Theorem 14, rank(M) = d + 1. Since

the convex hull of the rows of M is isomorphic to R , we have that the affine hull of the rows of M
has dimension d. Let J denote the all-ones matrix of dimension p × q. Since 1 is contained in the
affine hull of the rows of M , we have that the affine hull of the rows of M − J passes through the
origin and has dimension d. Hence, rank(M − J ) = d. This implies that we can write M − J = AB with
A ∈ Rp×d and B ∈ Rd×q .

Let A′ = (1, A) and let B ′ = (1, BT )T . Then M = A′B ′ is a rank factorization of M . Let P :=
conv(rows(A)) and Q := {x ∈ Rd: 1 + xT B � O}. Then the rows of A′ form a V-representation
of P h and the columns of B ′ form an H-representation for Q h = {(x0, x) ∈ Rd+1: 1x0 + xT B � O}.
By Lemma 5, P h = Q h which implies that P = Q . Therefore, M is a slack matrix of P and MT is a
slack matrix of P ◦ . �
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3. An algorithm to recognize slack matrices

In this section, we discuss the algorithmic problem of deciding whether a given nonnegative matrix
has the RCGC (or, equivalently, the CCGC). According to Corollaries 4 and 7 this is the crucial step to
be performed in order to decide whether a given matrix is a slack matrix of a cone or a polytope.

We start with a promising result:

Theorem 19. The problem to decide whether a nonnegative matrix satisfies the RCGC (or the CCGC) is in coNP.
In particular, the same holds for checking the property of being a slack matrix (of a cone or of a polytope).

Proof. If the given matrix M ∈ Rp×q
+ does not satisfy the RCGC, then there is some point x ∈ Rp ·

M ∩ Rq
+ \ Rp

+ · M (which can be chosen to have coordinates whose encoding lengths are bounded
polynomially in the encoding length of M). The fact that x /∈ Rp

+ · M can be certified by the help of
some separating hyperplane whose normal vector can be chosen to have coordinates with encoding
length bounded polynomially in the encoding length of M as well. �

Next, we are going to describe an algorithm to check the CCGC (equivalently, the RCGC) for a
nonnegative matrix. By Corollary 4, this algorithm will then provide a method to check if a given
nonnegative matrix is a slack matrix of a cone. To check if the matrix is the slack matrix of a polytope
(see Corollary 7), we can add the additional step of checking if the all-ones vector is in the column
span of the matrix which is doable in polynomial time. A SAGE worksheet implementing this code
can be found at http://www.math.washington.edu/~rzr.

Algorithm to check if a nonnegative matrix has the CCGC
Input: A matrix M ∈ Rp×q

+ .
Output: True if M has the CCGC and False otherwise.

(1) Compute a basis L for the left kernel of M . For each vector � in L, generate the equation �T x = 0.
(2) Generate an H-representation of the cone K with the equations from the previous step and the

inequalities x1 � 0, . . . , xp � 0.
(3) Compute a minimal V-representation of K .
(4) Normalize the vectors in the V-representation and the columns of M .
(5) Check that each normalized vector in the V-representation is a normalized column of M . If so,

return True. If not, return False.

Proof. We have K = M · Rq ∩ Rp
+ and M · Rq

+ ⊆ K due to the nonnegativity of M . Thus, M satisfies
the CCGC if and only if K ⊆ M · Rq

+ holds, which is what the algorithm checks in the last three steps
(note that all cones involved are pointed because they are contained in Rp

+). �
The only computationally challenging part of the algorithm is converting from the H-representa-

tion of K to a V-representation. There are several algorithms to do this, and we refer to [6,9,11] for
information on the different techniques. No polynomial time algorithm for this conversion exists, since
the V-representation may have size exponential in that of the H-representation. If the dimension of
the cone is fixed, however, then there do exist polynomial time algorithms for the conversion [3].
Thus, we obtain the following complexity results.

Theorem 20. For fixed r, checking whether a rank r matrix satisfies the RCGC (CCGC) can be done in polynomial
time. In particular, checking whether matrices of fixed rank are slack matrices of cones or polytopes can be done
in polynomial time.

Given an H-polyhedron P and a V-polytope Q contained in P , the problem of deciding whether
P = Q is known as the polyhedral verification problem. The complexity of this problem is unknown [8].
However, a polynomial time algorithm for the polyhedral verification problem would yield an output



Author's personal copy

2930 J. Gouveia et al. / Linear Algebra and its Applications 439 (2013) 2921–2933

sensitive algorithm for the problem of computing the facets of a polytope given in V-representation,
and thus solve a decades old open problem in computational geometry (see [7]).

Clearly, given a V-polytope it is easy to check whether it is contained in an H-polyhedron. The
reverse problem of checking whether an H-polyhedron is contained in a V-polytope is known to
be coNP-complete [4]. Note that the polyhedral verification problem is the restriction of the latter
problem to those instances in which the V-polytope is contained in the H-polyhedron (see also
http://www.inf.ethz.ch/personal/fukudak/polyfaq/node21.html, [8] and [12]).

Theorem 21. The following problems can be reduced in polynomial time to each other:

(1) The polyhedral verification problem.
(2) Is a given matrix a slack matrix of a polytope?
(3) Is a given matrix a slack matrix of a cone?
(4) Does a given matrix satisfy the RCGC/CCGC?

Proof. Corollary 7 shows that (2) can be reduced (in polynomial time) to (4) (since checking whether
1 is contained in the column space can be done in polynomial time) and Corollary 4 shows that (4)
can be reduced to (3).

We can also reduce (3) to (2): Suppose we need to check whether a given matrix M is a slack
matrix of a cone. By Lemma 11, we can assume that M has no zero rows. We can also scale the rows
of M by positive scalars without effect on M being a slack matrix of a cone. Using these two facts,
we can assume that 1 is in the column span of M . Then, being a slack matrix of a cone is equivalent
to being a slack matrix of a polytope due to Theorem 6.

Since Corollary 8 shows how to reduce (2) to (1), it thus remains to establish a reduction of (1)
to (2). Let Q = conv(rows(V )) with V ∈ Rp×n and P = {x ∈ Rn: W x � w} with W ∈ Rq×n and w ∈ Rq

with Q ⊆ P . Suppose we need to decide whether P = Q . First, we check whether P is pointed (i.e.,
W has a trivial right kernel) and dim(P ) = dim(Q ) (both checks can be done in polynomial time, the
second one using linear programming). If either check fails, then P �= Q .

So let us assume dim(P ) = dim(Q ) and that P is pointed. The latter fact implies that the affine
map ϕ : Rn → Rq defined via ϕ(x) = w − W x is injective. Let M be the matrix arising from V by
applying ϕ to each row. Then, due to Q ⊆ P , we have that M is nonnegative. According to Corollary 8,
the matrix M is a slack matrix of a polytope if and only if

conv
(
rows(M)

) = aff
(
rows(M)

) ∩ Rq
+. (9)

Since we have

conv
(
rows(M)

) = ϕ
(
conv

(
rows(V )

)) = ϕ(Q )

and

aff
(
rows(M)

) ∩ Rq
+ = ϕ

(
aff

(
rows(V )

)) ∩ Rq
+ = ϕ

(
aff(Q )

) ∩ Rq
+

= ϕ
({

x ∈ aff(Q ): ϕ(x) � O
}) = ϕ

(
P ∩ aff(Q )

) = ϕ(P )

(here we used that dim(P ) = dim(Q )), condition (9) is equivalent to ϕ(P ) = ϕ(Q ). In turn, this is
equivalent to P = Q since ϕ is injective. Thus, P = Q is equivalent to M being the slack matrix of a
polytope. �
4. A combinatorial characterization of slack matrices

Our second characterization of slack matrices of cones and polytopes relies on incidence structures.
For a (nonnegative) matrix M , we denote by Minc the 0/1-matrix with (Minc)i j = 1 if and only if
Mij = 0. The matrices Minc arising from slack matrices M of a polyhedral cone K or of a polytope P
are called the incidence matrices of K or P , respectively.
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We start by characterizing the slack matrices of polytopes, since the corresponding statement for
cones can easily be deduced from the one for polytopes. The characterization is restricted to nonneg-
ative matrices of rank at least two. It is easy to see that no matrix of rank one is a slack matrix of a
non-trivial polytope. One may (or may not) want to consider a rank-zero matrix as a slack matrix of
the polytope consisting of the zero-vector in R0.

Theorem 22. A nonnegative matrix M with rank(M) � 2 is a slack matrix of some polytope if and only if Minc
is an incidence matrix of some (rank(M) − 1)-dimensional polytope and 1 is contained in the column span
of M.

Proof. If M is a slack matrix of a polytope P , then 1 is contained in the column span of M (Theo-
rem 6), and by Theorem 14, dim(P ) = rank(M) − 1.

In order to establish the non-trivial implication of the claim, let M ∈ Rp×q
+ be a nonnegative matrix

with rank(M) = d+1 � 2, 1 ∈ M ·Rq and Minc an incidence matrix of some d-dimensional polytope R .
Denote by V ⊆ Rq

+ the set of rows of M and define the polytope P := conv(V ) and the polyhedron
Q := aff(V )∩Rq

+ . Clearly, P ⊆ Q , and since 1 ∈ M ·Rq , dim(Q ) = dim(P ) = d. By Corollary 8, in order
to show that M is a slack matrix of a polytope, it suffices to prove P = Q .

In order to establish Q ⊆ P , let us define

V i = {v ∈ V : vi = 0} and Fi = conv(V i) for 1 � i � q.

The set

F =
q⋃

i=1

Fi

is contained in the relative boundary ∂ Q of Q . Note that as an incidence matrix of some polytope of
dimension at least one, Minc does not have an all-ones column. Since Q = conv(∂ Q ) (note that Q is
a pointed polyhedron of dimension d � 2, which is important here in case of Q being unbounded), if
we show that F = ∂ Q , then we will have that Q = conv(F ) ⊆ P .

Thus, our goal is to establish F = ∂ Q . As mentioned above, we have F ⊆ ∂ Q . It suffices to show
that F is homotopy-equivalent to a (d − 1)-dimensional sphere,1 because then F cannot be properly
contained in the (d − 1)-dimensional connected (recall dim(Q ) � 2) manifold ∂ Q . This follows, e.g.,
from [2, Cor. 8.5] together with the fact that the (d −1)-st cohomology group of a (d −1)-dimensional
sphere is non-trivial.

To show that F is homotopy-equivalent to a (d − 1)-dimensional sphere, observe that for every
subset I ⊆ {1, . . . ,q}, we have

⋂
i∈I F i �= ∅ if and only if the submatrix of Minc formed by the columns

indexed by I has an all-ones row. Now let R be a polytope of which Minc is an incidence matrix. Let
G1, . . . , Gq be the faces of R that correspond to the columns of Minc. Then

⋂
i∈I Gi �= ∅ holds if and

only if the submatrix of Minc formed by the columns indexed by I has an all-ones row.
Therefore, the abstract simplicial complexes{

I ⊆ {1, . . . ,q}:
⋂
i∈I

F i �= ∅
}
, and

{
I ⊆ {1, . . . ,q}:

⋂
i∈I

Gi �= ∅
}

(known as the nerves of the polyhedral complexes induced by F1, . . . , Fq and by G1, . . . , Gq , respec-
tively) are identical. Since all intersections

⋂
i∈I F i and

⋂
i∈I Gi are contractible (in fact, they are even

convex), this simplicial complex is homotopy equivalent to both F and to the (d − 1)-dimensional
(polyhedral) sphere ∂ R (see, e.g., [1, Thm. 10.6]). �

Since polygons have a very simple combinatorial structure, Theorem 22 readily yields a simple
characterization of their slack-matrices. Here, a vertex-facet slack matrix of a polytope P is a slack

1 Our proof of this is inspired by [7].
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matrix of P whose rows and columns are in one-to-one correspondence with the vertices and facets
of P , respectively.

Corollary 23. A matrix M ∈ Rn×n+ (n � 3) is a vertex-facet slack matrix of an n-gon if and only if its rows span
an affine space of dimension exactly two and its rows and columns can be permuted such that the non-zero
entries appear exactly at the positions (i, i) (for 1 � i � n), and (i, i − 1) (for 2 � i � n), and (1,n).

Steinitz’s theorem [13] says that a graph G is the 1-skeleton of a three-dimensional polytope if
and only if G is planar and three-connected. Using this, one can check in polynomial time whether
a given 0/1-matrix is an incidence matrix of a three-dimensional polytope. For every fixed d � 4,
however, it is NP-hard to decide whether a given 0/1-matrix is an incidence matrix of a d-dimensional
polytope [10].

In the following combinatorial characterization of slack matrices of cones we restrict our attention
to matrices of rank at least two as for polytopes. Clearly, every nonnegative matrix of rank one is a
slack matrix of the ray R1+ , and, we may consider a matrix of rank zero as a slack matrix of the trivial
cone {0} in R0.

Theorem 24. A nonnegative matrix M with rank(M) � 2 is a slack matrix of a polyhedral cone if and only if
Minc is an incidence matrix of some rank(M)-dimensional pointed polyhedral cone.

Proof. If M is a slack matrix of some polyhedral cone then, by Lemma 10, M is a slack matrix (and
hence Minc is an incidence matrix) of a pointed polyhedral cone K . By Lemma 13 this cone has
dimension rank(M).

In order to prove the reverse implication, we can assume by the results in Section 2.3 that M does
not have any zero-row. Since M is also nonnegative, there exists a positive diagonal matrix D such
that DM contains 1 in its column span.

Given a pointed cone K , we can slice K by an affine hyperplane L such that the slice is a polytope
of dimension dim(K ) − 1 and the incidence structures of K and K ∩ L are identical. Thus, (DM)inc
is an incidence matrix of some (rank(M) − 1)-dimensional polytope. By Theorem 22, we have that
DM is a slack matrix of a polytope. Hence, M is a slack matrix of the homogenization cone of this
polytope. �

Note that dropping pointed from the formulation of Theorem 24 makes the statement false. Indeed,

M =
⎡⎢⎣

1 2
2 1
0 0
0 0

⎤⎥⎦ with Minc =
⎡⎢⎣

0 0
0 0
1 1
1 1

⎤⎥⎦
and rank(M) = 2 is not a slack matrix (since M does not satisfy the RCGC), but Minc is the incidence
matrix of the non-pointed cone {(x1, x2): x2 � 0} with V-representation (0,1), (0,1), (1,0), (−1,0)

and H-representation (0,1), (0,1).
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Abstract An extended formulation of a polyhedron P is a linear description of a
polyhedron Q together with a linear map π such that π(Q) = P . These objects are
of fundamental importance in polyhedral combinatorics and optimization theory, and
the subject of a number of studies. Yannakakis’ factorization theorem (Yannakakis in
J Comput Syst Sci 43(3):441–466, 1991) provides a surprising connection between
extended formulations and communication complexity, showing that the smallest size
of an extended formulation of P equals the nonnegative rank of its slack matrix
S. Moreover, Yannakakis also shows that the nonnegative rank of S is at most 2c,
where c is the complexity of any deterministic protocol computing S. In this paper,
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we show that the latter result can be strengthened when we allow protocols to be
randomized. In particular, we prove that the base-2 logarithm of the nonnegative
rank of any nonnegative matrix equals the minimum complexity of a randomized
communication protocol computing the matrix in expectation. Using Yannakakis’
factorization theorem, this implies that the base-2 logarithm of the smallest size of an
extended formulation of a polytope P equals theminimumcomplexity of a randomized
communication protocol computing the slack matrix of P in expectation. We show
that allowing randomization in the protocol can be crucial for obtaining small extended
formulations. Specifically, we prove that for the spanning tree and perfect matching
polytopes, small variance in the protocol forces large size in the extended formulation.

Mathematics Subject Classifcation 52B05

1 Introduction

Extended formulations are a powerful tool for minimizing linear or, more generally,
convex functions over polyhedra (see, e.g., Ziegler [28] for background on polyhedra
and polytopes). Consider a polyhedron P in R

d and a convex function f : R
d → R,

that has to be minimized over P . If a small size linear description of P is known, then
minimizing f over P can be done efficiently using an interior point algorithm, or the
simplex algorithm if f is linear and theoretical efficiency is not required.

However, P can potentially have many facets. Or worse: it can be that no explicit
complete linear description of P is known. This does not necessarily make the given
optimization problem difficult. A fundamental result of Grötschel, Lovász and Schri-
jver [11] states that if there exists an efficient algorithm solving the separation problem
for P , then optimizing over P can be done efficiently. However, this result uses the
ellipsoid algorithm, which is not very efficient in practice. Thus it is desirable to avoid
using the ellipsoid algorithm.

Now suppose that there exists a polyhedron Q in a higher dimensional space R
e

such that P is the image of Q under a linear projection π : R
e → R

d . The polyhedron
Q together with the projection π defines an extension of P , while we call extended
formulation of P any description of Q by means of linear inequalities and equations,
together with the map π . Minimizing f over P amounts to minimizing f ◦π over Q.
If Q has few facets, then we can resort to an interior point algorithm or the simplex
algorithm to solve the optimization problem. Of course, one should also take into
account the size of the coefficients in the linear description of Q and in the matrix of
π . But this can essentially be ignored for 0/1-polytopes P [21].

The success of extended formulations is due to the fact that a moderate increase in
dimension can result in a dramatic decrease in the number of facets. For instance, P
can have exponentially many facets, while Q has only polynomially many.Wewill see
examples of this phenomenon later in this paper. For more examples, and background,
see the recent surveys by Conforti, Cornuéjols and Zambelli [4], Kaibel [13] and
Wolsey [26].

Extensions provide an interesting measure of how “complex” a polyhedron is:
define the size of an extension Q of P as the number of facets of Q and the extension
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complexity of a polyhedron P as the minimum size of any extension of P . Follow-
ing [9], we denote this number by xc(P). The size of an extended formulation of P is
the number of inequalities of the linear system (hence, neither equations nor variables
are taken into account). Note that the size of an extended formulation is at least the
size of the associated extension, and any extension Q has an extended formulation
describing Q with the same size.

This paper builds onYannakakis’ seminal paper [24].Webriefly reviewhis contribu-
tion, postponing formal definitions to Sect. 2. Because we mainly consider polytopes,
we assume from now on that P is bounded, that is, P is a polytope. (This is not a major
restriction.) Yannakakis’ factorization theorem (Theorem 1) states that to each size-r
extension of a polytope P corresponds a rank-r nonnegative factorization of some
matrix S(P) associated to P , called the slack matrix, and conversely to each rank-r
nonnegative factorization of S(P) corresponds a size-r extension of P . In particular,
the extension complexity xc(P) equals the smallest rank of a nonnegative factorization
of S(P), that is, the nonnegative rank of S(P).

In [24], Yannakakis also shows that every lg r -complexity deterministic protocol
computing a nonnegative matrix M determines a rank-r nonnegative factorization
of M .1 By the aforementioned factorization theorem, this implies that one can pro-
duce extended formulations (and hence upper bounds to the extension complexity)
via deterministic communication protocols. Yannakakis used this to obtain a quasi-
polynomial nO(log n)-size extension for the stable set polytope of a n-vertex perfect
graph.

Our contribution The main goal of this paper is to strengthen the connection between
nonnegative rank of matrices (and hence, extension complexity of polytopes) and
communication protocols. Firstwe give a brief overviewof our results and then provide
more details along with an outline of the paper. Our contribution is threefold:

– We pinpoint the “right” model of communication protocol, that exactly corre-
sponds to nonnegative factorizations. We remark that this was done independently
byZhang [27]. Proving such a correspondence is an important conceptual step since
it gives a third equivalent way to think about extensions of polytopes, besides pro-
jections of polytopes and nonnegative factorizations. Communication protocols
are very versatile and we hope that this paper will convince discrete optimizers to
add this tool to their arsenal.

– We provide examples of already known extensions, seen as communication pro-
tocols, and also of new extensions obtained from communication protocols.

– We prove that the randomization allowed in our protocols is sometimes necessary
for obtaining small size extensions.We give a general condition under which small
variance in the protocol implies that the size of the corresponding extension is large,
which in particular applies to the perfect matching polytope and spanning tree
polytope. This indicates that Yannakakis’ approach for the stable set polytope of a
perfect graph cannot work for the perfect matching polytope or spanning tree poly-
tope, since his protocol is deterministic and hence the corresponding variance zero.

1 Throughout this paper, we use lg for binary logarithm.
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More specifically, we define a new model of randomized communication protocols
computing the matrix in expectation. This generalizes the one used by Yannakakis
in [24] (see Sect. 3; our definition differs substantially from the usual notion of of
random protocol computing a matrix with high probability, which can be found e.g.
in [16]). Our protocols perfectly model the relation between the nonnegative factor-
ization of a matrix and communication complexity: in fact, we show that the base-2
logarithm of the nonnegative rank of any nonnegative matrix (rounded up to the next
integer) equals the minimum complexity of a randomized communication protocol
computing the matrix in expectation (Theorem 2). By Yannakakis’ factorization the-
orem, this implies a new characterization of the extension complexity of polytopes
(Corollary 3).

We then provide evidence that these protocols are substantially more powerful than
the deterministic ones used, e.g., by Yannakakis. In fact, one can associate to each
protocol a variance (see Sect. 3.3) which, roughly speaking, indicates the “amount of
randomness” of the protocol: protocols with variance zero are deterministic protocols.
We show that no compact formulation for the spanning tree polytope arises from
protocols with small variance (see Sect. 6.3), while we provide a randomized protocol
that produces the O(n3) formulation for the spanning tree polytope of Kn due to
Martin [19] (see Sect. 5.2).

We also investigate the existence of compact extended formulation for thematching
polytope—a fundamental open problem in polyhedral combinatorics. Yannakakis [24]
(see also [14]) proved that every symmetric extension of the perfect matching polytope
of the complete graph Kn has exponential size (we do not formally define symmetric
here, since we shall not need it; the interested reader may refer to [24]). We show
that a negative result similar to the one of the spanning tree polytope holds true for
matchings: no compact formulation for the matching polytope arises from protocols
with small variance (see Sect. 6). Thus, in particular, deterministic protocols cannot
be used to provide compact extended formulations for the perfect matching polytope.
We also provide a randomized protocol that produces a O(1.42n) formulation for the
matching polytope implicit in Kaibel, Pashkovich and Theis [14] (see Sect. 5.3). The
negative results on both the spanning tree and the matching polytopes are obtained
via a general technique that exploits known negative results on the communication
complexity of the set disjointness problem.

Wewould like to remark that the results contained in this paperwere, at a conceptual
level, an important stepping stone for the strong lower bounds on the extension com-
plexities of the cut, stable set and TSP polytopes of Fiorini, Massar, Pokutta, Tiwary
and de Wolf [8].

2 Preliminary definitions and results

2.1 The factorization theorem and related concepts

Consider a polytope P in R
d with m facets and n vertices. Let h1, …, hm be m

affine functions on R
d such that h1(x) � 0, …, hm(x) � 0 are all the facet-defining

inequalities of P . Let also v1, …, vn denote the vertices of P . The slack matrix of P is
the nonnegative m × n matrix S = S(P) = (si j ) with si j = hi (v j ). Also note that the
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facet-defining inequalities can be defined up to any positive scaling factor. It should
be clear that such a scaling does not alter the non-negative rank of a matrix. To see
this let S = AB and let S′ be a matrix obtained by multiplying the i-th row of S by
λ > 0. Then, S′ = A′B where A′ is obtained by multiplying the i-th row of A by λ.

A rank-r nonnegative factorization of a nonnegative matrix S is an expression of
S as a product S = AB where A and B are nonnegative matrices with r columns
and r rows, respectively. The nonnegative rank of S, denoted by rank+(S), is the
minimum nonnegative integer r such that S admits a rank-r nonnegative factoriza-
tion [3]. Observe that the nonnegative rank of S can also be defined as the minimum
nonnegative integer r such that S is the sum of r nonnegative rank-1 matrices.

In a seminal paper, Yannakakis [24] proved, among other things, that the extension
complexity of a polytope is precisely the nonnegative rank of its slack matrix (see
also [9]).

Theorem 1 (Yannakakis’ factorization theorem) For all polytopes P that are neither
empty or a point,

xc(P) = rank+(S(P)).

Before going on, we sketch the proof of half of the theorem. Assuming P = {x ∈
R
d : Ex � g}, consider a rank-r nonnegative factorization S(P) = FV of the slack

matrix of P . Then it can be shown that Q := {(x, y) ∈ R
d+r : Ex + Fy = g, y � 0}

is an extension of P . Notice that Q has at most r facets, and r extra variables.2 Taking
r = rank+(S(P)) implies xc(P) � rank+(S(P)). Moreover, since P is a polytope,
one can also assume that Q is bounded, as shown by the following lemma.

Lemma 1 Let P = {x ∈ R
d : Ex � g} be a polytope, let S(P) = FV be a rank-r

nonnegative factorization of the slack matrix of P with r := rank+(S(P)), and let
Q := {(x, y) ∈ R

d+r : Ex + Fy = g, y � 0}. Then Q is bounded.

Proof The polyhedron Q is unbounded if and only if its recession cone rec(Q) =
{(x, y) ∈ R

d+r : Ex + Fy = 0, y � 0} contains some nonzero vector. Since P is
bounded and the image of Q under the projection (x, y) �→ x is P , we have x = 0
for every point (x, y) ∈ rec(Q). Therefore, Q is unbounded if and only if the system
Fy = 0, y � 0 has a solution y �= 0. But any such y represents 0 as a non-trivial
conical combination of the column vectors of F . Since F is nonnegative, this is only
possible if one of the columns of F is identically zero, which would contradict the
minimality of r . �	

2.2 Polytopes relevant to this work

Now we describe briefly various families of polytopes relevant to this paper. For a
more detailed description of these polytopes, we refer the reader to Schrijver [22].

2 The extended formulation for Q given above potentially has a large number of equalities, but recall we
only consider the number of inequalities in the size of the extended formulation. The reasons for this are
twofold: first, one can ignore most of the equalities after picking a small number of linearly independent
equalities; and second, our concern in this paper is mainly the existence of certain extensions.
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Let I be a finite ground set. The characteristic vector of a subset J ⊆ I is the vector
χ J ∈ R

I defined as

χ J
i =

{
1 if i ∈ J
0 if i /∈ J

for i ∈ I . For x ∈ R
I , we let x(J ) := ∑

i∈J xi .
Throughout this section, G = (V, E) denotes a (finite, simple, undirected) graph.

For a subset of vertices U ⊆ V , we denote the edges of the subgraph induced by U
as E[U ]. The cut defined by U , denoted as δ(U ), is the set of edges of G exactly one
of whose endpoints is in U . That is,

E[U ] = {uv ∈ E : u ∈ U, v ∈ U }, and

δ(U ) = {uv ∈ E : u ∈ U, v /∈ U }.

Later in this paper, we will often take G to be the complete graph Kn with vertex
set V (Kn) = [n] := {1, . . . , n} and edge set E(Kn) = {i j : i, j ∈ [n], i �= j}.

2.2.1 Spanning tree polytope

A spanning tree of G is a tree T = (V (T ), E(T )) (i.e., a connected graph without
cycles) whose set of vertices and edges respectively satisfy V (T ) = V and E(T ) ⊆ E .
The spanning tree polytope of G is the convex hull of the characteristic vectors of the
spanning trees of G, i.e.,

Pspanning tree(G) = conv{χ E(T ) ∈ R
E : T spanning tree of G}.

Edmonds [6] showed that this polytope admits the following linear description (see
also [22, page 861]):

x(E[U ]) � |U | − 1 for nonempty U � V,

x(E) = |V | − 1,
xe � 0 for e ∈ E .

This follows, e.g., from the fact that the spanning tree polytope of G is the base
polytope of the graphic matroid of G.

2.2.2 Perfect matching polytope

A perfect matching of G is set of edges M ⊆ E such that every vertex of G is incident
to exactly one edge in M . The perfect matching polytope of the graph G is the convex
hull of the characteristic vectors of the perfect matchings of G, i.e.,

Pperfect matching(G) = conv{χM ∈ R
E : M perfect matching of G}.
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Edmonds [5] showed that the perfect matching polytope of G is described by the
following linear constraints (see also [22, page 438]):

x(δ(U )) � 1 for U ⊆ V with |U | odd, |U | � 3

x(δ({v})) = 1 for v ∈ V,

xe � 0 for e ∈ E .

2.2.3 Stable set polytope

A stable set S (often also called an independent set) of G is a subset of the vertices
such that no two of them are adjacent. A clique K of G is a subset of the vertices
such that every two of them are adjacent. The stable set polytope STAB(G) of a graph
G(V, E) is the convex hull of the characteristic vectors of the stable sets in G, i.e.,

STAB(G) = conv{χ S ∈ R
V : S stable set of G}.

No complete linear description of the stable set polytope for arbitrary graphs is
known. It is, however, known that the following inequalities are valid for STAB(G)

for any graph G:

x(K ) � 1 for cliques K of G, (1)

xv � 0 for v ∈ V . (2)

Inequalities (1) are called the clique inequalities. See Schrijver [22] for details.
A graph G is called perfect if the chromatic number of every induced subgraph

equals the size of the largest clique of that subgraph. It is known that G is perfect if
and only if inequalities (1) and (2) completely describe STAB(G) [2].

3 Communication complexity

We start by an overview of the standard model of deterministic communication proto-
cols, as described in detail in the book by Kushilevitz and Nisan [16]. We follow this
with a detailed description of our notion of a randomized protocol (with private ran-
dom bits and nonnegative outputs) computing a function in expectation. This differs
significantly from the standard definition in the literature where randomized protocols
usually compute a function exactly with high probability.

3.1 Deterministic protocols

Let X, Y , and Z be arbitrary finite sets with Z ⊆ R+, and let f : X × Y → Z be
a function. Suppose that there are two players Alice and Bob who wish to compute
f (x, y) for some inputs x ∈ X and y ∈ Y . Alice knows only x and Bob knows only y.
They must therefore exchange information to be able to compute f (x, y). (We assume
that each player possesses unlimited computational power.)
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The communication is carried out as a protocol that is agreed upon beforehand by
Alice and Bob, on the sole basis of the function f . At each step of the protocol, one
of the players has the token. Whoever has the token sends a bit to the other player,
that depends only on their input and on previously exchanged bits. This is repeated
until the value of f on (x, y) is known to both players. The minimum number of
bits exchanged between the players in the worst case to be able to evaluate f by any
protocol is called the communication complexity of f.

3.2 Randomized protocols and computation in expectation

A protocol can be viewed as a rooted binary tree where each node is marked either
Alice or Bob. The leaves have vectors associated with them. An execution of the
protocol on a particular input is a path in the tree starting at the root. At a node owned
by Alice, following the path to the left subtree corresponds to Alice sending a zero
to Bob and taking the right subtree corresponds to Alice sending a one to Bob; and
similarly for nodes owned by Bob.

More formally, we define a randomized protocol (with private random bits and
nonnegative outputs) as a rooted binary tree with some extra information attached
to its nodes. Let X and Y be finite sets, as above. Each node of the tree has a
type, which is either X or Y . To each node v of type X are attached two func-
tion p0,v, p1,v : X → [0, 1]; to each node v of type Y are attached two functions
q0,v, q1,v : Y → [0, 1]; and to each leaf v is attached a nonnegative vector �v that is
a column vector of size |X | for leaves of type X and a row vector of size |Y | for leaves
of type Y . The functions pi,v and q j,v define transition probabilities, and we assume
that p0,v(x)+ p1,v(x) � 1 and q0,v(y)+q1,v(y) � 1. Figure 1 shows an example of a
protocol.

An execution of the protocol on input (x, y) ∈ X × Y is a random path that
starts at the root and descends to the left child of an internal node v with probability

(a) (b)

Fig. 1 Illustration of a (non-optimal) randomized protocol computing a matrix in expectation, a protocol
as a tree, b the associated communication matrix
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p0,v(x) if v is of type X and q0,v(y) if v is of type Y , and to the right child of v with
probability p1,v(x) if v is of type X and q1,v(y) if v is of type Y . With probability
1 − p0,v(x) − p1,v(x) and 1 − q0,v(y) − q1,v(y) respectively, the execution stops at
v. For an execution stopping at leaf v with vector �v , the value of the execution is
defined as the entry of�v that corresponds to input x ∈ X if v is of type X , and y ∈ Y
if v is of type Y . For an execution stopping at an internal node, the value is defined to
be 0.

For each fixed input (x, y) ∈ X × Y , the value of an execution on input (x, y) is
a random variable. If we let Z ⊆ R+ as before, we say that the protocol computes a
function f : X × Y → Z in expectation if the expectation of this random variable on
each (x, y) ∈ X × Y is precisely f (x, y).

The complexity of a protocol is the height of the corresponding tree.
Given an ordering x1, …, xm of the elements of X , and y1, …, yn of the elements

of Y , we can visualize the function f : X × Y → Z as a m × n nonnegative matrix
S = S( f ) such that Si, j = f (xi , y j ) for all (i, j) ∈ [m] × [n]. The matrix S is
called the communication matrix of f . Below, as is natural, we will not always make
a distinction between a function and its communication matrix.

These formal definitions capture the informal ones given above. Observe that the
nodes of type X are assigned to Alice, and those of type Y to Bob. Observe also that
Alice and Bob have unlimited resources for performing their part of the computation.
It is only the communication between the two players that is accounted for. When
presenting a protocol, we shall often say that one of the two players sends an integer k
rather than a binary value. This should be interpreted as the player sending the binary
encoding of k or, as a (sub)tree of height �lg k�. Finally, our definitions are such
that the complexity of a protocol equals the number of bits exchanged by Alice and
Bob.

3.3 Normalized variance

Since the output of a randomized protocol—as defined above—is a random variable,
one can define its variance. However, we would like to refine the notion of variance
so that protocols computing different scalings of the same matrix have the same vari-
ance. This is essential since the nonnegative rank of a matrix is an invariant under
scaling and, as we will see in the next section, there is an equivalence between the
nonnegative rank of a matrix S and the smallest complexity protocol computing S in
expectation.

Let S be a nonnegative matrix and suppose there exists a protocol of complexity
c computing S in expectation. Let ξi, j denote the random variable corresponding to
the output of the protocol on input (xi , y j ) ∈ X × Y. That is E[ξi, j ] = Si, j . The
normalized variance σ 2 of the protocol is defined as the maximum variance of the
random variables ξ ′

i, j = ξi, j
Si, j

for the nonzero entries of S. That is

σ 2 = max
(i, j)|Si, j �=0

Var(ξi, j/Si, j )
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4 Factorizations versus protocols

Theorem 2 If there exists a randomized protocol of complexity c computing a matrix
S ∈ R

X×Y+ in expectation, then lg rank+(S) � c. Conversely, if the nonnegative rank
of matrix S ∈ R

m×n+ is r , then there exists a randomized protocol computing S in
expectation, whose complexity is at most �lg r�. In other words, if cmin(S) denotes the
minimum complexity of a randomized protocol computing S in expectation, we have

cmin(S) = �lg rank+(S)�.

Proof Suppose there exists a protocol of complexity c computing S in expectation.
Each node v of the protocol has a corresponding traversal probability matrix Pv ∈
R

X×Y+ such that, for all inputs (x, y) ∈ X × Y , the entry Pv(x, y) is the probability
that an execution on input (x, y) goes through node v.

Let v1, …, vk denote the nodes of type X on the unique path from the root to the
parent of v, and let w1, …, w	 denote the nodes of type Y on this path. Then we have

Pv(x, y) =
k∏

i=1

pαi ,vi (x) ·
	∏

j=1

qβ j ,w j (y),

where αi is either 0 or 1 depending on if the path goes the left or right subtree at vi ,
and similarly for β j . We immediately see that Pv is a rank one matrix of the form avbv

where av is a column vector of size |X | and bv is a row vector of size |Y |.
Finally, let LX and LY be the set of all leaves of the protocol that are of type

X and Y respectively and let �v denote the (column or row) vector of values at
a leaf v ∈ LX ∪ LY . Because the protocol computes S in expectation, for all inputs
(x, y) ∈ X×Y we have S(x, y) = ∑

v∈LX
�v(x)Pv(x, y)+∑

w∈LY
Pw(x, y)�w(y).

Thus, S = ∑
v∈LX

(�v ◦av)bv +∑
v∈LY

aw(bw ◦�w),where ◦ denotes the Hadamard
product. Therefore, it is possible to express S as a sum of at most |LX ∪ LY | � 2c

nonnegative rank one matrices. Hence, rank+(S) � 2c, that is, lg rank+(S) � c.
To prove the other part of the theorem, let A ∈ R

m×r+ and B ∈ R
r×n+ be nonnegative

matrices such that S = AB. By scaling, we can assume that the maximum row sum
of A is 1. Otherwise, we replace A and B by �−1A and �B respectively, where �

denotes the maximum row sum of A.
The protocol is as follows: Alice knows a row index i , and Bob knows a column

index j . Together they want to compute Si, j in expectation, by exchanging as few bits
as possible. They proceed as follows. Let δi := ∑

k Ai,k � 1. Alice selects a column
index k ∈ [r ] according to the probabilities found in row i of matrix A, sends this
index to Bob, and Bob outputs the entry of B in row k and column j . With probability
1 − δi Alice does not send any index to Bob and the computation stops with implicit
output zero (see Sect. 3.2).

This randomized protocol computes the matrix S in expectation. Indeed, the
expected value on input (i, j) is

∑r
k=1 Ai,k Bk, j = Si, j . Moreover, the complexity

of the protocol is precisely �lg(r)�. �	
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We would like to remark that our contruction of a factorization from a protocol
is similar to the one used by Krause [17] to construct an approximate factorization
from a protocol. However his discussion was limited to traditional definitions of a
randomized protocol and hence could not produce exact factorizations.

The above theorem together with Theorem 1 gives us the following corollary:

Corollary 3 Let P be a polytope with associated slack matrix S = S(P), such that
P is neither empty or a point. If there exists a randomized protocol of complexity c
computing S in expectation, then xc(P) � 2c. Conversely, if xc(P) = r , then there
exists a randomized protocol computing S in expectation, whose complexity is at most
�lg r�. In other words, if cmin(S) denotes the minimum complexity of a randomized
protocol computing S in expectation, we have

cmin(S(P)) = �lg xc(P)�.

The concrete polytopes considered in this paper have some facet-defining inequal-
ities enforcing nonnegativity of the variables along with other facet-defining inequal-
ities. The next lemma and its corollary will allow us to ignore the rows corresponding
to nonnegativity inequalities, and focus on the non-trivial parts of the slack matrices.

Lemma 2 Let S be a nonnegative matrix. Let R1, R2 be a partition of the rows of S
defining partition of S into S1 and S2. If there exist randomized protocols computing
S1 and S2 in expectation with complexity c1 and c2 respectively, then there exists a
randomized protocol complexity computing S with complexity 1 + max{c1, c2}.

Proof When Alice gets a row index of S she sends a bit to Bob to indicate whether
the corresponding row lies in R1 or R2. Now that both Alice and Bob know whether
they want to compute an entry in S1 or S2, they use the protocol for that particular
submatrix. �	

Corollary 4 Let P ⊆ R
d+ be a polytope and let S′(P) denote the submatrix of S(P)

obtained by deleting the rows corresponding to nonnegativity inequalities. If there is a
complexity c randomized protocol for computing S′(P) in expectation, then there is a
complexity 1+max{c, �lg d�} randomized protocol for computing S(P) in expectation.

Proof For computing the part of S(P) that is deleted in S′(P), which corresponds
to nonnegativity inequalities, we use the obvious protocol where Alice sends her row
number to Bob and Bob computes the slack. Since at most d facets of P are defined
by nonnegativity inequalities, this protocol has complexity �lg d�. The corollary thus
follows from Lemma 2. �	

For the protocols constructed here, we will always have c � �lg d�. Because of
Corollary 4, we can thus ignore the nonnegativity inequalities without blowing up the
size of any extension by more than a factor of 2. Moreover, in terms of lower bounds,
it is always safe to ignore inequalities because the nonnegative rank of a matrix cannot
increase when rows are deleted.
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5 Examples

In this section, we give three illustrative examples of protocols defining nonnegative
factorizations of various slack matrices, and thus (via Corollary 3) extensions of the
corresponding polytopes. The first one gives a O(n3)-size extension of the stable
set polytope of a claw-free perfect graph. The second one is a reinterpretation of a
well-known O(n3)-size extended formulation for the spanning tree polytopes due to
Martin [19]. Our interpretation allows for a more general result. In particular we prove
new upper bounds for the spanning tree polytopes for minor-free graphs. The third
one concerns the perfect matching polytopes and is implicit in Kaibel, Pashkovich and
Theis [14].

5.1 The stable set polytope of a claw-free perfect graph

A graph G is called claw-free if no vertex has three pairwise non-adjacent neighbors.
Even though the separation problem for STAB(G) for claw-free graphs is polynomial-
time solvable, no explicit description of all its facets is known (see, e.g., [22, page
1216]). Recently Faenza, Oriolo, and Stauffer [7] provided (non-compact) extended
formulations for this polytope, while Galluccio et al. [10] gave a complete description
of the facets for claw-free graphs with at least one stable set of size greater than or
equal to four, and no clique-cutsets. Also, recall that for a perfect graph G the facets
of STAB(G) are defined by inequalities (1) and (2) (see Sect. 2.2.3).

LetG be a claw-free, perfect graphwith n vertices.We give a deterministic protocol
that computes the slack matrix of the stable set polytope STAB(G) of G. Because G
is perfect, the (non-trivial part of the) slack matrix of STAB(G) has the following
structure: it has one column per stable set S inG, and each one of its rows corresponds
to a clique K in G. The entry for a pair (K , S) equals 0 if K and S intersect (in which
case they intersect in exactly one vertex) and 1 if K and S are disjoint (note that we
are ignoring the |V | rows that correspond to nonnegativity inequalities (2). This can
be done safely, see Corollary 4).

Consider the communication problem in which Alice is given a clique K of G, Bob
is given a stable set S of G, and Alice and Bob together want to compute 1− |K ∩ S|.
Alice starts and sends the name of any vertex u of her clique K to Bob. Then Bob
sends the names of all the vertices of his stable set S that are in N (u) ∪ {u} to Alice,
where N (u) denotes the neighborhood of u in G. Finally, Alice can compute K ∩ S
because this intersection is contained in N (u) ∪ {u} and Alice knows all vertices of
S ∩ (N (u) ∪ {u}). She outputs 1 − |K ∩ S|. Because G is claw-free, there are at
most two vertices in S ∩ (N (u) ∪ {u}), thus at most 3 lg n + O(1) bits are exchanged
by Alice and Bob. It follows that there exists an extension (and hence, an extended
formulation) of STAB(G) of size O(n3). Notice that the normalized variance of our
protocol is zero, because it is deterministic.

We obtain the following result.

Proposition 1 For every perfect, claw-free graph G with n vertices, STAB(G) has
an extended formulation of size O(n3).
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Fig. 2 Illustration of the
protocol for the slack of MST
polytope. The black vertices are
those in U . The green directed
edges are those for which Alice
outputs a non-zero value. The
number of such edges is the
number of connected
components of T [U ] minus one
(color figure online)

5.2 The spanning tree polytope

Let Pspanning tree(G) denote the spanning tree polytope of a graph G = (V, E) (see
Sect. 2.2.1). The (non-trivial part of the) slackmatrix of P has one columnper spanning
tree T and one row per proper nonempty subset U of vertices. The slack of T with
respect to the inequality that corresponds toU is the number of connected components
of the subgraph of T induced by U (denoted by T [U ] below) minus one.

In terms of the corresponding communication problem, Alice has a proper non-
empty set U and Bob a spanning tree T . Together, they wish to compute the slack of
the pair (U, T ). Alice sends the name of some (arbitrarily chosen) vertex u inU . Then
Bob picks an edge e of T uniformly at random and sends to Alice the endpoints v and
w of e as an ordered pair of vertices (v,w), where the order is chosen in such a way
that w is on the unique path from v to u in the tree. That is, he makes sure that the
directed edge (v,w) “points” towards the root u. Then Alice checks that v ∈ U and
w /∈ U , in which case she outputs n − 1; otherwise she outputs 0.

The resulting randomized protocol is clearly of complexity lg |V | + lg |E |+ O(1).
Moreover, it computes the slack matrix in expectation because for each connected
component of T [U ] distinct from that which contains u, there is exactly one directed
edge (v,w) that will leadAlice to output a non-zero value, see Fig. 2 for an illustration.
Since she outputs (n−1) in this case, the expected value of the protocol on pair (U, T )

is (n − 1) · (k − 1)/(n − 1) = k − 1, where k is the number of connected components
of T [U ]. Therefore, we obtain the following result.

Proposition 2 For every graph G with n vertices and m edges, Pspanning tree(G) has
an extended formulation of size O(mn).

The above result is implicit in Martin [19], although the paper only states the
following corollary. More specifically, variables zi, j,k such that i j is not an edge of
G can be deleted from his O(n3)-size extended formulation, so that the resulting
formulation has size O(mn).

Corollary 5 Pspanning tree(Kn) has extended formulation of size O(n3), where Kn is
the complete graph on n vertices.

Corollary 6 Let G be an H minor-free graph, where H is a graph with h vertices,
then Pspanning tree(G) has extended formulation of size O(n2h

√
lg h).
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Proof It is known that any H minor-free graph G with n vertices has at most
O(nh

√
lg h) edges, where h is the number of vertices of H [23]. The result follows.

�	
We remark that when G is planar, Pspanning tree(G) has an extended formulation of

size O(n) [25]. It is natural to ask whether a linear size extended formulation also
exists for general H minor-free graphs. So far, the best that seems to be known is the
upper bound in Corollary 6.

Finally, it can be easily verified that the normalized variance of the protocol given
above is σ 2 = n − 2, which is large compared to the previous protocol.

5.3 Perfect matching polytope

For the next example, we will need the fact that one can cover Kn with k =
O(2n/2poly(n)) balanced complete bipartite graphs G1,…, Gk in such a way that
every perfect matching of Kn is a perfect matching of at least one of the Gi ’s. We say
that X ⊆ [n] is an (n/2)-subset of [n] if |X | = n/2. Given a matching M of Kn and a
(n/2)-subset X of [n], we say that X is compatible with M if all the edges of M have
exactly one end in X .

Lemma 3 Let n be an even positive integer. Then, there exists a collection of k =
O(2n/2√n ln n) (n/2)-subsets X1,…, Xk of [n] such that for every perfect matching
M of Kn at least one of the subsets Xi is compatible with M.

Proof Finding a minimum size such collection X1, …, Xk amounts to solving a set
covering instance that we formulate by an integer linear program. For each (n/2)-
subset X , we define a variable binary variable λ(X). For each perfect matching M ,
these variables have to satisfy the constraint

∑{λ(X) : X is compatible with M} � 1.
The goal is to minimize

∑
λ(X), the sum of all variables λ(X).

A feasible fractional solution to this linear program is to let λ∗(X) = 1/2n/2.
This gives a feasible fractional solution because each perfect matching M is com-
patible with exactly 2n/2 (n/2)-subsets X , so

∑{λ∗(X) : X is compatible with
M} = 2n/2(1/2n/2) = 1. (By symmetry considerations, it is in fact possible to argue
that this solution is actually optimal.) The cost of this fractional solution λ∗ is

∑
λ∗(X) = 1

2n/2

(
n
n/2

)
� 2n/2

√
n

,

for n sufficiently large. By Lovász’s analysis of the greedy algorithm for the set cov-
ering problem [18], there exists a feasible integer solution λ of cost at most (1+ ln u)

times the fractional optimum, where u is the number of elements to cover. By what
precedes, this is at most

(
1 + ln

n!
2n/2(n/2)!

)
2n/2

√
n

= O(2n/2√n lg n),

from which the result follows directly. �	
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Assume thatn is even and let P denote theperfectmatchingpolytopeof the complete
graph Kn with vertex set [n], see Sect. 2.2.2. The (non-trivial part of the) slack matrix
of P has one column per perfect matching M , and its rows correspond to odd sets
U ⊆ [n]. The entry for a pair (U, M) is |δ(U ) ∩ M | − 1 (recall that δ(U ) denotes the
set of edges that have one endpoint inU and the other endpoint inU , the complement
of U ).

We describe a randomized protocol for computing the slack matrix in expectation,
of complexity at most (1/2 + ε)n, where ε > 0 can be made as small as desired by
taking n large. First, Bob finds an (n/2)-subset X ⊆ [n] that is compatible with his
matching M , and tells the name of this subset to Alice, see Lemma 3. Then Alice
checks which of X and X contains the least number of vertices of her odd set U .
Without loss of generality, assume it is X . IfU ∩ X = ∅ then, becauseU ⊆ X̄ and X
is compatible with M , Alice can correctly infer that the slack is |U | − 1, and outputs
this number. Otherwise, she picks a vertex u of U ∩ X uniformly at random and send
its name to Bob. He replies by sending the name of u′, the mate of u in the matching
M . Alice then checks whether u′ is in U or not. If u′ is not in U , then she outputs
|U | − 1. Otherwise u′ is in U , and she outputs |U | − 1− 2|U ∩ X |. Telling the name
of X can be done in at most n/2 + lg

√
n + lg lg n + O(1) bits, see Lemma 3. The

extra amount of communication is 2 lg n + O(1) bits. In total, at most (1/2+ ε)n bits
are exchanged, for n sufficiently large (ε > 0 can be chosen arbitrarily).

Now, we check that the protocol correctly computes the slack matrix of the perfect
matching polytope. Letting E[U ] denote the edges of the complete graph with both
endpoints in U , the expected value output by Alice (in the case U ∩ X �= ∅) is

(|U | − 1)
|U ∩ X | − |E[U ] ∩ M |

|U ∩ X | + (|U | − 1 − 2|U ∩ X |) |E[U ] ∩ M |
|U ∩ X |

= |U | − 1 − 2|U ∩ X | |E[U ] ∩ M |
|U ∩ X |

= |U | − 2|E[U ] ∩ M | − 1

= |δ(U ) ∩ M | − 1.

We obtain the following result.

Proposition 3 Let ε > 0. For every large enough even nonnegative integer n, the
polytope Pperfect matching(Kn) has an extended formulation of size at most 2(1/2+ε)n.

We remark that our extension has size at most 2(1/2+ε)n � (1.42)n , whereas the

main result of Yannakakis [24] gives a lower bound of

(
n
n/4

)
� (1.74)n for the size

of any symmetric extension.

6 When low variance forces large size

We have seen that every extension of a polytope P corresponds to a randomized
protocol computing its slack matrix S = S(P) in expectation and vice-versa. Now we
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show that if the set disjointness matrix can be embedded in a certain way in a matrix
S (see below for definitions), then efficient protocols computing S in expectation
necessarily have large variance. We prove that such an embedding can be found for
the slack matrices of the perfect matching polytope and also, surprisingly, of the
spanning tree polytope.

6.1 Embedding the set disjointness matrix

The set disjointness problem is the following communication problem: Alice and Bob
each are given a subset of [n]. Theywish to determinewhether the two subsets intersect
or not. In other words, Alice and Bob have to compute the set disjointness matrix DISJ
defined byDISJ(A, B) = 1 if A and B are disjoint subsets of [n], and DISJ(A, B) = 0
if A and B are non-disjoint subsets of [n]. The set disjointness problem plays a central
role in communication complexity, comparable to the role played by the satisfiability
problem in NP-completeness theory [1].

It is known that any randomized protocol that computes the disjointness function
with high probability (that is, the probability that the value output by the protocol is
correct is, for each input, bounded from below by a constant strictly greater than 1/2)
has Ω(n) complexity [15,20].

Consider a matrix S ∈ R
X×Y+ . An embedding of the set disjointness matrix on [n]

in S is defined by two maps α : 2[n] → X and β : 2[n] → Y such that

∀A, B ⊆ [n] : DISJ(A, B) = 1 ⇐⇒ S(α(A), β(B)) = 0. (3)

Notice that this kind of embedding could be called “negative” because zeros in the
set disjointness matrix correspond to non-zeros in S.

We remark that “positive” embeddings of the set disjointness matrix force up the
rank of S, because the rank of any matrix with the same support as the set disjointness
matrix on [n] is at least 2n [12]. This is not desirable because the nonnegative rank
of S is always at least its rank. Thus the lower bound on the nonnegative rank of S
obtained from such a “positive” embedding would be useless in our context (the rank
of the slack matrix S(P) of polytope P equals dim(P) + 1).

However, “positive” embeddings the unique set disjointness matrix, that is the
restriction of the set disjointness matrix to pairs (A, B) such that |A ∩ B| � 1, do
not have this problem of forcing up the rank. Actually, “positive” embeddings of the
unique set disjointness matrix led to the main result of Fiorini et al. [8].

Theorem 7 Let S ∈ R
X×Y+ be a matrix in which the set disjointness matrix on [n]

can be embedded. Consider a randomized protocol computing S in expectation. If
the probability that the protocol outputs a non-zero value, given an input (x, y) with
S(x, y) > 0, is at least p = p(n), then the protocol has complexity Ω(np). In
particular, by Chebyshev’s inequality, the complexity is Ω(n(1 − σ 2)), where σ 2

denotes the normalized variance of the protocol.

Proof Let c be the complexity of the protocol computing S in expectation. From
this protocol, we obtain a new protocol, this time for the set disjointness problem,
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by mapping each input pair (A, B) ∈ 2[n] × 2[n] to the corresponding input pair
(α(A), β(B)) ∈ X × Y (Alice and Bob can do this independently of each other),
running the original protocol �1/p� times, and outputting 0 if at least one of the
executions led to a non-zero value or 1 otherwise.

The new protocol always outputs 1 for every disjoint pair (A, B) because of (3)
(remember that our protocols have nonnegative outputs), and outputs 0 most of the
times for non-disjoint pairs (A, B). More precisely, the probability of outputting 0

in case (A, B) is non-disjoint is at least 1 − (1 − p)
1
p � 1 − e−1 > 1/2, where

e is Euler’s number. The theorem follows then directly from the fact that the new
protocol has complexity O(c/p) and from the fact that the set disjointness problem
has randomized communication complexity Ω(n). �	

6.2 The perfect matching polytope

First, we construct an embedding of the set disjointness matrix in the slack matrix of
the perfect matching polytope. Then, we discuss implications for extensions of the
perfect matching polytope.

Lemma 4 There exists an embedding of the set disjointness matrix on [n] in the slack
matrix of the perfectmatchingpolytope for perfectmatchings of K 	, where	 � 3n+14.

Proof Let k � n + 4 denote the first multiple of 4 that is strictly greater than n, and
let 	 := 3k + 2 � 3n + 14.

For two subsets A and B of [n], we define an odd set U := α(A) and a perfect
matching M := β(B) as follows.

First, we add the dummy element n + 1 to B in case |B| is odd, so that both B
and [k] − B contain an even number of elements. Note that this does not affect the
intersection of A and B because A is contained in [n]. Then, we let U := {i : i ∈
A} ∪ {i + k : i ∈ A} ∪ {3k + 1}.

Second, we define M by adding matching edges to the partial matching {{i, i + k} :
i ∈ [k] − B} ∪ {{i + k, i + 2k} : i ∈ B} ∪ {{3k + 1, 3k + 2}} in such a way that each
of the extra edges matches two consecutive unmatched vertices both in {i : i ∈ [k]}
or both in {i + 2k : i ∈ [k]}. See Fig. 3 for an example.

It can be easily verified that A and B are disjoint if and only if the slack for (U, M)

is zero. Hence, the maps α : A �→ U and β : B �→ M define the desired embedding
of the set disjointness matrix. �	

Let P denote the perfect matching polytope of Kn . Consider a size-r extension
of P and a corresponding complexity-�lg r� protocol computing S(P) in expectation
(the existence of such a protocol is guaranteed by Theorems 1 and 2). Lemma 4 and
Theorem 7 together imply that r = 2Ω(n(1−σ 2)), where σ 2 is the normalized variance
of the protocol. For instance, deterministic protocols for computing the slack matrix
of the perfect matching polytope give rise to exponential size extensions (σ 2 = 0 in
this case). The same holds if σ 2 is a constant with 0 < σ 2 < 1. When σ 2 is about
(n − 1)/n or more, the bound given by Theorem 7 becomes trivial.

123



92 Y. Faenza et al.

Fig. 3 Constructing an odd set
and a perfect matching from a
set disjointness instance

6.3 Spanning tree polytopes

We prove that similar results hold for the spanning tree polytope of Kn as well. This
is surprising, because for this polytope an extension of size O(n3) exists.

Lemma 5 There exists an embedding of the set disjointness matrix on [n] in the slack
matrix of the spanning tree polytope of K 2n+1.

Proof Let 	 := 2n+1. Recall that the rows and columns of (the non-trivial part of) the
slack matrix of the spanning tree polytope of K 	 respectively correspond to subsetsU
and spanning trees T . The entry for a pair (U, T ) is zero iff the subgraph of T induced
by U is connected.

Given an instance of the set disjointness problem with sets A, B ⊆ [n], we define
U := α(A) and T := β(B) as follows. For every i ∈ [n] add the edge {i, 2n + 1} to
T . For every i ∈ B add the edge {n+ i, i} to T and for every i ∈ [n]− B add the edge
{n + i, 2n + 1} to T . See Fig. 4 for an example.

Finally, we letU := {n+ i : i ∈ A}∪{2n+1}. As is easily seen, T [U ] is connected
iff A ∩ B = ∅. Indeed, if i ∈ A ∩ B then n + i and 2n + 1 are in different connected
components of T [U ]. Moreover, if A ∩ B = ∅ then T [U ] is a star with 2n + 1 as
center. �	

Therefore, the “low variance forces large size” phenomenon we exhibited for the
perfect matching polytope also holds for the spanning tree polytope. Incidentally,
the O(n3)-size extension for the spanning tree polytope of Kn can be obtained via
randomized protocols, but not via deterministic ones. This is because Lemma 5 and
Theorem7 implies that any extension for the spanning tree polytope that corresponds to
a deterministic protocolmust have exponential size. (Notice that the value of p = p(n)

for the protocol given in Sect. 5.2 is roughly 1/n.)
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Fig. 4 The spanning tree T for
B = {1, 2, 4} and n = 7. Black
vertices are those of the form i
or n + i where i ∈ B

7 Concluding remarks

Given a perfect matching M and an odd set U as above there is always an edge in
δ(U ) ∩ M . But it is not clear if such an edge can be found using a protocol with
sublinear communication. Now we show that if such an edge can be found using few
bits then the perfect matching polytope has an extension of small size. As one of the
referees pointed out, this fact can be considered as folklore.

Theorem 8 Suppose Alice is given an odd set U ⊆ [n] and Bob is given a perfect
matching M of Kn. Furthermore, suppose that Bob knows an edge e ∈ δ(U ) ∩ M.
Then, there exists a randomized protocol of complexity 2 lg n + O(1) that computes
the slack for the pair (U, M) in expectation.

Proof The protocol works as follows. Bob picks an edge e′ from M \ {e} uniformly
at random and sends it to Alice. She outputs |M | − 1 = n/2 − 1 if e′ ∈ δ(U ) and 0
otherwise.The expectedvalueof the protocol is (|M |−1)·(|δ(U )∩M |−1)/(|M |−1) =
|δ(U ) ∩ M | − 1, as required. Bob needs to send the endpoints of the edge e′ to Alice
and this requires 2 lg n + O(1) bits. �	

The theorem above implies that if an edge in δ(U ) ∩ M can be computed using a
protocol requiring o(n) bits, then there exists an extension for the perfect matching
polytope of subexponential size. We leave it as an open question to settle the existence
of such a protocol.
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Within a fixed integer box of Rn, lexicographical polytopes are the convex hulls of the
integer points that are lexicographically between two given integer points. We provide
their descriptions by means of linear inequalities.
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Throughout, ℓ, u, r, s will denote integer points satisfying ℓ ≤ r ≤ u and ℓ ≤ s ≤ u, that is r and s are within [ℓ, u]. A
point x ∈ Zn is lexicographically smaller than y ∈ Zn, denoted by x 4 y, if x = y or the first nonzero coordinate of y − x is
positive. We write x ≺ y if x 4 y and x ≠ y. The lexicographical polytope P r4s

ℓ,u is the convex hull of the integer points within
[ℓ, u] that are lexicographically between r and s:

P r4s
ℓ,u = conv{x ∈ Zn

: ℓ ≤ x ≤ u, r 4 x 4 s}.

The top-lexicographical polytope P4s
ℓ,u = conv{x ∈ Zn

: ℓ ≤ x ≤ u, x 4 s} is the special case when r = ℓ. Similarly, the
bottom-lexicographical polytope is P r4

ℓ,u = conv{x ∈ Zn
: ℓ ≤ x ≤ u, r 4 x}.

Given a, u ∈ Rn
+

and b ∈ R+, the knapsack polytope defined by K a,b
u = conv{x ∈ Zn

: 0 ≤ x ≤ u, ax ≤ b} is
superdecreasing if:

i>k

aiui ≤ ak for k = 1, . . . , n. (1)

Close relations between top-lexicographical and superdecreasing knapsack polytopes appear in the literature. For the 0/1
case, that is when ℓ = 0 and u = 1, Gillmann and Kaibel [2] first noticed that top-lexicographical polytopes are special cases
of superdecreasing knapsack ones, and the converse has been later established by Muldoon et al. [5]. Recently, Gupte [3]
generalized the latter result by showing that all superdecreasing knapsacks are top-lexicographical polytopes.

To prove this last statement, Gupte [3] observes that a superdecreasing knapsack K a,b
u is the top-lexicographical polytope

P4s
0,u, where s the lexicographically greatest integer point ofK a,b

u . The non trivial inclusion actually holds because every integer
point x of P4s

0,u satisfies ax ≤ as. Indeed, by definition, if x ≺ s, there exists k ∈ {1, . . . , n} such that xk + 1 ≤ sk and xi = si
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Fig. 1. Path representation of the points of X4s
ℓ,u .

for i < k. Hence, we have b − ax ≥ as − ax ≥


i>k ai(si − xi) + ak ≥


i>k ai(si − xi + ui) ≥ 0, because of (1), si ≥ 0 and
ui ≥ xi.

It turns out that top-lexicographical polytopes are superdecreasing knapsack polytopes. Indeed, let P4s
ℓ,u be a top-

lexicographical polytope for some s within [ℓ, u]. Possibly after translating, we may assume ℓ = 0. Define a by ak =
i>k aiui + 1, for k = 1, . . . , n, and let b = as. Since the associated knapsack polytope K a,b

u is superdecreasing, if x 4 s
then ax ≤ as = b, for all xwithin [0, u]. Moreover, the converse holds because, inequalities (1) being all strict, s ≺ x implies
b = as < ax. Therefore, P4s

0,u = K a,b
u . These observations are summarized in the following.

Observation 1. Superdecreasing knapsacks are top-lexicographical polytopes, and conversely (up to translations).

Motivated by a wide range of applications, such as knapsack cryptosystems [6] or binary expansion of bounded integer
variables (e.g., [8, p. 477]), several papers are devoted to the polyhedral description of these families of polytopes. For the
0/1 case, the description appeared in [4] from the knapsack point of view. It was later rediscovered from the lexicographical
point of view in [2,5]. Moreover, Muldoon et al. [5] and Angulo et al. [1] independently showed that intersecting a 0/1 top-
with a 0/1 bottom-lexicographical polytope yields the description of the corresponding lexicographical polytope. Recently,
these results were generalized for the bounded case by Gupte [3].

In this paper, we provide the description of the lexicographical polytopes using extended formulations. Our approach
provides alternative proofs of the aforementioned results of Gupte [3].

The outline of the paper is as follows. In Section 1, we provide a flow based extended formulation of the convex
hull of the componentwise maximal points of a top-lexicographical polytope. Projecting this formulation is surprisingly
straightforward, and thus we get the description in the original space. In Section 2, using the fact that a top-lexicographical
polytope is, up to translation, the submissive of the above convex hull, we derive the description of top-lexicographical
polytopes.We then show that a lexicographical polytope is the intersection of its top- and bottom-lexicographical polytopes.

1. Convex hull of componentwise maximal points

From now on, X4s
ℓ,u will denote the set of the points pi = (s1, . . . , si−1, si − 1, ui+1, . . . , un), for i = 1, . . . , n+ 1 such that

si > ℓi, where pn+1
= s by definition. Note that X4s

ℓ,u consists of the componentwise maximal integer points of P4s
ℓ,u, to which

we added, for later convenience, the point pn = (s1, . . . , sn−1, sn − 1) if sn > ℓn.

1.1. A flow model for X4s
ℓ,u

We first model the points of X4s
ℓ,u as paths from 1 to n + 1 in the digraph given in Fig. 1.

Our digraph is composed of n+1 layers, each containing two nodes except the first and the last ones. There are three arcs
connecting the layer k to the layer k + 1, an upper arc yk, a diagonal arc tk and a lower arc zk. The only exception concerns
the first level, which does not have the upper arc.

The arcs connecting two successive layers correspond to a coordinate of x ∈ X4s
ℓ,u. More precisely, given a directed path P

from 1 to n + 1, we define the point x by setting, for k = 1, . . . , n,

xk =

uk if yk ∈ P,
sk − 1 if tk ∈ P,
sk if zk ∈ P.

As shown in Observation 2, the set of (x, y, z, t) satisfying the following set of inequalities is an extended formulation of
conv(X4s

ℓ,u):

xi = uiyi + (si − 1)ti + sizi for i = 1, . . . , n, (2)
y1 = 0 (3)

yi = yi−1 + ti−1 for i = 2, . . . , n, (4)
zi = zi+1 + ti+1 for i = 1, . . . , n − 1, (5)

ti = 0 whenever si = ℓi, (6)
yn + tn + zn = 1 (7)

yi, ti, zi ≥ 0 for i = 1, . . . , n. (8)
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Observation 2. conv(X4s
ℓ,u) = projx{(x, y, z, t) satisfying (2)–(8)}.

Proof. First, note that there is a one-to-one correspondence between the points of X4s
ℓ,u and the paths from layer 1 to

layer n + 1 of the digraph. This implies that X4s
ℓ,u is the projection onto the x variables of the integer points of Q =

{(x, y, z, t) satisfying (2)–(8)}. The digraph being acyclic, the set of (y, z, t) satisfying (3)–(8) is a path polytope and thus
is an integral polytope [7, Theorem 13.10]. The integrality of u and s implies that Q is integer, hence so is its projection onto
the x variables, which concludes the proof. �

1.2. Description of conv(X4s
ℓ,u)

In the following result, we use Observation 2 to provide a linear description of conv(X4s
ℓ,u).

Lemma 3. conv(X4s
ℓ,u) is described by the inequalities:

n
i=1,si>ℓi

Ai(x) ≥ −1 (9)

Ak(x) ≤ 0 for k = 1, . . . , n, (10)
Ak(x) ≥ 0 when sk = ℓk, (11)

where, for k = 1, . . . , n,

Ak(x) := (xk − sk) + (uk − sk)
k−1

i=1,si>ℓi

 k−1
j=i+1,sj>ℓj

(uj − sj + 1)

 (xi − si).

Proof. By Observation 2, it suffices to project onto the x variables of the set of x, y, t, z satisfying (2)–(8).
For k = 1, . . . , n, we get yk =

k−1
i=1 ti by (3) and (4). This, combined with (5) and (7), yields zk = 1 −

k
i=1 ti. Using

those two equations in (2), and tk = 0 whenever sk = ℓk, we obtain

tk = sk − xk + (uk − sk)
k−1

i=1,si>ℓi

ti, for k = 1, . . . , n. (12)

We now show by induction on k that, for all k = 1, . . . , n,

k
i=1,si>ℓi

ti =

k
i=1,si>ℓi

(si − xi)
k

j=i+1,sj>ℓj

(uj − sj + 1). (13)

By definition of tk, (13) holds for k = 1. Let us suppose that (13) holds for k < n and show that it holds for k + 1. The result
is immediate if sk+1 = ℓk+1, hence assume that sk+1 > ℓk+1. We have

k+1
i=1,si>ℓi

ti = (sk+1 − xk+1) + (uk+1 − sk+1)

k
i=1,si>ℓi

ti +
k

i=1,si>ℓi

ti (14)

= (sk+1 − xk+1) + (uk+1 − sk+1 + 1)
k

i=1,si>ℓi

(si − xi)
k

j=i+1,sj>ℓj

(uj − sj + 1) (15)

=

k+1
i=1,si>ℓi

(si − xi)
k+1

j=i+1,sj>ℓj

(uj − sj + 1).

Above, equality (14) follows from (12) applied to tk+1 and equality (15) follows using (13).
Injecting (13) in (12) yields

tk = sk − xk + (uk − sk)
k−1

i=1,si>ℓi

(si − xi)
k−1

j=i+1,sj>ℓj

(uj − sj + 1) for k = 1, . . . , n. (16)

Up to now, we only used linear transformations, thus projecting out the variables y, z gives us (16),
n

i=1,si>ℓi
ti ≤ 1, tk = 0

whenever sk = ℓk and tk ≥ 0 otherwise. Then, projecting onto the x variable gives the desired result. �
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Note that the following derives from the above proof by combining (12) and the fact that, by (16), we have tk = −Ak:

Ak(x) = (xk − sk) + (uk − sk)
k−1

i=1,si>ℓi

Ai(x), for k = 1, . . . , n. (17)

2. Lexicographical polytopes

In this section, we first provide the description of top-lexicographical polytopes. We then show that a lexicographical
polytope is the intersection of its top- and bottom-lexicographical polytopes.

2.1. Description of top-lexicographical polytopes

The following observation unveils the polyhedral relation between a top-lexicographical polytope and the convex hull
of its componentwise maximal points.

Observation 4. P4s
ℓ,u = (conv(X4s

ℓ,u) + Rn
−
) ∩ {x ≥ ℓ}.

Proof. Since conv(X4s
ℓ,u) is integer and contained in {x ≥ ℓ}, the polyhedron on the right is integer. Seen the definitions, the

observation follows. �

Remark that, when ℓ = 0, P4s
ℓ,u is precisely the submissive of conv(X4s

ℓ,u). Now, we derive from Lemma 3 and Observation 4
the linear description of top-lexicographical polytopes.

Theorem 5. P4s
ℓ,u = {x ∈ Rn

: ℓ ≤ x ≤ u, Ak(x) ≤ 0, for k = 1, . . . , n}.

Proof. Theorem 5 immediately follows from Observation 4 and the following description of conv(X4s
ℓ,u) + Rn

−
,

conv(X4s
ℓ,u) + Rn

−
= {x ∈ Rn

: x ≤ u and Ak(x) ≤ 0, for k = 1, . . . , n}. (18)

To prove (18), denote by Q its right hand side. By Lemma 3, the above inequalities are valid for conv(X4s
ℓ,u). Since their

coefficients for x are nonnegative, they also hold for conv(X4s
ℓ,u) + Rn

−
. Note that the latter and Q have the same recession

cone, thus it remains to show that the vertices of Q are vertices of conv(X4s
ℓ,u). Let us prove it by induction on the dimension,

the base case being immediate. Wemay assume that un > sn, as otherwise An(x) = xn − sn and the induction concludes. Let
x̄ be a vertex of Q .

Claim 6.
n

i=1,si>ℓi
Ai(x̄) ≥ −1.

Proof. The indices i of Ai(x) involved in sums throughout this proof satisfy si > ℓi, yet to ease the reading, we will omit the
subscripts ‘‘si > ℓi’’. By contradiction, assume that

n
i=1 Ai(x̄) < −1. Since x̄ is a vertex, and xn appears only in xn ≤ un and

An(x) ≤ 0, at least one of them holds with equality. If the latter does, then by (17) and un > sn, we get the contradiction
0 = An(x̄) ≤ (un − sn)(1 + A1(x̄) + · · · An−1(x̄)) < (un − sn)(1 − 1) = 0. Therefore An(x̄) < 0 and x̄n = un. For x ∈ Rn,
we denote x′

:= (x1, . . . , xn−1). Necessarily, x̄′ satisfies to equality n− 1 linearly independent of the remaining inequalities,
and hence x̄′ is a vertex of {x ∈ Rn−1

: xk ≤ uk, Ak(x) ≤ 0, for k = 1, . . . , n − 1}. By the induction hypothesis, x̄′ is a vertex
of conv(X4s′

ℓ′,u′) + Rn−1
− , hence

n−1
i=1 Ai(x̄′) ≥ −1. But now An(x̄) < 0, x̄n = un and (17) imply A1(x̄′) + · · · + An−1(x̄′) < −1,

a contradiction. �

Let us show that Ak(x̄) = 0 whenever sk = ℓk. Indeed, in this case, x̄k only appears in Ak(x̄) ≤ 0 and x̄k ≤ uk, and
one is satisfied with equality since x̄ is a vertex. If x̄k = uk, then by (17), Claim 6 and Ai(x̄) ≤ 0, for i = 1 . . . , n, we get
0 ≥ Ak(x̄) = (uk − sk)(1 +

k−1
i=1,si>ℓi

Ai(x̄)) ≥ 0. Consequently, x̄ belongs to conv(X4s
ℓ,u) and this proves (18). �

Symmetrically, bottom-lexicographical polytopes are described as follows.

Corollary 7. P r4
ℓ,u = {x ∈ Rn

: ℓ ≤ x ≤ u, Bk(x) ≤ 0, for k = 1, . . . , n}, where, for k = 1, . . . , n,

Bk(x) = (rk − xk) + (rk − ℓk)

k−1
i=1,ri<ui

 k−1
j=i+1,rj<uj

(rj − ℓj + 1)

 (ri − xi).
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2.2. Lexicographical polytopes

By definition, we have P r4s
ℓ,u ⊆ P r4

ℓ,u ∩ P4s
ℓ,u. It turns out that the converse holds, see Theorem 8. In particular, P r4

ℓ,u ∩ P4s
ℓ,u is

an integer polytope.

Theorem 8. A lexicographical polytope is the intersection of its top- and bottom-lexicographical polytopes.

Proof. It remains to prove that P r4s
ℓ,u ⊇ Q , where Q = P r4

ℓ,u ∩ P4s
ℓ,u. Let us prove it by induction on the dimension, the one-

dimensional case being immediate.
If r1 = s1, then the problem reduces to the (n − 1)-dimensional case, and using induction concludes.
If r1 + 1 ≤ π ≤ s1 − 1 for some integer π , then let ℓ′ be obtained from ℓ by replacing ℓ1 by π . By s1 > ℓ′

1 and the
definition of Ak(x), applying Theorem 5 gives P4s

ℓ,u ∩ {x1 ≥ π} = P4s
ℓ′,u. Moreover, since π > r1, the latter is contained in P r4

ℓ,u.
Therefore Q ∩ {x1 ≥ π} = P4s

ℓ′,u is integer. Similarly, Q ∩ {x1 ≤ π} is integer, hence so is Q , and we are done.
The remaining case is when r1 = s1 − 1. Let x̄ ∈ P r4

ℓ,u ∩ P4s
ℓ,u. If x̄1 = s1, when x̄ is written as a convex combination of

integer points of P4s
ℓ,u, all of them have their first coordinate equal to s1, and hence belong to P r4s

ℓ,u . By convexity, so does x̄ and
we are done. A similar argument may be applied if x̄1 = r1. Therefore, we may assume that r1 < x̄1 < s1.

Let λ = x̄1 − r1, and define y by y1 = s1 and yk = uk +
x̄k−uk

λ
for k = 2, . . . , n. Similarly, define z by z1 = r1 and

zi = ℓi +
x̄i−ℓi
1−λ

, for i = 2, . . . , n. The following claim finishes the proof, where, given two points v and w of Rn, max(v, w)

(resp. min(v, w)) will denote the point of Rn whose ith coordinate is max{vi, wi} (resp. min{vi, wi}) for i = 1, . . . , n.

Claim 9. x̄ is a convex combination of ȳ = max(y, ℓ) and z̄ = min(z, u) which both belong to P r4s
ℓ,u .

Proof. First, let us show that y ∈ conv(X4s
ℓ,u) + Rn

−
. As x̄ ≤ u, we have y ≤ u. Moreover, A1(y) = y1 − s1 = 0. Now, we

prove by induction that Ak(y) =
1
λ
Ak(x̄) for k = 2, . . . , n. Using (17), A1(y) = 0, the definition of yk, and the induction

hypothesis, we have Ak(y) =
1
λ
[x̄k − sk + (λ − 1)(uk − sk) + (uk − sk)

k−1
i=2,si>ℓi

Ai(x̄)]. Since λ − 1 = x̄1 − s1 = A1(x̄)
and s1 = r1 + 1 > ℓ1, we get by (17) that Ak(y) =

1
λ
Ak(x̄), for k = 2, . . . , n. Since Ak(x̄) ≤ 0, we have Ak(y) ≤ 0. Hence,

y ∈ conv(X4s
ℓ,u) + Rn

−
. Therefore, there exists y+ of conv(X4s

ℓ,u) with y+
≥ y. Clearly, y+

≥ ℓ hence y+
≥ max(y, ℓ). Thus,

max(y, ℓ) belongs to conv(X4s
ℓ,u) + Rn

−
and, by Observation 4, to P4s

ℓ,u. Moreover, as its first coordinate equals s1, max(y, ℓ)
belongs to P r4s

ℓ,u . Similarly, min(z, u) also belongs to P r4s
ℓ,u .

Finally, we have (1 − λ)z̄1 + λȳ1 = (1 − λ)(s1 − 1) + λs1 = s1 − 1 + λ = x̄1. For i ∈ {2, . . . , n}, we have
(1−λ)z̄i+λȳi = min(x̄i−λℓi, (1−λ)ui)+max((λ−1)ui+x̄i, λℓi) = x̄i−max(λℓi, (λ−1)ui+x̄i)+max((λ−1)ui+x̄i, λℓi) = x̄i.
Therefore, x̄ = (1 − λ)z̄ + λȳ and we are done. � �

Note that the above result implies that the family of lexicographical polytopes defined on a fixed box [ℓ, u] is closed by
intersection. Beside, combined with Theorem 5 and Corollary 7, it provides the description of lexicographical polytopes.

Corollary 10. The lexicographical polytope P r4s
ℓ,u is described as follows:

P r4s
ℓ,u =

x ∈ Rn
: Ak(x) ≤ 0 for k = 1, . . . , n

Bk(x) ≤ 0 for k = 1, . . . , n
ℓ ≤ x ≤ u


.
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In this paper, we describe the circuit polytope on series–parallel graphs. We first
show the existence of a compact extended formulation. Though not being explicit,
its construction process helps us to inductively provide the description in the original
space. As a consequence, using the link between bonds and circuits in planar graphs,
we also describe the bond polytope on series–parallel graphs.

© 2015 Elsevier B.V. All rights reserved.

In an undirected graph, a circuit is a subset of edges inducing a connected subgraph in which every vertex
has degree two. In the literature, a circuit is sometimes called simple cycle. Given a graph and costs on its
edges, the circuit problem consists in finding a circuit of maximum cost. This problem is already NP-hard
in planar graphs [1], yet some polynomial cases are known, for instance when the costs are non-positive.

Although characterizing a polytope corresponding to an NP-hard problem is unlikely, a partial description
may be sufficient to develop an efficient polyhedral approach. Concerning the circuit polytope, which is the
convex hull of the (edge-)incidence vectors of the circuits of the graph, facets have been exhibited by Bauer [2]
and Coullard and Pulleyblank [3], and the cone has been characterized by Seymour [4]. Several variants of
cardinality constrained versions have been studied, such as [5–8].

For a better understanding of the circuit polytope on planar graphs, a natural first step is to study it in
smaller classes of graphs. For instance, in [3], the authors provide a complete description in Halin graphs.

Another interesting subclass of planar graphs are the series–parallel graphs. Due to their nice decomposi-
tion properties, many problems NP-hard in general are polynomial for these graphs, in which case it is quite
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standard to (try to) characterize the corresponding polytopes. Results of this flavor were obtained for various
combinatorial optimization problems, such as the stable set problem [9], graph partitioning problem [10],
2-connected and 2-edge-connected subgraph problems [11,12], k-edge-connected problems [13], Steiner-TSP
problem [14].

Since a linear time combinatorial algorithm solves the circuit problem in series–parallel graphs, an obvious
question arising is the description of the corresponding polytope. Surprisingly, it does not appear in the
literature, and we fill in this gap with Theorem 11.

The main ingredient for the proof of our main theorem is the existence of a compact extended formula-
tion for the circuit polytope on series–parallel graphs. An extended formulation of a given polyhedron P =
{x ∈ Rn : Ax ≤ b} is a polyhedron Q = {(x, y) ∈ Rn × Rm : Bx + Cy ≤ d} whose projection onto the x

variables projx(Q) = {x ∈ Rn : there exists y ∈ Rm such that (x, y) ∈ Q} is P . The size of a polyhedron is
the number of inequalities needed to describe it. An extended formulation is called compact when its size is
polynomial. We refer to [15] for further insights on this topic.

The past few years, extended formulations proved to be a powerful tool for polyhedral optimization, and
thus received a growing interest in the community. Indeed, describing a polytope directly in its original
space is often pretty challenging, and by looking for an extended formulation one has more tools at disposal.
As an example, for most combinatorial optimization polytopes in series–parallel graphs, Martin et al. [16]
proposed a general technique to derive extended formulations from dynamic programming algorithms, but
the corresponding descriptions in the original space remain unknown.

Recently, it has been shown that the perfect matching polytope admits no compact extended formula-
tion [17]. It means, even if an optimization problem is polynomial, there may not exist such a formulation.
Here, though we are not able to explicitly construct a compact extended formulation for the circuit poly-
tope on series–parallel graphs, we show that there exists one, see Section 2.1.1. The construction process of
this extended formulation relies on a straightforward inductive description of the circuits of series–parallel
graphs, combined with a theorem of Balas [18,19]. It allows us to prove by induction that the circuit poly-
tope on series–parallel graphs is completely described by three families of inequalities. We provide examples
where exponentially many of these inequalities define facets, see Corollary 19. Thus, the circuit polytope on
series–parallel graphs is another example of polytope having exponentially many facet-defining inequalities
that admits a compact extended formulation.

A graph is series–parallel if and only if, given any planar drawing of the graph, its dual is series–parallel.
The dual of a circuit is a bond, that is a cut containing no other nonempty cut. These bonds play an
important role e.g. in multiflow problems [20]. By planar duality and the description of the circuit polytope on
series–parallel graphs, we get the description of the bond polytope on series–parallel graphs, see Theorem 13.

The paper is organized as follows. In Section 1, we fix graph related notation and definitions, and review
some known and new auxiliary results about circuits in series–parallel graphs. Section 2 deals with the
circuit polytope on series–parallel graphs. First, we get a polyhedral description of the latter for non
trivial 2-connected series–parallel graphs, by providing the existence of a compact extended formulation,
and then inductively projecting it. By applying standard techniques, the polyhedral description for general
series–parallel graphs follows, which has exponential size in general. In Section 3, using the planar duality,
we describe the bond polytope on series–parallel graphs, and then we study facet-defining inequalities, which
have counterparts for the circuit polytope as well.

1. Circuits in series–parallel graphs

Throughout, G = (V, E) will denote a connected undirected graph with n = |V | vertices and m = |E|
edges. The graph induced by a subset W of V is the graph G[W ] obtained by removing the vertices of V \W ,
and δG(W ) is the set of edges having exactly one extremity in W . Given disjoint U, W ⊂ V , δG(U, W ) is
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the set of edges having one extremity in each of U and W . When it is clear from the context, we will omit
the subscript G. Given a set of edges F ⊆ E, V (F ) denotes the set of vertices incident to any edge of F .
We denote by A∆B = (A ∪ B) \ (A ∩ B) the symmetric difference of A and B.

A subset F of E is called a cut if F = δG(W ) for some W ⊆ V . If u ∈ W and v ∈ V \W , the cut separates
u and v. A cut defined by a singleton is a star. A bond is a cut containing no other nonempty cut. One
can check that a nonempty cut δG(W ) is a bond if and only if both G[W ] and G[V \ W ] are connected. In
the literature, a bond is sometimes called a central cut. A bridge is an edge whose removal disconnects the
graph, that is a bond of size one. Note that the symmetric difference of bonds is a cut.

A subset of edges is called a cycle if it induces a subgraph where every vertex has even degree. A connected
cycle with every vertex of degree two is a circuit. If e is a circuit, it is called a loop. Let C(G) denote the set
of circuits of G. Note that the symmetric difference of circuits is a cycle.

By definition, the emptyset is both a bond and a circuit.
When no removal of a single vertex disconnects a graph, the latter is said 2-connected. Loops and bridges

are called trivial 2-connected graphs. The non trivial 2-connected components of a graph are the maximal
2-connected subgraphs of the graph, i.e., the components obtained after removing the loops and bridges.

A graph is series–parallel if all its non trivial 2-connected components can be built, starting from the
circuit of length two C2, by repeatedly applying the following operations: add a parallel edge to an existing
edge; or subdivide an existing edge, that is replace the edge by a path of length two. This construction gives
an inductive description of the circuits of such graphs.

Observation 1. Let G = (V, E) be a non trivial 2-connected series–parallel graph.

(i) If G is obtained from a graph H by subdividing an edge e ∈ E(H) into e, f , then the circuits of G are
obtained from those of H as follows:
• C, for C ∈ C(H) not containing e,
• C ∪ f , for C ∈ C(H) containing e.

(ii) If G is obtained from a graph H by adding a parallel edge f to an edge e ∈ E(H), then the circuits of
G are obtained from those of H as follows:
• C, for C ∈ C(H) not containing e,
• C and C \ e ∪ f , for C ∈ C(H) containing e,
• {e, f}.

A well-known characterization of cuts is that they are the sets of edges intersecting every circuit an even
number of times. In series–parallel graphs, we have the following property [20].

Observation 2 ([20]). In a series–parallel graph, a bond and a circuit intersect in zero or two edges.

If the graph is also 2-connected, then this property becomes a characterization of circuits, see below. Note
that the following does not hold if the series–parallel graph is not 2-connected.

Lemma 3. In a non trivial 2-connected series–parallel graph, a set of edges is a circuit if and only if it
intersects every bond in zero or two edges.

Proof. We prove the non trivial direction. By contradiction, let G be a minimal counter-example, and let F

be a set of edges intersecting every bond in zero or two edges that is not a circuit. First, suppose that G is
build from H by adding a parallel edge f to an edge e ∈ E(H). Necessarily, we have f ∈ F as otherwise H

would be a smaller counter-example. Similarly, e ∈ F . Suppose there exists g ∈ F \ {e, f}. Since G is planar
and 2-connected, so is its dual. Any pair of edges in a 2-connected graph being contained in a circuit, the
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planar duality between circuits and bonds implies that there exists a bond B of G containing both g and e.
Hence, B also contains f , which provides the contradiction |F ∩ B| ≥ 3. Now, assume that G is build from
H by subdividing e ∈ E(H) into {f, g}. Since G is 2-connected, {f, g} is a bond, hence F contains either
both f and g or none of them. In both cases, H is clearly a smaller counter-example, a contradiction. �

For an ordering v1, . . . , vn of V such that δ({v1, . . . , vi}) is a bond for all i = 1, . . . , n − 1, the partition
S = {S1, . . . , Sn−1} of E defined by Sℓ = δ(vℓ, {vℓ+1, . . . , vn}), for ℓ = 1, . . . , n − 1, is a star decomposition.
We will denote the initial star δ(v1, {v2, . . . , vn}) by IS . Equivalently, a star decomposition is obtained by
partitioning the edgeset by iteratively removing stars of the graph such that, at each step, the vertex to be
removed is adjacent to some removed vertex, and the set of remaining vertices induces a connected graph.
IS is the unique element of the star decomposition which is a star of the original graph.

Using induction and the construction of non trivial 2-connected series–parallel graphs, one can see that in
these graphs any vertex is the initial vertex of some star decomposition. In particular, such decompositions
exist.

Lemma 4. Given a star decomposition S of a series–parallel graph G, the following holds:

(a) a circuit intersects each member of S at most twice,
(b) a circuit does not intersect two members of S twice.

Proof. Let C be a circuit of G and v1, . . . , vn an ordering of V such that S = {S1, . . . , Sn−1} with Sℓ =
δ(vℓ, {vℓ+1, . . . , vn}), for ℓ = 1, . . . , n − 1.

Since every member of S is contained in a star of G and a circuit goes through each vertex at most
once, Lemma 4(a) holds. Let us show Lemma 4(b) by contradiction, and let i < j be such that |Si ∩ C| =
|Sj ∩ C| = 2 and |Sk ∩C| ≤ 1 for all k < j, k ̸= i. By construction of star decompositions, we have C∩Sℓ = ∅,
for all ℓ < i, and C \ (

j−1
ℓ=1 Sℓ) is a path of which Sj contains two edges, hence |δ({v1, . . . , vj}) ∩ C| = 4.

Since δ({v1, . . . , vj}) is a bond, this contradicts Observation 2. �
Two sequences of edge subsets M = (M0, . . . , Mk) and N = (N1, . . . , Nk) form a star-cut collection

if {M0, . . . , Mk} ⊆ S and M0 = IS , for some star decomposition S of G, and Mi∆Ni is a cut of G, for
i = 1, . . . , k. Note that the elements of N are not required to be disjoint.

2. Circuit polytope on series–parallel graphs

Given a graph G = (V, E) and F ⊆ E, χF ∈ RE denotes the incidence vector of F , that is χF
e equals 1 if

e ∈ F and 0 otherwise. Since there is a bijection between edge sets and their incidence vectors, we will often
use the same terminology for both. Let C(G) be the convex hull of the incidence vectors of the circuits of G,
that is C(G) = conv{χC : C ∈ C(G)}. In this section, we give an external description of the circuit polytope
on series–parallel graphs.

Note that the circuit polytope of the graph is the union of the circuit polytopes of its loops, bridges, and
non trivial 2-connected components. Therefore, we start by studying the circuit polytope for this latter case,
and then derive the description for general series–parallel graphs.

Throughout, we will use the following theorem of Balas [18,19]. His result holds for any finite union of
polyhedra, yet we only state what we need in this paper, the union of two polytopes.

Theorem 5 (Balas [18,19]). Given two polytopes P1 = {x ∈ Rn : A1x ≤ b1} and P2 = {x ∈ Rn : A2x ≤ b2},
we have conv{P1 ∪ P2} = projx(Q), where Q = {x = x1 + x2, A1x1 ≤ (1 − λ)b1, A2x2 ≤ λb2, 0 ≤ λ ≤ 1}.

Note that Theorem 5 applied to integral polytopes yields an extended formulation which is also integral.
Furthermore, it also implies the following.
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Corollary 6. Given two polytopes P1 and P2, there exists an extended formulation of conv{P1 ∪ P2} whose
size is two plus the sizes of P1 and P2.

Later on, we shall use this corollary when P2 is a vertex, in which case we get an extended formulation
of conv{P1 ∪ P2} with two more inequalities than the one of P1.

2.1. 2-connected series–parallel graphs

In this section, we describe the circuit polytope for non trivial 2-connected series–parallel graphs. The
main ingredient of our proof is the existence of a compact extended formulation for this polytope, based on
Observation 1. Though this extended formulation is not explicit, we use its construction process to prove
inductively that the circuit polytope is described by the inequalities given in Theorem 10. Let us mention
that there are examples where exponentially many of these inequalities are facet-defining, see Corollary 19.

In this section, G = (V, E) is a non trivial 2-connected series–parallel graph.

2.1.1. Existence of a compact extended formulation
We show the existence of a compact extended formulation by induction on the construction of G. First,

note that C(C2) = conv{(0, 0), (1, 1)} = {x ∈ R2
+ : xe = xf , xe + xf ≤ 2}, where e and f denote the

edges of C2. Next, let us describe how to get an extended formulation for C(G) when G is obtained from a
2-connected series–parallel graph H by either subdividing an edge or adding a parallel edge.

When G is obtained from H by subdividing an edge e ∈ E(H) into e, f , the following immediately derives
from Observation 1(i).

Observation 7. Suppose G is obtained from H by subdividing an edge e ∈ E(H) into e, f . Then, adding a
variable xf to any extended formulation of C(H) and imposing xe = xf provides an extended formulation
for C(G).

When G is obtained from H by adding a parallel edge f to e ∈ E(H), an extended formulation for C(G)
can be obtained as follows.

Lemma 8. Suppose G is obtained from H by adding a parallel edge f to an edge e ∈ E(H) and let Q(H) be
an integral polyhedron which is an extended formulation of C(H). Then,

(a) The polytope S(G) obtained by replacing xe by xe + xf in Q(H) and setting 0 ≤ xe and 0 ≤ xf is an ex-
tended formulation of the convex hull of the incidence vectors of all the circuits of G different from χe,f .

(b) The convex hull of S(G) union χe,f is an extended formulation of C(G).

Proof. (a) Let R(G) denote the convex hull of incidence vectors of all the circuits of G except {e, f}. By
Observation 1(ii), since projxQ(H) = C(H), we have projxS(G) ∩Zm = R(G) ∩Zm. Since Q(H) is integral,
so is S(G), which implies the integrality of projxS(G).

(b) By (a), projxS(G) is integral, hence so is conv


projxS(G) ∪ χe,f


. Since the projection of the convex
hull of a set of points is the convex hull of its projected points, projx


conv{S(G) ∪ χe,f }


is integral, and

we are done. �

Note that the operations involved in Observation 7 and Lemma 8 preserve integrality. By construction of
non trivial 2-connected series–parallel graphs, and since C(C2) is integral, we get an extended formulation
for C(G) by repeatedly applying Observation 7 and Lemma 8. Moreover, the extended formulation given by
Lemma 8(a) yields two new inequalities, and that applying Corollary 6 in Lemma 8(b) provides an extended
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formulation with two more inequalities. Thus, if G is obtained from H by adding a parallel edge, then an
extended formulation for C(G) has 4 more inequalities than an extended formulation for C(H). Furthermore,
if G is obtained from H by subdividing an edge, then an extended formulation for C(G) has the size of
an extended formulation for C(H). The following corollary stems from these observations and the fact that
C(C2) is described by 3 inequalities.

Corollary 9. There exists an extended formulation for C(G) of size O(|E(G)|).
We mention here that a polytope closely related to the circuit polytope is, given a vertex r, the r-circuit

polytope, that is the convex hull of the circuits containing r. Indeed, the circuit polytope of a graph can be
seen as the union of all its r-circuit polytopes. In series–parallel graphs, the latter have been thoroughly
studied by Bäıou and Mahjoub in [14] who provide, in particular, their description into the original space.
Therefore, an explicit extended formulation for the circuit polytope on series–parallel graphs can be obtained
by applying Balas’ Theorem [18,19] for the union of polyhedra together with their description. However,
since the description of the r-circuit polytope has exponentially many inequalities, this approach yields an
exponential-size extended formulation. Moreover, projecting such a formulation to get a description into the
original space usually requires tremendous efforts. In contrast, our approach allows to project step by step,
which is done in the next section.

2.1.2. Description in the original space
In this section, we show that the inequalities (1)–(3) given below describe the circuit polytope on non

trivial 2-connected series–parallel graphs, see Theorem 10. Throughout, for a sequence M = (M0, . . . , Mk)
of edge sets, x(M) will stand for

k
i=1 x(Mi).

xe ≥ 0 for all e ∈ E. (1)
xe ≤ x(B \ e) for all bonds B of G, for all e ∈ B, (2)
x(M) − x(N ) ≤ 2 for all M, N star-cut collections of G, (3)

Inequalities (1) are called non-negativity constraints, (2) are bond constraints, and (3) are star-cut con-
straints.

Theorem 10. C(G) = {x ∈ Rm
+ satisfying (2) and (3)}.

Proof. Let us first show that (1)–(3) are valid for C(G). Clearly, every incidence vector of a circuit satisfies
the non-negativity constraints (1). The validity of bond constraints (2) comes from Observation 2. To show
the validity of star-cut constraints (3), let M, N be a star-cut collection and C a circuit of G. Since M0
and Mi∆Ni are cuts for i ∈ {1, . . . , k}, each of them intersects C an even number of times. Therefore, if C

intersects Mi ∈ M at most once, then χC(Mi) − χC(Ni) ≤ 0 if i ≥ 1 and χC(Mi) = 0 if i = 0. The validity
of x(M) − x(N ) ≤ 2 follows since, by Lemma 4, at most one member of M intersects C twice, the other
ones intersecting C at most once.

Let us prove the theorem by induction. The first step of the induction comes from C(C2) = {x ∈ R2
+ :

satisfying (2) and xe + xf ≤ 2} and the fact that {{e, f}}, ∅ forms a star-cut collection, where C2 = {e, f}.
Suppose now that C(H) is given by inequalities (1)–(3) for a non trivial 2-connected series–parallel graph
H, and let us show that C(G) is also described by (1)–(3) when G is obtained from H by subdividing an
edge or by adding a parallel edge in H.

First, remark that if G is obtained from H by subdividing e into e, f , then C(G) is given by the inequalities
of C(H) and xe = xf . The inequalities of C(H) of type (1)–(3) remain of the same type in G, and xe = xf

is implied by the two inequalities of type (2) associated with the bond {e, f}.
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Now, let G be obtained from H by adding a parallel edge f to e ∈ E(H). By the induction hypothesis,
we have C(H) = {xH ∈ Rm−1 : AHxH ≤ bH} where AH is given by the non-negativity (1), bond (2), and
star-cut (3) constraints for H. Denote by ĀH and x̄H the matrix and vector obtained from AH and xH

by, respectively, removing the column AH
e corresponding to e and the component xH

e . The application of
Lemma 8(a) introduces a new variable y and provides the following description of S(G):

{(xH , y) ∈ Rm−1 × R : ĀH x̄H + AH
e (xH

e + y) ≤ bH , 0 ≤ xH
e , 0 ≤ y}.

Lemma 8(b) implies that C(G) is the convex hull of the union of S(G) and χ{e,f}. Let us apply Theorem 5
to P1 = S(G) and P2 = {χ{e,f}}. The latter being a vertex, we can get rid of x1 and x2 to get the following
extended formulation of C(G), where x̄ denotes the vector x after the removal of xe and xf .

{(x̄, xe, xf , λ) ∈ Rm−2 × R × R × R : ĀH x̄ + AH
e (xe + xf − 2λ) ≤ (1 − λ)bH , λ ≤ xe, λ ≤ xf , 0 ≤ λ ≤ 1}.

To project it by Fourier–Motzkin’s method [21], we only need to consider the inequalities where λ appears,
and since AH is given by (1)–(3) for H, we may write them down explicitly, implicitly using the fact that if
e belongs to a cut of G, then so does f , and conversely:

0 ≤ λ (4)
− 1 ≤ −λ (5)
− xh ≤ −λ for h = e, f (6)

xℓ − x(B \ ℓ) ≤ −2λ
for all bonds B of G

containing e, f and ℓ ∈ B \ {e, f} (7)

xe + xf − x(D \ {e, f}) ≤ 2λ for all bonds D of G containing e, f (8)

x(M) − x(N ) ≤ 2 − 2(αe(M, N ) + 1)λ for all star-cut collections M, N of G,
with αe(M, N ) ≥ 0, (9)

where αe(M, N ) = |{N ∈ N : e ∈ N}| − |{M ∈ M : e ∈ M}|.
We now prove that the inequalities obtained by projecting out λ are either contained or implied by the

non-negativity constraints (1) and bond constraints (2) and star-cut constraints (3) for G, which implies our
theorem. Recall that, to get rid of λ, one has to combine every inequality where λ’s coefficient is negative
with every inequality where it is positive [21]. Combinations with 0 ≤ λ immediately give rise to inequalities
of type (1), (2) or (3) for G. Thus, it remains to combine (8) with every other inequality.

First, remark that adding twice inequality (5) to any inequality (8) leads to an inequality obtained by
adding non-negativity constraints and the star-cut constraint x(M0) ≤ 2 where M0 is a star of G containing
e, f . Moreover, adding (8) to twice (6) gives xh −x(D\h) ≤ 0 for all bonds D containing e, f , and h ∈ {e, f},
which are inequalities of type (2).

Adding (8) to (7) gives xℓ ≤ x(B \ {e, f, ℓ}) + x(D \ {e, f}). If D contains ℓ, the latter is a sum of
non-negativity constraints (1). Otherwise, B∆D is a cut contained in B ∪ D \ {e, f} and thus contains a
bond J containing ℓ but not e, f , since a cut is a disjoint union of bonds. Hence, the inequality is the sum
of xℓ ≤ x(J \ ℓ) and non-negativity constraints (1).

For a bond D containing e, f and a star-cut collection M = (M0, . . . , Mk), N = (N1, . . . , Nk) with
αe(M, N ) ≥ 0, combining (8) and (9) gives x(M) − x(N ) + (αe(M, N ) + 1)(xe + xf − x(D \ {e, f})) ≤ 2.
If e and f belong to a member of M, then αe(M, N ) + 1 = |{N ∈ N : e ∈ N}|. Moreover, considering
separately the elements of N containing e and f from the other ones, the inequality can be rewritten as:

x(M) −


N∈N :e,f∈N


x(N \ {e, f}) + x(D \ {e, f})


−



N∈N :e,f ̸∈N

x(N) ≤ 2.
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Since x(N∆D) ≤ x(N \ {e, f}) + x(D \ {e, f}) for all N ∈ N containing e and f , the above inequality is
implied by x(M) − x(N ′) ≤ 2, where N ′ = (N ′

1, . . . , N ′
k) with N ′

i equals Ni∆D if e ∈ Ni and Ni otherwise,
for i = 1, . . . , k. Moreover, since D and Mi∆Ni are cuts, so is Mi∆N ′

i , for i = 1, . . . , k, as the symmetric
difference of two cuts is a cut. Therefore, M, N ′ is a star-cut collection.

Suppose now that no member of M contains e and f . Applying the previous argument leads to the
inequality x(M) − x(N ′) + xe + xf − x(D \ {e, f}) ≤ 2, where M, N ′ is the star-cut collection defined
above. Moreover, there exists Mk+1 containing e, f such that {M0, . . . , Mk, Mk+1} is contained in a star de-
composition. Let M̃ = (M0, . . . , Mk+1) and Ñ = (N ′

1, . . . , N ′
k+1), where N ′

k+1 = D∆Mk+1. The symmetric
difference being associative, Mk+1∆Nk+1 equals D, and hence M̃, Ñ is a star-cut collection of G. Moreover,
the associated star-cut constraint (3) implies the inequality obtained by combination of (8) and (9). �

Let us mention a few simple constraints implied by the ones of Theorem 10. First, whenever {k, ℓ} is a
bond, we have xk = xℓ, which is implied by the inequalities (2) for {k, ℓ}. These will turn out to be the only
hyperplanes containing C(G). We postpone the proof of this fact to Section 3.3, see Corollary 18 . For every
edge uv ∈ E, δG(u) is a bond since G is 2-connected. Then, we obtain the inequality xuv ≤ 1 by adding xuv

to each side of xuv ≤ x(δG(u) \ uv) and by applying x(δG(u)) ≤ 2, which is a special case of (3). We also
mention that, given a bond B, the inequality x(B) ≤ 2 is implied by a suitable star-cut constraint.

We will see at the end of Section 3 a family of examples where exponentially many of the inequalities of
Theorem 10 define facets.

2.2. General series–parallel graphs

In this section, we provide a polyhedral description of the circuit polytope on general series–parallel
graphs, see Theorem 11. The result is obtained by applying a standard union technique and the fact that
the circuit polytope of a graph is the convex hull of the union of the circuit polytopes of its 2-connected
components.

Theorem 11. Let G be a series–parallel graph, G1, . . . , Gk its non trivial 2-connected components, L its set
of loops, and B its set of bridges. Then

C(G) =





x ∈ Rm
+ satisfying (2), x(B) = 0 and

k

i=1
(x(Mi) − x(Ni)) + 2x(L) ≤ 2,

for all i = 1, . . . , k,
for all star-cut collections Mi, Ni of Gi





.

Proof. We prove the result by induction on the number of 2-connected components.

Let us see the first step. Since no bridge b belongs to a circuit, its circuit polytope is described by {xb = 0}.
Moreover, the circuit polytope of a loop ℓ is described by {0 ≤ 2xℓ ≤ 2}. Finally, the circuit polytope of a
non trivial 2-connected series–parallel component is given by Theorem 10.

Suppose that the result holds for two series–parallel graphs I and H =
k−1

i=1 Hi, where I is 2-connected
and Hi, i = 1, . . . , k − 1 are the 2-connected components of H, and let G = I


(∪k−1

i=1 Hi) be the graph
obtained by identifying a vertex of I and a vertex of H. Then, C(G) = conv{C(H) ∪ C(I)}. Remark that
C(H) = {x ∈ RE(H)

+ : AHxH ≤ bH} and C(I) = {x ∈ RE(I)
+ : AIxI ≤ bI} live in different spaces. Extend

them to polytopes of RE(H) × RE(I) by setting the new coordinates to zero, and apply Theorem 5 to get
C(G) = projx{x = (xH , xI), AHxH ≤ λbH , AIxI ≤ (1 − λ)bI , 0 ≤ λ ≤ 1}.

Let us get rid of λ in the above extended formulation. Combinations with 0 ≤ λ or λ ≤ 1 immediately
give desired inequalities. It remains to combine aHxH ≤ λbH and aIxI ≤ (1 − λ)bI when bH ̸= 0 and bI ̸= 0.
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Since in this case the induction hypothesis says that both inequality are of the new type, we get bH = bI = 2,
thus the resulting inequality is aHxH + aIxI ≤ bH , and the theorem follows. �

Since every 2-connected component of a series–parallel graph has a compact extended formulation,
using the Theorem of Balas [18,19] for the union of several polytopes, one can extend Corollary 9 as
follows.

Corollary 12. If G is series–parallel, there exists a compact extended formulation of C(G) in size
O(|E|).

3. The bond polytope on series–parallel graphs

In this section, as a consequence of Theorem 11 and the planar duality, we describe the bond polytope
on series–parallel graphs. We also provide examples where the latter contains exponentially many facets.
Before stating these results, we introduce a few definitions.

3.1. Definitions

Given a series–parallel graph G, we denote its set of bonds by B(G), and the convex hull of their incidence
vectors by B(G).

If G is a non trivial 2-connected series–parallel graph, an open nested ear decomposition [22] E of G is a
partition of E(G) into a sequence E0, . . . , Ek such that E0 is a circuit of G and the ears Ei, i ∈ {1, . . . , k},
are paths with the following properties:

• the two endpoints of each ear are distinct and appear in an Ej with j < i,
• no interior point of an ear Ei belongs to Ej for all j < i,
• if two ears Ei and Ei′ have both their endpoints in the same Ej , then any two paths contained in Ej , one

between the endpoints of Ei and the other between the endpoints of Ei′ , are either disjoint or contained
one in another.

We will denote by CE the unique circuit of an open nested ear decomposition E . Two sequences of
edge subsets F = (F0, F1, . . . , Fk) and P = (P1, . . . , Pk) form an ear-cycle collection if {F0, F1, . . . , Fk} is
contained in an open nested ear decomposition E of G, F0 = CE , and Fi∆Pi is a cycle for i = 1, . . . , k. Note
that the elements of P are not required to be disjoint.

A graph H is a minor of G if H arises from G by contractions and deletions of edges and deletions of
vertices, where contracting an edge uv of E corresponds to deleting e and identifying u and v. A graph is
series–parallel if and only if it does not contain a K4-minor [23], where K4 denotes the complete graph on
four vertices.

3.2. The bond polytope on series–parallel graphs

K4 being its own dual, a graph is series–parallel if and only if, given any planar drawing of the graph, its
dual is series–parallel. It is immediate that the circuits of such a graph are precisely the bonds of its dual,
thus the bond polytope of the graph is the circuit polytope of its dual. Then, applying Theorem 11 provides
a description of the bond polytope on series–parallel graphs.

Given a circuit C and e ∈ C, xe ≤ x(C \ e) is a circuit constraint, and given an ear-cycle collection,
x(F) − x(P) ≤ 2 is an ear-cycle constraint.
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Theorem 13. Let G be a series–parallel graph, G1, . . . , Gk its non trivial 2-connected components, L its set
of loops and B its set of bridges.

B(G) =





x ∈ Rm
+ satisfying xe ≤ x(C \ e) for all circuits C and e ∈ C, x(L) = 0 and

k

i=1
(x(Fi) − x(Pi)) + 2x(B) ≤ 2,

for all i = 1, . . . , k,
for all ear-cycle collections Fi, Pi of Gi





.

Proof. Fix a planar drawing of G, and let G̃ be the dual graph of G. The edgesets of G and G̃ are in bijection,
and ẽ will denote the edge of E(G̃) corresponding to e ∈ E(G). As noted above, the bond polytope of G

is precisely the circuit polytope of G̃. First, recall that bridges of G are in bijection with loops of G̃, and
conversely. Then, by Theorem 11, to get the desired result, we just need to show that the bond polytope on
non trivial 2-connected series–parallel graphs is given by non-negativity, circuit and ear-cycle constraints.

Let G be a non trivial 2-connected series–parallel graph. Then, G̃ is also a non trivial 2-connected
series–parallel graph. Since, by Theorem 10, C(G̃) is described by (1)–(3), and by the bijection between
circuits in G and bonds in G̃, we only have to show that the ear-cycle constraints are valid for B(G) and
that a star-cut collection of G̃ is an ear-cycle collection of G.

To see the validity of the constraints, let us show that, given an open nested ear decomposition
E = {E0, . . . , Ek} and a bond B of G,

(∗) if |B ∩ E| = 2 for some E ∈ E , then |B ∩ F | ≤ 1 for all F ∈ E \ E.

First, note that, by Observation 2 and the fact that an ear is always contained in a circuit, we have |B∩E| ≤ 2,
for all E ∈ E . Now, suppose that Ei, Ej ∈ E both intersect B twice, with i < j. Denote by u and v the
extremities of Ej and let e be an edge of Ei ∩ B. The graph induced by the edges of E0 ∪ . . . ∪ Ei ∪ {uv} is
2-connected so it contains a circuit containing e and uv. Replacing uv by the ear Ej , we get that G contains
a circuit C containing e and Ej . Therefore, |C ∩ B| ≥ 3, yet B is a bond, a contradiction to Observation 2.
Therefore (∗) holds.

Then, with arguments similar to those proving the validity of star-cut constraints for the circuit polytope
(see Theorem 10), we get the validity of the ear-cycle constraints by (∗) and the fact that a circuit and a
cut intersect each other an even number of times.

We now prove by induction on the number of edges of G that a star decomposition of G̃ corresponds to
an open nested ear decomposition of G. We will use edge subdivision and parallel addition operations, thus
note that these two operations are dual one of each other. As the dual of C2 is C2, one can easily check that
a star decomposition of C2 corresponds to an open nested ear decomposition in its dual.

If G is obtained from H by subdividing an edge e ∈ E(H) into e, f , then G̃ is obtained from H̃ by adding
a parallel edge f̃ to ẽ. By induction, any star decomposition S of H̃ corresponds to an ear decomposition ES
of H. Adding e to the suitable set of S (which is the first extremity of e appearing in the star decomposition)
gives a star decomposition of G̃, which straightforwardly corresponds to the ear decomposition of G obtained
from ES by replacing e by {e, f} in the member of ES containing e.

If G is obtained from H by adding a parallel edge f to e ∈ E(H), then G̃ is obtained from H̃ by
subdividing ẽ into ẽ, f̃ . Let u be the vertex that is common to ẽ and f̃ , and v, w the other ends of ẽ and
f̃ . Let S = {δG̃+

1
(v1), . . . , δG̃+

n−1
(vn−1)} be a star decomposition of G̃. We may suppose, without loss of

generality, that u and v or u and w are consecutive in the star decomposition. Indeed, otherwise, u = vi for
some i ∈ {2, . . . , n − 1}, and since G+

i and G−
i are connected, exactly one of v, w is in G−

i that is, equals
some vj for j < i. In this case, the star decomposition S ′ obtained from S by removing u, and then inserting
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u right after vj , without changing the rest, gives the same partition of E as S. Thus S and S ′ are in bijection
with the same partition of the edgesets of G.

Since u and one of v, w appear consecutively in the star decomposition, contracting them gives a star
decomposition of H̃. By induction, the latter corresponds to an ear decomposition E of H. Now, possibly
having exchanged the role of e and f because of the contraction, E ∪ {f} is an ear decomposition of G, and
we are done.

To finish the proof, if suffices to apply Theorem 11 and the fact that the dual of a cut is a cycle. �

It turns out that there are more ear-cycle collections of G than star-cut collections of G̃, and it is unclear
which restrictions are to be made in order to get a bijection. As a consequence, if B(G) can be deduced
from C(G̃) in a rather simple manner, the converse seems more challenging.

3.3. Facet-defining inequalities

Determining directly which inequalities are facet-defining for the circuit polytope is not that easy.
Surprisingly, the bond polytope is much simpler to study polyhedrally. The main reason is that we can
safely remove parallel edges, see Observation 14. Thus Theorem 13 is not only a standard planar duality
result, but also a tool to prove polyhedral results for the original polytope.

First, we provide the dimension of the bond polytope, see Lemma 15. Then, we characterize which
of the non-negativity and circuit constraints are facet-defining, see Lemma 16. Unfortunately, it seems
challenging to exhibit the structures for which ear-cycle inequalities define facets. We provide an example
where exponentially many of them are facet-defining, see Claim 17.

Seen the structure of the inequalities given by Theorem 13, it is enough to study the facet-defining ones
for non trivial 2-connected series–parallel graphs. In this section, let G = (V, E) be such graph.

Observation 14. The set of bonds of G is unchanged if we remove parallel edges.

Proof. Whenever two edges of the graph are parallel, every bond contains either both or none. �

By the above observation and the construction of non trivial 2-connected series–parallel graphs, we may
assume there are no parallel edges. This is emphasized by the following lemma.

Lemma 15. The dimension of B(G) is the number of edges of the graph obtained from G by removing every
parallel edge.

Proof. By Observation 14, we may assume that G has no parallel edges. Then, since the emptyset is a bond,
that is 0 ∈ B(G), the result is equivalent to the existence of |E(G)| linearly independent bonds of G. Clearly,
dim B(G) ≤ |E(G)|. We prove the result by induction on |E(G)|, noting that dim B(C3) = 3.

Since G has no parallel edges, G is obtained from a non trivial 2-connected series–parallel graph H by
subdividing an edge e into f, g.

If H contains no parallel edges, then the induction hypothesis gives a family of dim B(H) = |E(H)| =
|E(G)| − 1 linearly independent bonds of H. Replacing e by f , for each member of F containing e, and then
adding {f, g}, gives a linearly independent family of |E(G)| bonds of G, and we are done.

Since G did not contain parallel edges, if H does, then these parallel edges are {e, h} for some h ∈
E(G) \ {f, g}. In this case, we have B(H) ⊆ {xe = xh}. By the induction hypothesis, there exists a family
L of dim B(H) = |E(H)| − 1 = |E(G)| − 2 linearly independent bonds of H. We may assume that e ∈ B for
some B ∈ L. Define D = B \e∪f , we get the family L∪D ∪{f, g} of bonds of G. Let us prove that they are
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linearly independent, by showing that the corresponding matrix A has full column rank. Since D = B \e∪f ,
by basic column operations we get that A has the same rank as the matrix whose columns are composed
of χe, χf and the elements of L. Thus A has full column rank if and only if the matrix obtained from L
by deleting the coordinate corresponding to e has. It is indeed the case because L is a family of linearly
independent circuits of H, and they all satisfy xe = xh. �

The following lemma characterizes which of the non-negativity and circuit inequalities are facet-defining.

Lemma 16. The inequality

1. xℓ ≥ 0 defines a facet of B(G) if and only if ℓ is not contained in a triangle.
2. xℓ ≤ x(C \ ℓ) defines a facet of B(G) if and only if C has no chord and |C| ≥ 3.

Proof. By Observation 14, we may assume that G has no parallel edges. We prove both results by a
maximality argument.

(1) First, suppose that ℓ is contained in a triangle, say {ℓ, e, f}. The two circuit inequalities xe−xf −xℓ ≤ 0
and −xe + xf − xℓ ≤ 0 give xℓ ≥ 0 so the latter is not facet-defining.

Suppose now that ℓ is not contained in a triangle. Consider the face F defined by xℓ ≥ 0 and suppose that
it is not a facet, that is, there exists a face F ′ defined by an inequality ax ≤ b of B(G) such that F ⊆ F ′.
Since ∅ ∈ F , we have b = 0. For every edge uv non incident to ℓ, the bonds δ(u), δ(v) and δ({u, v}) belong
to F , implying that a(δ(u)) = a(δ(v)) = a(δ({u, v})) = 0, leading to auv = 0. Finally, for any edge f = uv

incident to ℓ at node u, δ(v) ∈ F . By hypothesis, f is the only edge of δ(v) incident to ℓ, implying that
af = 0. Thus, a = ρχℓ, for some ρ < 0 and F defines a facet.

(2) If |C| = 2, then C is two parallel edges e and f , and B(G) ⊆ {xe = xf }. If C has a chord c,
let C ′ and C ′′ be the two circuits defined by C ′ ∪ C ′′ \ c = C, and assume c ∈ C ′. Then, the inequality
xℓ ≤ x(C \ℓ) is obtained applying the circuit inequalities for ℓ and C ′ and then for c and C ′′, xℓ ≤ x(C ′ \ℓ) =
x(C ′ \ {ℓ, c}) + xc ≤ x(C ′ \ {ℓ, c}) + x(C ′′ \ c) = x(C \ ℓ).

Suppose that C has no chord, |C| ≥ 3, and F ′ = {xℓ ≤ x(C \ ℓ)} ⊆ {ax ≤ b} = F , where F is facet-
defining. Since 0 ∈ F ′, we have b = 0. Let uv ∈ E with u, v ̸∈ V (C). Since {uv} = (δG(u)∪δG(v))\δG({u, v}),
and δG(u), δG(v), δG({u, v}) are bonds, and are contained in F ′, we have

(#) auv = 0, for all uv ∈ E such that u, v ̸∈ V (C).

Denote the vertices of C by {v1, . . . , vk} where ℓ = vkv1 and vivi+1 ∈ C for i = 1, . . . , k−1. Let u ∈ V \V (C).
Note that there are at most two edges between u and {v1, . . . , vk}. If there is exactly one, say uvi, then, by
(#) and δG(u) ∈ F ′, we have auvi

= 0. If there are two, say uvi and uvj , since G is series–parallel, every
uvi-path not containing vj does not intersect V (C). Therefore, since G is 2-connected, there exists a bond
B = δG(W ) containing uvi and ℓ such that B′ = δG(W ∪ {u}) is also a bond. Since the edges of B∆B′ are
uvi, uvj , and edges not in δG(C), and then by B, B′ ∈ F ′ and (#), we get auvi

= auvj
. By δG(u) ∈ F ′,

we have auvi
+ auvj

= 0. Therefore, auvi
= auvj

= 0. Since C had no chord, we proved auv = 0 whenever
uv ̸∈ C.

To finish the proof, since G is 2-connected, there exists a bond Bi containing ℓ and vivi+1 for all i =
1, . . . , k − 1. By Observation 2, Bi ∩ C = {ℓ, vivi+1}, thus Bi ∈ F ′. Therefore, we have aℓ = −af for all
f ∈ C \ ℓ. Since ax ≤ 0 is valid for the bond δG(v2), we have 0 ≥ av1v2 +av2v3 = 2av1v2 , thus we may assume
aℓ = 1, and then we get F ′ = F . �

We now provide a family of series–parallel graphs where an exponential number of ear-cycle constraints
are facet-defining.
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Fig. 1. An example of graph obtained from C6 by parallel addition and subdivision of all the edges.

Example

The graph Gk we consider is built from the circuit on k edges Ck where a parallel edges is added to every
edge and then all edges are subdivided. Fig. 1 shows the construction of such a graph from C6. Denote by
ei and e′

i (resp. fi and f ′
i) the edges obtained by subdividing one parallel edge (resp. the other one). Let ui

(resp. wi) be the vertex incident to ei and e′
i (resp. fi and f ′

i) for all i = 1, . . . , k.

Claim 17. x(C) ≤ 2 is facet-defining for B(Gk) if C is a circuit of 2k edges.

Proof. Without loss of generality, suppose that C = {ei, e′
i : i = 1, . . . , k}. Let F ′ be the face induced by the

inequality and suppose that F ′ ⊆ F where F is a facet induced by the constraint ax ≤ b. Since {ei, e′
i} ∈ F ′,

we have aei + ae′
i

= b for i = 1, . . . , n. Moreover, {ei, fi, fj , ej} and {e′
i, fi, fj , ej} belong to F ′, for all j ̸= i,

from which we get aei
= ae′

i
. Combining these two remarks give aei

= ae′
i

= b/2, for i = 1, . . . , n. Now, since
both {ei, fi, fj , ej} and {ei, f ′

i , fj , ej} belong to F ′, we have afi
= af ′

i
= 0, for i = 1, . . . , n. The emptyset

being a bond, we have b ≥ 0. In fact, b > 0 because otherwise (a, b) = 0. Therefore, without loss of generality,
we may assume that b = 2. Then, we get F = F ′, and we are done. �

If we set Ei = {ei, e′
i} and Fi = {fi, f ′

i} for all i = 1, . . . , k, one can also prove that the inequalities
x(Ej ∪ Fj) +


i̸=j(x(Mi) − x(Ei ∪ Fi \ Mi)) ≤ 2 for all j ∈ {1, . . . , k}, where Mi ∈ {Ei, Fi} for all

i = 1, . . . , k are facet-defining. In fact, together with the inequalities of Claim 17 and Lemma 16, this gives
all the facet-defining inequalities for the example. However, other examples show that ear-cycle constraints
are not always that nicely structured.

Let us mention some dual consequences of the results of Section 3.3 for the circuit polytope on
series–parallel graphs.

First, we get its dimension by planar duality and Lemma 15.

Corollary 18. Let F be a minimal set of edges intersecting every size two bond of G = (V, E). Then, the
dimension of C(G) is |E \ F |.

Moreover, Claim 17 implies the following.

Corollary 19. There are examples for which exponentially many of the star-cut constraints (3) define facets
of the circuit polytope on series–parallel graphs.
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Thus, the circuit polytope on series–parallel graphs is another example of polytope having exponentially
many facet-defining inequalities that admits a compact extended formulation.
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Abstract
Box-totally dual integral (box-TDI) polyhedra are polyhedra described by systems
which yield strongmin-max relations.We characterize them in several ways, involving
the notions of principal box-integer polyhedra and equimodular matrices. A polyhe-
dron is box-integer if its intersection with any integer box {� ≤ x ≤ u} is integer.
We define principally box-integer polyhedra to be the polyhedra P such that kP is
box-integer whenever kP is integer. A rational r × n matrix is equimodular if it has
full row rank and its nonzero r × r determinants all have the same absolute value. A
face-definingmatrix is a full row rank matrix describing the affine hull of a face of the
polyhedron. Our main result is that the following statements are equivalent.

• The polyhedron P is box-TDI.
• The polyhedron P is principally box-integer.
• Every face-defining matrix of P is equimodular.
• Every face of P has an equimodular face-defining matrix.
• Every face of P has a totally unimodular face-defining matrix.
• For every face F of P , lin(F) has a totally unimodular basis.

Along our proof, we show that a polyhedral cone is box-TDI if and only if it is
box-integer, and that these properties are carried over to its polar. We illustrate these
charaterizations by reviewing well known results about box-TDI polyhedra. We also
provide several applications. The first one is a new perspective on the equivalence
between two results about binary clutters. Secondly, we refute a conjecture of Ding,
Zang, and Zhao about box-perfect graphs. Thirdly, we discuss connections with an
abstract class of polyhedra having the Integer Carathéodory Property. Finally, we
characterize the box-TDIness of the cone of conservative functions of a graph and
provide a corresponding box-TDI system.
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1 Introduction

Box-totally dual integral systems are systems which yield strong min-max relations.
These systems are useful to prove strong min-max combinatorial theorems and are
known to be difficult to handle. A polyhedron that can be described by a box-totally
dual integral system is called a box-totally dual integral polyhedron [14]. In this paper,
we characterize box-totally dual integral polyhedra in several new ways. The key idea
is to introduce and study the abstract class of principally box-integer polyhedra—see
Definition 1 below. Indeed, the completely geometric nature of principally box-integer
polyhedra makes them easier to be studied, and it turns out that this class coincides
with that of box-totally dual integral polyhedra.

We characterize principally box-integer polyhedra in several ways. In this regard,
some matrices play an important role. They generalize unimodular matrices and we
call them equimodular matrices—see Definition 2 below. We show that the notion of
principal box-integrality is strongly intertwinedwith that of equimodularity: equimod-
ular matrices are characterized using principal box-integrality and, in turn, principally
box-integer polyhedra are characterized by the equimodularity of a family of matrices.
This sheds new lights on fundamental results in combinatorial optimization and inte-
ger programming. For instance, the classical characterization of unimodular matrices
by Veinott and Dantzig [45] and that of totally unimodular matrices due to Hoffman
and Kruskal [31] can be reformulated and extended using these notions.

More importantly, these notions bring a geometric and matricial perspective about
box-totally dual integral polyhedra. Since the class of principally box-integer poly-
hedra coincides with that of box-totally dual integral polyhedra our results provide
several new characterizations of the latter. We believe that these characterizations fill
in “the lack of a proper tool for establishing box-total dual integrality”—to quote Ding
et al. [17]—and we illustrate their use.

Main definitions Before going deeper into the details of our contributions, let us
give the main definitions relevant to this paper.

A polyhedron P = {x : Ax ≤ b} of Rn is integer if each of its faces contains an
integer point and box-integer if P ∩ {� ≤ x ≤ u} is integer for all �, u ∈ Zn . For
k ∈ Z>0, the kth dilation of P is kP = {kx : x ∈ P} = {x : Ax ≤ kb}.

Definition 1 A polyhedron P is principally box-integer if kP is box-integer for all
k ∈ Z>0 such that kP is integer.

A full row rank r × n matrix is unimodular if it is integer and its nonzero r × r
determinants have value 1 or− 1 [38, Page 267]. There is a strong connection between
principally box-integer polyhedra and the following generalization of unimodular
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matrices. Note that equimodular matrices are studied under the name of matrices
with the Dantzig property in [29] or as unimodular sets of vectors in [28].

Definition 2 A rational r × n matrix is equimodular if it has full row rank and its
nonzero r × r determinants all have the same absolute value.

A linear system Ax ≤ b is totally dual integral (TDI) if the minimum in the linear
programming duality equation max{w�x : Ax ≤ b} = min{b�y: A�y = w, y ≥ 0}
has an integer optimal solution for all integer vectorsw for which the optimum is finite.
Every polyhedron can be described by a TDI system [38, Theorem 22.6]. Moreover,
the right-hand side of such a TDI system can be chosen integer if and only if the
polyhedron is integer [22]. A linear system Ax ≤ b is a box-TDI system if Ax ≤ b,
� ≤ x ≤ u is TDI for each pair of rational vectors � and u. In other words, Ax ≤ b is
box-TDI if

min{b�y + u�r − ��s: A�y + r − s = w, y ≥ 0, r, s ≥ 0} (1)

has an integer solution for all integer vectorsw and all rational vectors �, u forwhich the
optimum is finite. It is well-known that box-TDI systems are TDI [38, Theorem 22.7].
General properties of such systems can be found in [14], [39, Chap. 5.20] and [38,
Chap. 22.4]. Though not every polyhedron can be described by a box-TDI system, the
result of Cook [14] below proves that being box-TDI is a property of the polyhedron.

Theorem 1 (Cook [14, Corollary 2.5]) If a system is box-TDI, then any TDI system
describing the same polyhedron is also box-TDI.

This theorem justifies the following definition [14].

Definition 3 A polyhedron that can be described by a box-TDI system is called a
box-TDI polyhedron.

Let us now review results from the literature related to these notions.

Unimodular matrices The notion of unimodularity dates back to Smith [43] and
ensures that a linear system has an integral solution for each integer right-hand side.
Hoffman and Kruskal [31] proved that integral solutions still exist under the weaker
condition that (*) the gcd of the r × r determinants equals 1. Condition (*) and
equimodularity are complementary generalizations of unimodularity, in the sense that
if an integermatrix is equimodular and satisfies (*), then it is unimodular. Hoffman and
Oppenheim [30] introduced variants of unimodularity, which were afterward studied
by Truemper [44]. In [7,28], it is proved that equimodular matrices ensure that all basic
solutions are integer, provided that one of them is—see also Barnett [5, Chap. 7].

The stronger notion of total unimodularity plays a central role in combinatorial
optimization. A matrix is totally unimodular when all its subdeterminants have value
in {0,±1}. Examples of such matrices are network matrices and incidence matrices of
bipartite graphs. Hoffman and Kruskal [31] characterized totally unimodular matrices
to be the matrices for which the associated polyhedra are all box-integer. Several
other characterizations were obtained since then—see e.g. [10,25]. Totally unimodular

123



P. Chervet et al.

matrices are now well understood due to the decomposition theorem of Seymour [40].
For a survey of related results, we refer to [38, Chap. 4 and 19].More recently, Appa [2]
and Appa and Kotnyek [3] generalized total unimodularity to rational matrices, their
goal being to ensure the integrality of the associated family of polyhedra for a specified
set of right-hand sides, such as those with only even coordinates. In another direction,
Lee [33] generalized totally unimodular matrices by considering the associated linear
spaces. The connections between his results and the previous ones are discussed in
Kotnyek’s thesis [32, Chap. 11].

Wewill see howprincipal box-integrality fitswithin the characterization of unimod-
ular matrices by Veinott and Dantzig [45] and that of totally unimodular matrices due
to Hoffman and Kruskal [31]. Then, these results are naturally extended to character-
ize equimodular matrices. Also, a new generalization of totally unimodular matrices
appears in Sect. 4.1, the notion of totally equimodular matrices, which still have nice
polyhedral properties.

Box-integrality In combinatorial optimization and integer programming, a desirable
property for polyhedra is to be integer, as then the vertices can be seen as combinatorial
objects. Henceforth, many results in those fields are devoted to the study of properties
and descriptions of integer polyhedra. The stronger property of being box-integer is
far less studied. Nevertheless, some important classes of polyhedra are known to be
box-integer, such as polymatroids [21], and more generally box-totally dual integer
polyhedra [38]. Box-integrality plays some role for polyhedra to have the Integer
Carathéodory Property in [27]. Binary clutters being 1

k -box-integer for all k ∈ Z>0 are
characterized in [24].

Actually, all these examples of box-integer polyhedra are principally box-integer.
Our characterizations then yield new insights towards their properties.

Box-total dual integrality Box-TDI systems and polyhedra received a lot of attention
from the combinatorial optimization community around the 80s. These systems yield
strong combinatorial min-max relations with a geometric interpretation. A renewed
interest appeared in the last decade and since thenmanydeep results appeared involving
such systems. The famous MaxFlow-MinCut theorem of Ford and Fulkerson [23] is a
typical example of min-max relation implied by the box-TDIness of a system. Other
examples of fundamental box-TDI systems appear for polymatroids and for systems
with a totally unimodular matrix of constraints.

Originally, box-TDI systems were closely related to totally unimodular matrices.
Indeed, any systemwith a totally unimodularmatrix of constraint is box-TDI.Actually,
until recently, the vast majority of known box-TDI systems were defined by a totally
unimodular matrix, see [39] for examples. When the constraint matrix is not totally
unimodular, proving that a given system is box-TDI can be quite a challenge: one has
to prove its TDIness, and then to deal with the addition of box-contraints that perturb
the combinatorial interpretation of the underlying min-max relation. Ding, Feng, and
Zang prove in [16] that it is NP-hard to recognize box-TDI systems.

Based on an idea of Ding and Zang [18], Chen, Chen, and Zang provide in [11] a
sufficient condition for some systems to be box-TDI, namely the ESP property. Due to
its purely combinatorial nature, the ESP property is successfully used to characterize:
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box-Mengerian matroid ports in [11], the box-TDIness of the matching polytope in
[17], subclasses of box-perfect graphs in [19]. Prior to the development of the ESP
property, the main tool to prove box-TDIness was [38, Theorem 22.9] of Cook. Its
practical application turns out to be quite technical as one has to combine polyhedral
and combinatorial considerations, such as in [13] where the box-TDIness of a system
describing the 2-edge-connected spanning subgraph polytope on series-parallel graphs
is proved. In [15], Cornaz, Grappe, and Lacroix prove that a number of standard
systems are box-TDI if and only if the graph is series-parallel.

Contributions Our results provide a frameworkwithinwhich the notions of equimod-
ularity, principal box-integrality, and box-TDIness are all connected. The point of view
obtained from principally box-integer polyhedra unveils new properties and simplifies
the approach.

We now state our main result. A face-definingmatrix for a polyhedron is a full row
rank matrix describing the affine hull of a face of the polyhedron—see Sect. 4.2 for
more details.

Theorem 2 For a polyhedron P, the following statements are equivalent.

1. The polyhedron P is box-TDI.
2. The polyhedron P is principally box-integer.
3. Every face-defining matrix of P is equimodular.
4. Every face of P has an equimodular face-defining matrix.
5. Every face of P has a totally unimodular face-defining matrix.

Along our proof, we show that a polyhedral cone is box-TDI if and only if it is
box-integer, and that these properties are carried over to its polar. We use this to derive
a polar version of Theorem 2—see Corollary 6.

These new results allow us to prove the box-TDIness of systems by making full
use of Theorem 1: find a TDI system describing the polyhedron on the one hand,
and, on the other hand, apply one of the characterizations of principally box-integer
polyhedra to prove the box-TDIness of the polyhedron. In particular, when a TDI
system that describes the polyhedron is already known, our characterizations allow
us to pick whichever system—TDI or not—describing the polyhedron, and to use
algebraic tools to prove the “box” part. The drawback of our characterization is that it
does not provide a box-TDI systemdescribing the polyhedron.Nevertheless, one of our
characterizations gives an easy way to disprove box-TDIness: it is enough to exhibit a
face-defining matrix having two maximal nonzero determinants of different absolute
values. In particular, this provides a simple co-NP certificate for the box-TDIness of
a polyhedron.

We show how known results on box-TDI polyhedra are simple consequences of
our characterizations—see Sect. 5.2. We also explain how our results are connected
with Schrijver’s sufficient condition [39, Theorem 5.35] and Cook’s characterization
[14], [38, Theorem 22.9].

We illustrate the use of our characterizations on several examples—see Sect. 6.
First, we explain the equivalence between the main result of Gerards and Laurent [24]
and that of Chen et al. [12] about binary clutters. As a second application, we disprove

123



P. Chervet et al.

a conjecture ofDing et al. [19] about box-perfect graphs. Then,we discussGijswijt and
Regts [27]’s abstract class of polyhedra having the Integer Carathéodory Property and
possible connections between principal box-integrality and the integer decomposition
property. Finally, we prove that the cone of conservative functions of a graph is box-
TDI if and only if the graph is series-parallel and we provide a box-TDI system
describing it.

Outline Section 2 contains standard definitions. In Sect. 3, we study general prop-
erties of principally box-integer polyhedra. Section 4 shows how equimodularity and
principal box-integrality are intertwined: each notion is characterized using the other
one. In Sect. 5, we first prove that a polyhedron is box-TDI if and only if it is prin-
cipally box-integer, and then discuss the connections between our characterizations
and existing results about box-TDI polyhedra. In Sect. 6, we illustrate the use of our
characterizations on several examples.

2 Definitions

Matrices Throughout the paper, all entries will be rational. The i th unit vector of
Rn will be denoted by χ i . For I ⊆ {1, . . . , n}, let χ I = ∑

i∈I χ i . An element A of
Rm×n will be thought of as a matrix with m rows and n columns, and an element b of
Rm as a column vector. When all their entries belong to Z, we will call them integer.
The row vectors of A will be denoted by a�

i , the column vectors of A by Ai . When
rank(A) = m, we say that A has full row rank. A matrix is totally unimodular, or TU,
if the determinants of its square submatrices are equal to − 1, 0 or 1.

Lattices The lattice generated by a set V of vectors of Qn is the set of integer
combinations of these vectors, and is denoted by lattice(V ) = {∑v∈V λvv: λv ∈
Z for all v ∈ V }. The lattice generated by the column vectors of a matrix A is denoted
by lattice(A).

Polyhedra Given A ∈ Qm×n and b ∈ Qm , the set P = {x ∈ Rn : Ax ≤ b} =
{x ∈ Rn : a�

i x ≤ bi , i = 1, . . . ,m} is a polyhedron. We will often simply write
P = {x : Ax ≤ b}. The matrix A is the constraint matrix of P . The translation of P
by w ∈ Rn is P + w = {x + w: x ∈ P}.

A face of P is a nonempty1 set obtained by imposing equality on some inequalities
in the description of P , that is, a nonempty set of the form F={x : a�

i x=bi , i ∈ I }∩P
where I ⊆ {1, . . . ,m}. A row a�

i or an inequality a�
i x ≤ bi with F ⊆ {x : a�

i x = bi }
is tight for F , and AFx ≤ bF will denote the inequalities from Ax ≤ b that are tight for
F . The set of points contained in F and in no face F ′ ⊂ F forms the relative interior
of F . Let lin(F) = {x : AFx = 0} and aff(F) = {x : AFx = bF }. The dimension
dim(F) of a face F is the dimension of its affine hull aff(F). A facet is a face that is
inclusionwisemaximal among all faces distinct from P . A face isminimal if it contains

1 In the standard definition, the emptyset is a face. It is not the case in this paper in order to lighten the
statements.
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no other face of P . Minimal faces are affine spaces. A minimal face of dimension 0
is called a vertex. Note that a polyhedron is integer if and only if each of its minimal
faces contains an integer point.

Cones A polyhedral cone is a polyhedron of the formC = {x : Ax ≤ 0}. Since all the
cones involved in this paper are polyhedral, we simply write cone. A cone C can also
be described as the set of nonnegative combinations of a finite set of vectors R ⊆ Rn ,
and we say that C = cone(R) is generated by R. A conic polyhedron is a rational
translation of a cone, that is, a set of the form t + {x : Ax ≤ 0} for some t ∈ Qn .

The polar cone of a coneC = {x : Ax ≤ 0} is the coneC∗ = {x : z�x ≤ 0 for all z ∈
C}. Equivalently, C∗ is the cone generated by the columns of A�. Note that C∗∗ = C .

Given a face F of a polyhedron P = {x : Ax ≤ b}, the tangent cone associated to
F is the conic polyhedron CF = {x : AFx ≤ bF }. When F is a minimal face of P ,
its associated tangent cone is a minimal tangent cone of P . The cone of Rn generated
by the columns of A�

F is the normal cone associated to F . Note that the normal cone
associated to F is the polar of {x : AFx ≤ 0}.

For more details, we refer the reader to Schrijver’s book [38].

3 Generalities on principally box-integer polyhedra

This section is devoted to the basic properties of box-integer and principally box-
integer polyhedra. In particular, we study the behavior of these notions with respect
to dilation and translation.

3.1 Box-integer polyhedra

Recall that a polyhedron P is box-integer if P ∩ {� ≤ x ≤ u} is integer for all
�, u ∈ Zn . Frequently, the following characterization will be more convenient to use
than the definition.

Lemma 1 A polyhedron P is box-integer if and only if for each face F of P, I ⊆
{1, . . . , n}, and p ∈ ZI such that aff(F) ∩ {xi = pi , i ∈ I } is a singleton v, if v

belongs to F then v is integer.

Proof Let P = {x ∈ Rn : Ax ≤ b}. Suppose that P is not box-integer. Then, P ∩ {� ≤
x ≤ u} has a noninteger vertex v for some �, u ∈ Zn . In particular, v belongs to
P ∩ {� ≤ x ≤ u} and is the unique solution of a nonsingular system a j x = b j , j ∈
J , xi = pi , i ∈ I where pi ∈ {�i , ui }. Now, F = {x : a j x = b j , j ∈ J } ∩ P is a face
of P , and {v} = aff(F) ∩ {xi = pi , i ∈ I } is not integer.

Conversely, suppose that {v} = aff(F) ∩ {xi = pi , i ∈ I } belongs to F and is not
integer, for some p ∈ ZI . Define � and u as follows:�i = ui = pi for i ∈ I , and
�i = �vi� and ui = 
vi� otherwise. Then, v is a noninteger vertex of P ∩{� ≤ x ≤ u}
and P is not box-integer. ��

Note that, if I is such that the set aff(F) ∩ {xi = pi , i ∈ I } is a singleton for some
p ∈ RI , then this set is either empty or a singleton for all p ∈ RI . If I is moreover
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assumed inclusionwise minimal, then aff(F) ∩ {xi = pi , i ∈ I } is a singleton for all
p ∈ RI .

The following two results seem to be known in the literature, we provide a proof
for the sake of completeness.

Corollary 1 If a polyhedron P is box-integer, then P is integer.

Proof Let F be a minimal face of P . There exists an inclusionwise minimal set I as
above, hence setting {xi = pi , i ∈ I } for some p ∈ ZI yields a singleton in aff(F).
Since aff(F) = F , this singleton is integer by Lemma 1, and thus F contains an
integer point. ��
Corollary 2 Let P be a polyhedron of Rn. The following statements are equivalent.

1. P is box-integer.
2. P ∩ {x ≥ �} is integer for all � ∈ Zn.
3. P ∩ {� ≤ x ≤ u} is integer for all �, u ∈ Z ∪ {−∞,+∞}n.
Proof Statement 3 immediately implies statement 2. Statement 2 implies statement 1
by Lemma 1, as if aff(F) ∩ {xi = pi , i ∈ I } is a singleton v ∈ F , then v is a vertex
of P ∩ {x ≥ �v�}. Statement 1 implies statement 3 because if P is box-integer, then
for all �, u ∈ Z ∪ {−∞,+∞}n , P ∩ {� ≤ x ≤ u} is box-integer—and hence integer
by Corollary 1. ��

The following lemma shows two operations which preserve box-integrality. The
second one will be used in Sect. 5.

Lemma 2 Let P = {x ∈ Rn : Ax ≤ b} be a polyhedron.
1. P is box-integer if and only if P̃ = {(y, z) ∈ Rn×Rn : A(y+z) ≤ b} is box-integer.
2. P is box-integer if and only if P± = {(y, z) ∈ Rn × Rn : A(y − z) ≤ b, y, z ≥ 0}

is box-integer.

Proof To establish the “only if” part of statement 1, suppose that P̃ is box-integer.
Then, so is P̃ ∩ {z = 0}. Since P is obtained from P̃ ∩ {z = 0} by deleting z’s
coordinates, P is box-integer. To establish the “if” part of statement 1,weuseLemma1.
Let F be a face of P̃ , of affine space aff(F) = {(y, z) ∈ Rn × Rn : a j (y + z) =
b j , j ∈ J }, and let p and q be integer vectors such that S = aff(F) ∩ {yi = pi , i ∈
Iy, zi = qi , i ∈ Iz} is a singleton (ȳ, z̄) which belongs to F . Let us show that (ȳ, z̄) is
integer. By Lemma 1, this implies that P̃ is box-integer.

We denote by G the face of P of affine space {x ∈ Rn : a j x = b j , j ∈ J }. Then
aff(G)∩ {xi = pi + qi , i ∈ Iy ∩ Iz} is the singleton x̄ = ȳ + z̄. Indeed, if it contained
an other point x̄ ′, we could set ȳ′

i = pi , i ∈ Iy, z̄′i = qi , i ∈ Iz and then build (ȳ′, z̄′)
in S such that ȳ′ + z̄′ = x̄ ′ �= ȳ+ z̄, a contradiction. P is box-integer and ȳ+ z̄ belongs
to P , thus ȳ + z̄ is integer by Lemma 1. Since S is a singleton, no (ȳ + χi , z̄ − χi )

belongs to S, and for all i , we have either yi = pi or zi = qi . Since p, q, and ȳ + z̄
are integer, (ȳ, z̄) is integer.

To establish the “only if” part of statement 2, suppose that P is box-integer. Then,
so is P± by statement 1 and because P± is obtained from P̃ ∩ {y ≥ 0, z ≤ 0} by
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replacing z by −z. To establish the “if” part of statement 2, suppose now that P± is
box-integer. For t ∈ Rn , define t+ = max{0, t} and t− = max{0,−t}. For �, u ∈ Zn ,
we have u = u+ −u−, � = �+ −�−, and u+, u−, �+, �− ≥ 0, hence P ∩{� ≤ x ≤ u}
is the projection onto x = y − z of P± ∩ {�+ ≤ y ≤ u+,−�− ≤ −z ≤ −u−}. Since
the latter is integer, this implies the integrality of P ∩ {� ≤ x ≤ u}. ��

3.2 Dilations of box-integer polyhedra

In this section, we investigate how the box-integrality of a polyhedron behaves with
respect to dilation. As a preliminary, the following observation describes the behaviour
of integrality with respect to dilation.

Proposition 1 Let P be a polyhedron. There exists d ∈ Z>0 such that {k ∈
Z>0: kP is integer} = dZ>0.

Proof When P has vertices, it is enough to choose d as the smallest positive integer
d such dv is integer for every vertex v of P . To treat the general case, we prove that
if kP and k′P are integer polyhedra, then gcd(k, k′)P is an integer polyhedron too.
Then, the smallest positive integer k such that kP is integer divides all the others, and
as any dilation of an integer polyhedron is an integer polyhedron too, this proves the
observation.

Let P = {x : Ax ≤ b}, i = gcd(k, k′), k = k/i , k′ = k′/i , and F be a minimal
face of i P . Since F is a minimal face, F is the affine space F = {x : AFx = ibF }.
Note that kF and k′F are minimal faces, respectively of kP and k′P , thus contain an
integer point, respectively xk and xk′ . By Bézout’s lemma, there exist λ and μ in Z
such that λk + μk′ = i . Then AF (λxk + μxk′) = ibF , hence F contains an integer
point. Therefore, gcd(k, k′)P is an integer polyhedron. ��

One of the arguments in the previous proof is the fact that the dilations of an
integer polyhedron are also integer polyhedra. This does not hold for box-integrality,
intuitively because any0/1polytope is box-integer, though its dilations haveno reasons
to be.Actually, an example of box-integer polyhedron having non box-integer dilations
will be provided at the end of this section. For now we prove the following lemma in
order to determine, given a polyhedron P , the structure of the set of positive integers
k such that kP is box-integer.

Lemma 3 Let P be a polyhedron and k ∈ Z>0 such that kP is integer but not box-
integer. Then, no dilation k′P with k′ ≥ k is box-integer.

Proof Let k′ ≥ k. Assume k′P integer, as otherwise k′P would not be box-integer. By
Lemma 1, there exist a face F of kP and an integer vector p such that aff(F) ∩ {xi =
pi , i ∈ I } is a noninteger singleton v ∈ F . By Proposition 1, kP and k′P are both
dilations of an integer polyhedron dP . In particular, there exists an integer point z in
F such that z′ = k′

k z is an integer point contained in the face F ′ = k′
k F of k′P . Since

k′ ≥ k, we have F − z ⊆ F ′ − z′, thus in particular v − z is in F ′ − z′, which implies
that v′ = (z′ − z) + v is in F ′. Moreover, aff(F ′) ∩ {xi = (z′i − zi ) + pi , i ∈ I } is the
singleton v′ of F ′, which is not integer, hence k′P is not box-integer by Lemma 1. ��
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A polyhedron P is fully box-integer if kP is box-integer for all k ∈ Z>0. In other
words, P is fully box-integer if and only if P is principally box-integer and integer.

Proposition 2 For a polyhedron P, the following statements are equivalent.

1. P is principally box-integer.
2. There exists d ∈ Z>0 such that {k ∈ Z>0: kP is box-integer} = dZ>0.
3. P has a fully box-integer dilation.

Proof The definition of principal box-integrality and Proposition 1 give (1)⇒(2). To
get (2)⇒(3), just note that dP is a fully box-integer polyhedron. To prove (3)⇒(1),
suppose that P is not principally box-integer, that is, there exists a positive integer k
such that kP is integer but not box-integer. By Lemma 3, this is not compatible with
the existence of a fully box-integer dilation of P . ��

We mention that relaxing k ∈ Z>0 to k ∈ Z in Definition 1 yields an equivalent
definition. Then, the set arising in statement 2 of Proposition 2 is dZ, which is a prin-
cipal ideal of Z. This explains why we called these polyhedra principally box-integer.
The next proposition shows what can happen when a polyhedron is not principally
box-integer.

Proposition 3 For a polyhedron P, exactly one of the following situations holds.

1. P is principally box-integer.
2. No dilation of P is a box-integer polyhedron.
3. There exist d, q ∈ Z>0 such that kP is box-integer if and only if k ∈

{d, 2d, . . . , qd}.
Proof If P has a box-integer dilation but is not principally box-integer, then there is a
smallestq inZ>0 such that (q+1)P is a polyhedronwhich is integer but not box-integer.
By Lemma 3, no kP with k > q is box-integer. Now, if d is chosen as in Proposition 1,
the minimality of q gives {k ∈ Z>0: kP is box-integer} = {d, 2d, . . . , qd}. ��

Note that the following property, which holds for integrality, also holds for box-
integrality: if kP and k′P are box-integer polyhedra, then so is gcd(k, k′)P .

Remark 1 Though we only considered dilations with positive integer coefficients, all
these results can readily be adapted to dilations with rational coefficients.

We conclude this section with an example of polyhedron whose box-integrality is
not preserved by dilation.

As P = conv (0, (1, 1, 0, 0, 0), (1, 0, 1, 0, 0), (1, 0, 0, 1, 0), (1, 1, 1, 1, 1)) is a 0/1
polytope, it is box-integer. However, it can be checked that (2, 1, 1, 1, 1/2) is a frac-
tional vertex of 2P ∩ {x2 = x3 = x4 = 1}. In particular, P illustrates statement 3 of
Proposition 3.

3.3 Translations of principally box-integer polyhedra

Box-integrality is clearly preserved under integer translation. So are principal and full
box-integrality.
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Observation 1 Box-integrality, principal box-integrality and full box-integrality are
all preserved by integer translation.

Proof The translation Q = t + P of a box-integer polyhedron P by t in Zn is also
box-integer because Q ∩ {� ≤ x ≤ u} = t + (P ∩ {� − t ≤ x ≤ u − t}) for all
�, u ∈ Zn . Moreover, since kQ = kt + kP and kt ∈ Zn for all k ∈ Z>0, principal
box-integrality and full box-integrality are also preserved by integer translation. ��

Conic polyhedra play an important role in the next sections. One of the reasons is
that, up to translation, every dilation of a conic polyhedron is the conic polyhedron
itself. Since box-integrality is preserved by integer translation, this has the following
consequences.

Observation 2 Let D = t +C be a conic polyhedron for some cone C of Rn and some
t ∈ Qn.

1. For C, the three properties of being box-integer, fully box-integer, or principally
box-integer are equivalent.

2. D is fully box-integer if and only if it is box-integer.
3. D is principally box-integer if and only if C is box-integer.

Proof The fact that kC = C for all k ∈ Z>0 proves statement 1. When D is box-
integer, its minimal face contains an integer point, hence t can be chosen to be an
integer. Since kD = (k − 1)t + D for all k ∈ Z>0, and since integer translation
preserves box-integrality, statement 2 follows. When t ∈ Qn , take k large enough
such that kt is integer. Now, kD = kt + C is a fully box-integer dilation of D if and
only if C is box-integer, which proves statement 3. ��

4 Principally box-integer polyhedra and equimodular matrices

In this section, we show how equimodularity and principal box-integrality are inter-
twined. First, we characterize equimodular matrices using principal box-integrality.
Then, principally box-integer polyhedra are characterized by the equimodularity of a
family of matrices.

4.1 Characterizations of equimodular matrices

In this section, we extend to equimodular matrices two classical results about unimod-
ular matrices. We first state the results of Heller [28] about unimodular sets in terms
of equimodular matrices—see also [38, Theorem 19.5].

Theorem 3 (Heller [28]) For a full row rank r × n matrix A, the following statements
are equivalent.

1. A is equimodular.
2. For each nonsingular r × r submatrix D of A, lattice(D) = lattice(A).
3. For each nonsingular r × r submatrix D of A, D−1A is integer.
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4. For each nonsingular r × r submatrix D of A, D−1A is in {0,±1}r×n.
5. For each nonsingular r × r submatrix D of A, D−1A is totally unimodular.
6. There exists a nonsingular r × r submatrix D of A such that D−1A is totally

unimodular.

Veinott and Dantzig [45] proved that an integer r × n matrix A of full row rank is
unimodular if and only if the polyhedron {x : Ax = b, x ≥ 0} is integer for all b ∈ Zr .
Observe that statement 2 of Corollary 2 allows us to reformulate their result as follows,
since {x : Ax = kb}∩{x ≥ �} = �+{x : Ax = b′, x ≥ 0}, where b′ = kb+k A� ∈ Zr .

Theorem 4 (Veinott and Dantzig [45]) Let A be a full row rank matrix of Zr×n. Then,
A is unimodular if and only if {x : Ax = b} is fully box-integer for all b ∈ Zr .

It turns out that this result can be extended to characterize equimodular matrices.

Theorem 5 Let A be a full row rank matrix of Qr×n. Then, A is equimodular if and
only if {x : Ax = b} is principally box-integer for all b ∈ Qr .

Proof Suppose that A is equimodular and let b ∈ Qr , k ∈ Z>0 be such that H =
{x : Ax = kb} is integer. Then b′ = kb belongs to lattice(A). Let D be a nonsingular
r×r submatrix D of A. By statement 2 of Theorem3,we have lattice(D) = lattice(A),
hence D−1b′ is in Zr . Since A has full row rank, by statement 5 of Theorem 3, D−1A
is unimodular. By Theorem 4, we get that {x : D−1Ax = D−1b′} is fully box-integer.
In particular, H is box-integer.

Conversely, suppose that A is not equimodular. Then, possibly reordering the
columns, wemay assume that the first r columns of A are linearly independent, and, by
statement 3 of Theorem3, that the (r+1)th column Ar+1 of A is a noninteger combina-
tion of those. Let H = {x : Ax = Ar+1}. Then, {x : Ax = Ar+1}∩{x j = 0, j ≥ r+1}
has no integer solution, hence H is not box-integer. However, H is integer as it contains
χr+1 as an integer point. Therefore, H is not principally box-integer. ��

Veinott and Dantzig [45] devised Theorem 4 in order to get a simpler proof of
a characterization of totally unimodular matrices due to Hoffman and Kruskal [31].
This characterization states that an integer matrix A is totally unimodular if and only
if {x : Ax ≤ b} is box-integer for all b ∈ Zm . In our context, this can be reformulated
as follows.

Theorem 6 (Hoffman and Kruskal [31]) A matrix A of Zm×n is totally unimodular if
and only if {x : Ax ≤ b} is fully box-integer for all b ∈ Zm.

Anequivalent definition of total unimodularity is to ask for every set of linearly inde-
pendent rows to be unimodular. In this light, it is natural to define totally equimodular
matrices as those for which all sets of linearly independent rows form an equimodular
matrix. Theorem 6 then extends to totally equimodular matrices as follows.

Theorem 7 A matrix A of Qm×n is totally equimodular if and only if {x : Ax ≤ b} is
principally box-integer for all b ∈ Qm.
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Proof Suppose A totally equimodular and b ∈ Qm , and let us prove that P = {x : Ax ≤
b} is principally box-integer. Let k ∈ Z>0 be such that kP is an integer polyhedron,
and let us prove that kP is box-integer. Let F be a face of kP and p be an integer vector
such that aff(F) ∩ {xi = pi , i ∈ I } is a singleton x̄ in F . By Lemma 1, it remains to
show that x̄ is integer. There exists a full row rank subset L of rows of A such that
aff(F) = {x : ALx = kbL}. Since A is totally equimodular, AL is equimodular. By
Theorem 5, aff(F) is principally box-integer. Now, since kP is integer, so is aff(F).
Hence, aff(F) is box-integer and x̄ is integer.

Suppose now that A is not equimodular, that is, there exists a full row rank submatrix
AL of size r×n of Awhich is not equimodular.Wemay assume that the first r columns
of AL are linearly independent, and that the (r + 1)th column of AL is a noninteger
combination of those. Let x̄ be the unique solution of ALx = 0, xr+1 = −1, x j =
0, j > r + 1. Then, x̄ /∈ Zn . Define bL = 0 and b j = 1 if j /∈ L , and let us show that
P = {x : Ax ≤ b} is not principally box-integer. There exists k ∈ Z>0 large enough
such that x̄ ∈ kP , and such that kP is integer. Then, kP ∩ {xr+1 = −1, x j = 0, j >

r + 1} contains x̄ as a vertex because x̄ satisfies to equality n linearly independent
inequalities. Therefore, kP is not box-integer. ��

Since deciding whether a given matrix is totally unimodular can be done in polyno-
mial time—see e.g. [38, Chapter 20]—statement 5 of Theorem 3 implies that deciding
whether a given matrix is equimodular can be done in polynomial time. However, for
totally equimodular matrices, the recognition problem remains open.

Open Problem 1 Can totally equimodularmatrices be recognized in polynomial time?

As we shall see later, totally equimodular matrices are precisely the matrices whose
associated polyhedra are all box-TDI—see Corollary 8. Interestingly, it is enough
to study totally equimodular matrices with 0, ±1 coefficients. Indeed, in a totally
equimodular matrix, the nonzero coefficients of a given row all have the same absolute
value. Thus, such a matrix can be scaled row by row into a 0, ±1 matrix. This scaling
preserves total equimodularity and does not change the family of associated polyhedra.

Remark 2 The full row rank hypothesis made throughout this section is convenient,
but not really necessary, provided the notions of unimodularity and equimodularity
are correctly extended. Hoffman and Kruskal [31] extend the notion of unimodularity
to not necessarily full row rank matrices, and Theorem 4 still holds for those matrices
[38, Page 301]. The correct extension of equimodularity to general matrices is to
require, for a matrix A of rank r , that each set of r linearly independent rows of A
forms an equimodular matrix. Properties of such matrices are studied in [28]. None of
the definitions and results of this paper are affected if these extended definitions are
adopted and the full row rank hypothesis removed.

4.2 Affine spaces and face-definingmatrices

Affine spaces being special cases of conic polyhedra, by statement 3 Observation 2,
{x : Ax = b} is principally box-integer for all b if and only if {x : Ax = 0} is fully box-
integer. In particular, one can drop the quantification over all b ∈ Qn from Theorem 5
as follows.
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Corollary 3 Let A be a full row rank matrix of Qr×n and b ∈ Qn. Then, A is equimod-
ular if and only if the affine space {x : Ax = b} is principally box-integer.

An affine space {x : Ax = b} being integer if and only if b belongs to lattice(A),
the previous result has the following immediate consequence.

Corollary 4 Let A be a full row rank matrix of Qr×n and b ∈ Qn. The affine space
{x : Ax = b} is fully box-integer if and only if A is equimodular and b ∈ lattice(A).

Corollary 3 yields a correspondence between equimodular matrices and principally
box-integer affine spaces. We shall see in the next section that this correspondence,
when applied to the faces of a polyhedron, provides a characterization of principally
box-integer polyhedra. This motivates the following definition.

Face-defining matrices Let P = {x : Ax ≤ b} be a polyhedron of Rn and F be a
face of P . A full row rank matrix M such that aff(F) can be written {x : Mx = d}
for some d is face-defining for F . Such matrices are called face-defining matrices of
P .2 Note that face-defining matrices need not correspond to valid inequalities for the
polyhedron. A face-defining matrix for a facet of P is called facet-defining.

Affine spaces are polyhedra whose only face is themselves. The following obser-
vation characterizes their principal box-integrality in terms of face-defining matrices.

Observation 3 For an affine space H, the following statements are equivalent.

1. H is principally box-integer.
2. H has an equimodular face-defining matrix.
3. Every face-defining matrix of H is equimodular.
4. H has a totally unimodular face-defining matrix.

Proof The equivalence among statements 1, 2, and 3 follows from Corollary 3. The
equivalence between statements 2 and 4 follows from statement 5 of Theorem 3,
because if A ∈ Qr×n is face-defining for H , then so is D−1A for each nonsingular
r × r submatrix D of A. ��

Note that, when P is full-dimensional, facet-defining matrices are composed of a
single row and are uniquely determined, up to multiplying by a scalar. In general, the
number of rows of a face-defining matrix for a face F is n − dim(F). More precisely,
the following immediate observation characterizes face-defining matrices.

Observation 4 A full row rank matrix M ∈ Qk×n is face-defining for a face F of
a polyhedron P ⊆ Rn if and only if there exist a vector d ∈ Qk and a family H ⊆
F∩{x : Mx = d} of dim(F)+1 affinely independent points such that |H|+k = n+1.

4.3 Characterizations of principally box-integer polyhedra

In this section, we provide several characterizations of principally box-integer poly-
hedra, the starting point being the following lemma.

2 When we write that a face F has a face-defining matrix M , we mean that M is face-defining for the face
F , which is more restrictive than being a face-defining matrix of the polyhedron F .
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Lemma 4 A polyhedron P is principally box-integer if and only if aff(F) is principally
box-integer for each face F of P.

Proof Let P be a polyhedron such that the affine spaces generated by its faces are all
principally box-integer. Then, when k ∈ Z>0 is such that kP is integer, all the affine
spaces generated by the faces of kP are box-integer. Therefore, by Lemma 1, if F is
a face of such a kP and p is an integer vector such that aff(F) ∩ {xi = pi , i ∈ I } is a
singleton in F , then this singleton is integer. Then, by the other direction of Lemma 1,
kP is box-integer, thus P is principally box-integer.

Conversely, let P be a principally box-integer polyhedron and F be a face of P .
If F is a singleton, then aff(F) = F is a singleton, thus obviously principally box-
integer. Otherwise, let t be a rational point in the relative interior of F , let G = F − t
and Q = P − t . By statement 3 of Observation 2, it suffices to show that aff(G)

is box-integer. Let p be an integer vector such that aff(G) ∩ {xi = pi , i ∈ I } is a
singleton x̄ in aff(G). Since t was chosen in the relative interior of F , there exists
k ∈ Z>0 such that x̄ ∈ kQ. Moreover, such a k can be chosen so that kt is integer and
kP is an integer polyhedron. Since P is principally box-integer, kP is box-integer and
so is kQ = kP−kt by Observation 1. Applying Lemma 1 to the face kG of kQ yields
x̄ integer. By applying the other direction of Lemma 1 to the unique face aff(G) of
aff(G), we obtain that aff(G) is box-integer. ��
Theorem 8 For a polyhedron P, the following statements are equivalent.

1. The polyhedron P is principally box-integer.
2. Every minimal tangent cone of P is principally box-integer.
3. Every face of P has an equimodular face-defining matrix.

Proof Each face of P is contained in a face of someminimal tangent cone of P having
the same affine hull. Conversely, each face of a minimal tangent cone of P contains
some face of P having the same affine hull. Therefore, Lemma 4 gives the equiva-
lence between statement 1 and statement 2. The equivalence between statement 1 and
statement 3 is immediate by Corollary 3 and Lemma 4. ��

The minimal faces of a polyhedron being affine spaces, Lemma 4 has a fully box-
integer counterpart.Moreover, by statement 2 ofObservation2, so does the equivalence
between statement 1 and statement 3 of Theorem 8. This gives the following corollary.

Corollary 5 For a polyhedron P, the following statements are equivalent.

1. The polyhedron P is fully box-integer.
2. Every minimal tangent cone of P is box-integer.
3. For each face F of P, aff(F) is fully box-integer.

5 Box-totally dual integral polyhedra

5.1 New characterizations of box-TDI polyhedra

The main result of this section is that the notions of principal box-integrality and box-
TDIness coincide—see Theorem 9 below. Combined with Theorem 8, this provides
several new characterizations of box-TDI polyhedra.
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Theorem 9 A polyhedron is box-TDI if and only if it is principally box-integer.

Proof The proof relies on Lemmas 5 and 6, which are proven below.
Lemma 5 states that a polyhedron is box-TDI if and only if all its minimal tangent

cones ares box-TDI. By Theorem 8, a polyhedron is principally box-integer if and
only if all its minimal tangent cones are principally box-integer. Hence it is enough to
prove Theorem 9 for conic polyhedra.

Lemma 6 states that a cone is box-TDI if and only if it is box-integer. Then, by
statement 3 of Observation 2, and since box-TDIness is preserved under rational
translation, a conic polyhedron is box-TDI if and only if it is principally box-integer.

��
The following lemma seems somewhat implicitly known in the literature, but is

not stated explicitly to the best of our knowledge. For the sake of completeness, we
provide a proof which relies only on the definitions. It can also be shown using known
characterizations of box-TDI polyhedra, such as the one by Cook [38, Theorem 22.9].

Lemma 5 A polyhedron is box-TDI if and only if all its minimal tangent cones are.

Proof Let P = {x : Ax ≤ b} be a polyhedron of Rn and w ∈ Zn . We will denote
(P�,u) = max{wx : Ax ≤ b, � ≤ x ≤ u} and (PF

�,u) = max{wx : AI x ≤ bI , � ≤ x ≤
u} for a minimal face F of P where I is the index set of the tight rows for F .

To establish the “only if” part of the statement, suppose that the system Ax ≤ b is
box-TDI. Let F be a minimal face of P , v ∈ F and let x� be an optimal solution of
(PF

�,u). Since aiv < bi for all i /∈ I , there exists λ > 0 such that y� = v + λ(x� − v)

belongs to P and ai y� < bi for all i /∈ I . Let �′ = v+λ(�−v) and u′ = v+λ(u−v).
Then, y� is an optimal solution of (P�′,u′), as otherwise x� would not be an optimal
solution of (PF

�,u). Let (z
�, r�, s�) be an integer optimal solution of the dual of (P�′,u′).

By complementary slackness, denoting by z�I the vector obtained from z� by deleting
the coordinates not in I , without loss of generality we have z� = (z�I , 0). Now, since
w�y� = b�z� + u′�r� − �′�s�, one can check that w�x� = b�

I z
�
I + u�r� − ��s�,

by applying the definition of y�, u′ and �′, b�z� = b�
I z

�
I , w = A�z� + r� − s�,

A�z� = A�
I z

�
I , and AI v = bI . Therefore, (z�I , r

�, s�) is an integer optimal solution
of the dual min{b�

I z + u�r − ��s: A�
I z I + r − s = w, zI , r , s ≥ 0} of (PF

�,u).
To establish the “if” part of the statement, let H be the face of P composed of all the

optimal solutions of (P�,u) = max{wx : Ax ≤ b, � ≤ x ≤ u} and let F be a minimal
face of P contained in H whose tight rows are indexed by I . Let (z�I , r

�, s�) be an
integer optimal solution of the dual of (PF

�,u). Then, one can check that extending z�I
to a vector z� = (z�I , 0) of Rm yields an integer optimal solution (z�, r�, s�) of the
dual of (P�,u). ��

The following result reveals that cones behave nicely with respect to box-TDIness.
It is already known that a box-TDI cone is box-integer [39, Equation (5.82)]. Surpris-
ingly, the converse holds and these properties are carried over to the polar.

Lemma 6 For a cone C, the following statements are equivalent.

1. C is box-TDI,
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2. C is box-integer,
3. C∗ is box-TDI,
4. C∗ is box-integer.

Proof Let C = {x : Ax ≤ 0} be a cone of Rn . By [38, Theorem 22.6(i)], the system
Ax ≤ 0 can be chosen to be TDI.

Suppose that C is box-TDI. By Theorem 1, the system Ax ≤ 0 is box-TDI. Hence,
for all �, u ∈ Zn , the system Ax ≤ 0, � ≤ x ≤ u is TDI. As � and u are integer,
this system defines an integer polyhedron by [38, Corollary 22.1c]. Therefore, C is
box-integer, and we get (1)⇒(2). This also gives (3)⇒(4).

All that remains to prove is (4)⇒(1). Indeed, applying this implication to the cone
C∗ and using that C∗∗ = C yields (2)⇒(3).

Suppose that C∗ is box-integer and let us prove that the dual (D) of the linear
program (P) below has an integer solution for all w ∈ Zn and �, u ∈ Qn such that the
optimum is finite.

(P)

max w�x
Ax ≤ 0
x ≤ u

−x ≤ −�

(D)

min u�r − ��s
A�z + r − s = w

z , r , s ≥ 0

The projection of the set of points (z, r , s) satisfying the constraints of (D) onto the
variables r and s is the polyhedron Q = {r , s ≥ 0: v�(s−r+w) ≤ 0, for all v ∈ K },
where K is the projection cone K = {v ∈ Rn : v�A� ≤ 0}. That is K = C and
therefore Q = (C∗ − w)±—see Lemma 2.

Since integer translations of box-integer polyhedra are box-integer, C∗ −w is box-
integer. Thus, by statement 2 of Lemma 2, Q is box-integer. In particular, Q is integer.

Since the optimum of (D) is finite, so is min{u�r − ��s: (r , s) ∈ Q}. Since Q
is an integer polyhedron, this minimum is achieved by an integer (r̄ , s̄) ∈ Q. Let
w̄ = w − r̄ + s̄. As (r̄ , s̄) belongs to Q, there exists a feasible solution z̄ of the dual of
max{w̄�x : Ax ≤ 0}. Recall that Ax ≤ 0 has been chosen to be TDI. Hence, since w̄

is integer, such a z̄ can be chosen to be an integer. Then, (z̄, r̄ , s̄) is an integer optimal
solution of (D). ��

We are now ready to prove our main result, Theorem 2.

Proof of Theorem 2 Statements 2 and 1 are equivalent by Theorem 9. Statements 2 and
4 are equivalent by the equivalence between statements 1 and 3 of Theorem 8. Finally,
the equivalence among statements 3, 4, and 5 comes from Observation 3. ��

We now apply polarity to derive additional characterizations of box-TDI polyhedra.

Corollary 6 For a polyhedron P, the following statements are equivalent.

1. The polyhedron P is box-TDI.
2. For every face F of P, every basis of lin(F) is the transpose of an equimodular

matrix.
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3. For every face F of P, some basis of lin(F) is the transpose of an equimodular
matrix.

4. For every face F of P, some basis of lin(F) is a totally unimodular matrix.

Proof Let F be a face of P . By Corollary 3, F has an equimodular face-defining
matrix if and only if aff(F) is principally box-integer. Equivalently, by Observation 2,
lin(F) is box-integer. By Lemma 6, lin(F) is box-integer if and only lin(F)∗ is. By
Corollary 3, lin(F)∗ is box-integer if and only if lin(F)∗ has an equimodular face-
defining matrix M . Note that the columns of M� form a basis of lin(F), therefore
F has an equimodular face-defining matrix if and only if some basis of lin(F) is the
transpose of an equimodular matrix.

Since, by Theorem 2, the polyhedron P is box-TDI if and only if each of its
faces F has an equimodular face-defining matrix, this proves the equivalence between
statements 1 and 3. The equivalence with the two others statements follows from
Observation 3. ��

Recall that a cone C = {x : Ax ≤ 0} can also be defined as C = cone(R) for some
set R of generators. Moreover, by Lemma 6, a cone is box-TDI if and only if it is
box-integer. Corollary 6 then allows us to check whether cones are box-integer by
looking at their generators.

Corollary 7 A cone C = cone(R) is box-integer if and only if S� is equimodular for
each linearly independent subset S of R generating a face of C.

Consequently, the recognition of box-integer conesmight have a different complex-
ity status than the following related problems, which are all co-NP-complete: deciding
whether a given polytope is integer [37], deciding whether a given system is TDI or
box-TDI [16], deciding whether a given conic system is TDI [36].

Open Problem 2 What is the complexity of deciding whether a given cone is box-
integer?

We mention that polarity preserves box-integrality only for cones, and does not
extend to polyhedra. For instance, the polyhedron conv ((2,−1), (−2,−1), (0, 1)) is
fully box-integer, and its polar conv ((1, 1), (−1, 1), (0,−1)) is integer but not box-
integer.

5.2 Connections with existing results

In this section, we investigate the connections of our results with those from the
literature about box-TDI polyhedra. We first derive known results about box-TDI
polyhedra from our characterizations. Then, we show how Cook’s characterization
[38, Theorem 22.9] is connected to ours. Finally, we discuss Schrijver’s sufficient
condition [39, Theorem 5.35].

5.2.1 Consequences

Here, we review several known results about box-TDI polyhedra which can be derived
from our results. The dominant of a polyhedron P of Rn is dom(P) = P + Rn+.
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Consequence 1 ([14, Theorem 3.6] or [38, Theorem 22.11]) The dominant of a box-
TDI polyhedron is box-TDI.

Proof A face of dom(P) is the sum of a face of P and a cone generated by unit
vectors. By statement 4 of Corollary 6, and since adding unit vectors preserves total
unimodularity, the dominant of a box-TDI polyhedron is box-TDI. ��
Consequence 2 ([38, Remark 2.21]) If P is a box-TDI polyhedron, then aff(P) =
{x :Cx = d} for some totally unimodular matrix C.

Proof If P is a box-TDI polyhedron, then by statement 5 of Theorem 2, since P is a
face of P , its affine hull can be described using a totally unimodular matrix. ��
Consequence 3 ([38, Remark 2.22]) Each edge and each extremal ray of a pointed
box-TDI polyhedron is in the direction of a {0,±1}-vector.
Proof This is statement 4 of Corollary 6 applied to the faces of dimension one of the
polyhedron. ��

By polarity, the above proof shows that every full-dimensional box-TDI polyhedron
can be described using a {0,±1}-matrix. Edmonds and Giles prove in [22] that it is
still true without the full-dimensional hypothesis.

Consequence 4 ([22, Theorem 2.16]) If P is a box-TDI polyhedron, then P =
{x : Ax ≤ b} for some {0,±1}-matrix A and some vector b.

Proof Let P be a box-TDI polyhedron. By Consequence 2, we have aff(P) =
{x :Cx = d} for some full row rank totally unimodular matrix C . By statement 5
of Theorem 2, for each facet F of P , there exists a totally unimodular matrix DF such
that aff(F) = {x : DFx = dF }. Then, one of the rows aF x = bF of DFx = dF does
not contain aff(P). Possibly multiplying by − 1, we may assume that aF x ≤ bF is
valid for P because F is a facet of P . Then, the matrix A whose rows are those of C
and every aF yields a description of P as desired. ��

5.2.2 Cook’s characterization [14], [38, Theorem 22.9]

In order to get a geometric characterization of box-TDI polyhedra, Cook [14]
introduced the so-called box property. Schrijver [38, Theorem 22.9] states Cook’s
characterization with the following equivalent form of the box property: a cone C of
Rn has the box property if for all c ∈ C there exists c̃ ∈ C∩Zn such that �c� ≤ c̃ ≤ 
c�.
To highlight the connections with our results, we reformulate Schrijver’s version as
follows.

• A polyhedron is box-TDI if and only if the normal cones of its faces all have the
box property (Cook [38, Theorem 22.9]).

The parallel with our work is clear with the following reformulation of one of our
characterizations.
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• A polyhedron P is box-TDI if and only if every minimal tangent cone of P is
box-integer, up to translation (Observation 2 and Theorems 8 and 9).

The first difference between these two results is that the first one involves the normal
cones, whereas the second one involves the tangent cones. Recall that the tangent
cones are the polars of the normal cones, up to translation. This polarity connection
between the two statements is not surprising in light of the polarity result of Lemma 6.
The second difference is that the first result involves the box property, whereas the
second involves the notion of box-integrality. It is easy to see that box-integer cones
have the box property. The converse does not hold. In fact, the lemma below shows
that the box property is a local property when the box-integrality is a global one. The
third difference is a consequence of this local/global aspect: the first result involves
all the normal cones, whereas the second involves only the minimal tangent cones.

To sum up, the first result is a polar local characterization of box-TDI polyhedra,
and the second is a primal global characterization.

Proposition 4 A cone is box-integer if and only if all its faces have the box property.

The following lemma proves the proposition, since a cone C is box-integer if and only
if aff(F) is box-integer for all faces F of C .

Lemma 7 Let F be a face of a cone C.

• If C is box-integer, then F has the box property.
• If F has the box property, then aff(F) is box-integer.

Proof Suppose thatC is box-integer and let c ∈ F . Since c belongs to P = F∩{�c� ≤
x ≤ 
c�}, the latter is nonempty. Since C is box-integer, so is F , hence P has only
integer vertices, and any of them forms a suitable c̃ which shows that F has the box
property.

Suppose now that F has the box property. Let p ∈ ZI be such that aff(F) ∩ {xi =
pi , i ∈ I } is a singleton c in aff(F). There exists t ∈ Zn such that c′ = c + t ∈ F .
By the box property of F , there exists c̃ ∈ F ∩ Zn such that t + �c� = �c′� ≤ c̃ ≤

c′� = 
c� + t . Now, c̃ − t belongs to aff(F) ∩ {xi = pi , i ∈ I }, hence c = c̃ − t is
integer. By Lemma 1, aff(F) is box-integer. ��

In a way, the above lemma shows that the box property of a cone is sandwiched
between the box-integrality of the cone and that of its underlying affine space—
an even more local property. This, up to polarity again, further compares Cook’s
characterization andours, as the latter property appears inLemma4. Figure 1 illustrates
some differences between the three properties.

The notion of box-integrality of cones and affine spaces sheds a better light on box-
TDI polyhedra by providing insights of how their local, global, and polar properties are
connected. Both are preserved by polarity, the global notion yields a global geometric
characterization of box-TDI polyhedra, and the most local one allows us to derive
matricial counterparts.
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Fig. 1 The cone C = cone{(2, 1), (1, 0)} has the box property but is not box-integer. The cone C ′ =
cone{(2, 1), (3, 1)} does not have the box property, yet aff(C ′) = R2 is box-integer. The cone C ′′ =
cone{(2, 1)} does not have the box property, yet its polar does

5.2.3 Schrijver’s sufficient condition [39, Theorem 5.35]

In this section, we compare our results on box-TDI polyhedra with known results on
box-TDI systems. It appears that our results in some sense allow us to split the “box-”
from the “-TDI”: to prove that a given system is box-TDI, prove that it is TDI on the
one hand, and prove that the polyhedron is box-TDI with Theorem 2 on the other hand.

As noticed by Schrijver [38, Page 318], Hoffman and Kruskal’s result [31] implies
that a matrix A is totally unimodular if and only if the system Ax ≤ b is box-TDI
for each vector b. Then, by Theorems 7 and 9, the parallel with totally equimodular
matrices can be thought of as relaxing the box-TDIness of those systems to that of the
associated polyhedra.

Corollary 8 A matrix A of Qm×n is totally equimodular if and only if the polyhedron
{x : Ax ≤ b} is box-TDI for all b ∈ Qm.

Totally unimodular matrices being totally equimodular, the following well-known
result is a special case of the above corollary.

Consequence 5 A polyhedron whose constraint matrix is totally unimodular is box-
TDI.

We mention that there exist box-TDI systems which are not defined by a totally
unimodular matrix. By Corollary 8 and Theorem 1, any TDI system defined with a
totally equimodular matrix is box-TDI. Therefore, to find a box-TDI system for a
polyhedron described by a totally equimodular matrix, there only remains to find a
TDI system describing this polyhedron.

Another interesting parallel can be observed with Schrijver’s Sufficient Condition.
Schrijver proves in [39, Theorem 5.35] that the followingweakening of A being totally
unimodular already suffices to obtain the box-TDIness of the system Ax ≤ b.

Theorem 10 ([39, Theorem 5.35]) Let Ax ≤ b be a system of linear inequalities, with
A an m × n matrix. Suppose that (�) for each c ∈ Rn, max{c�x : Ax ≤ b} has (if
finite) an optimum dual solution y ∈ Rm+ such that the rows of A corresponding to
positive components of y form a totally unimodular submatrix of A. Then Ax ≤ b is
box-TDI.
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Note that the property (�) is equivalent to the condition that for every face F of
{x : Ax ≤ b}, the system Ax ≤ b contains a totally unimodular face-defining matrix
for F . Theorem 2 contains a polyhedral version: a polyhedron is box-TDI if and only if
each of its faces has a totally unimodular face-defining matrix. This latter condition is
weaker than (�), hence does not ensure the box-TDIness of the system. Nevertheless,
when satisfied, all that remains to do is to find a TDI system describing the same
polyhedron.

In light of our characterizations, one could wonder whether Theorem 10 can be
turned into an equivalence, that is: can every box-TDI polyhedron be described by
a box-TDI system satisfying (�)? Unfortunately, the answer to this question is nega-
tive. Indeed, systems satisfying (�) can be assumed {0,±1}, and there exist box-TDI
polyhedra for which no TDI description is {0,±1}—see [38, Page 325].

6 Illustrations

In this section, we provide illustrations of our results. The first one is a new perspective
on the equivalence between two results about binary clutters. Secondly, we refute a
conjecture ofDing et al. [19] about box-perfect graphs. Thirdly,wediscuss connections
with an abstract class of polyhedra introduced in [27]. Finally, we characterize the box-
TDIness of the cone of conservative functions of a graph.

6.1 Box-Mengerian clutters

We briefly introduce the definitions we need about clutters. A collection C of subsets
of a set E is a clutter if none of its sets contains another one. We denote by AC
the C × E incidence matrix of C and by PC = {x ∈ RE : ACx ≥ 1, x ≥ 0} the
associated covering polyhedron. A clutter C is binary if the symmetric difference of
any three elements of C contains an element of C. A clutter C is box- 1d -integral if
for all �, u ∈ 1

d ZE , each vertex of PC ∩ {� ≤ x ≤ u} belongs to 1
d ZE . A matrix

A ∈ {0, 1}m×n is called (box-)Mengerian if the system Ax ≥ 1, x ≥ 0 is (box-)TDI.
A clutter C is (box-)Mengerian if AC is (box-)Mengerian. Deleting an element e ∈ E
means replacing C by C\e = {X ∈ C: e /∈ X} and contracting an element e ∈ E
means replacing C by C/e which is composed of the inclusionwise minimal members
of {X\{e}: X ∈ C}. The minors of a clutter are the clutters obtained by repeatedly
deleting and contracting elements of E . The clutter Q6 is defined on the set E4 of the
edges of the complete graph K4, and its elements are the triangles of K4—see Fig. 2.
The clutter Q7 is defined on E4 ∪ {e} where e /∈ E4, and its elements are X ∪ {e} for
each triangle or perfect matching X of K4.

In 1995, Gerards and Laurent [24] characterized the binary clutters that are box- 1d -
integral for all d ∈ Z>0 by forbidding minors.

Theorem 11 ([24, Theorem 1.2]) A binary clutter is box- 1d -integral for all d ∈ Z>0 if
and only if neither Q6 nor Q7 is its minor.

In 2008, Chen et al. [12] characterized box-Mengerian binary clutters by forbidding
minors. In [11], Chen, Chen, and Zang provide a simpler proof of this characterization,
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AQ6
=

1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1
0 0 0 1 1 1

Fig. 2 The matrix representation of the clutter Q6

based on the so called ESP property.Wemention that none of the proofs of Theorem 12
rely on Theorem 11.

Theorem 12 ([12, Corollary 1.2]) A binary clutter is box-Mengerian if and only if
neither Q6 nor Q7 is its minor.

The combination of Theorems 11 and 12 implies that a binary clutter is box-
Mengerian if and only if it is box- 1d -integral for all d ∈ Z>0. We show in the following
how this equivalence is actually a special case of Theorem 9.

By definition, a clutter C is box- 1d -integral if and only if dPC is box-integer, which
implies the following reformulation of the class of polyhedra characterized in Theo-
rem 11.

• A clutter C is box- 1d -integral for all d ∈ Z>0 if and only if PC is fully box-integer.

Recall that a system is box-TDI if and only if it is TDI and defines a box-TDI poly-
hedron. Then, by Theorem 9, a clutter is box-Mengerian if and only if it is Mengerian
and PC is principally box-integer. Since C being Mengerian implies the integrality of
PC , we get the following reformulation for the systems involved in Theorem 12.

• A clutter C is box-Mengerian if and only if it is Mengerian and PC is fully box-
integer.

Therefore, to prove the announced equivalence it is enough to show the following
statement.

• If C is binary and PC is fully box-integer, then C is Mengerian.

We apply Seymour’s characterization [41]: a binary clutter is Mengerian if and
only if it has no Q6 minor. The property of PC being fully box-integer is closed under
taking minors since PC/e and PC\e are respectively obtained from PC ∩ {xe = 0} and
PC ∩ {xe = 1} by deleting e’s coordinate. Furthermore, PQ6 is not fully box-integer
by statement 3 of Theorem 8. Indeed, the first three rows of the matrix AQ6 of Fig. 2
form a nonequimodular matrix M , as the determinant of the three first columns equals
2 and that of the three last columns equals 1. Moreover, M is face-defining for PQ6 ,
by Observation 4 and because χ1 + χ6, χ2 + χ5, χ3 + χ4, and χ4 + χ5 + χ6 are
affinely independent, belong to PQ6 , and satisfy Mx = 1. Therefore, if C is binary
and PC is fully box-integer, then C has no Q6 minor.

6.2 On box-perfect graphs

In this section, we provide a construction which preserves non box-perfection, and
use it to refute a conjecture of Ding et al. [19].
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In a graph, a clique is a set of pairwise adjacent vertices, and a stable set is the
complement of a clique. The stable set polytope of a graph is the convex hull of the
incidence vectors of its stable sets. Perfect graphs are known to be those whose stable
set polytope is described by the system composed of the clique inequalities and the
nonnegativity constraints:

x(C) ≤ 1 for all cliques C ,
x ≥ 0.

A box-perfect graph is a graph for which this system is box-TDI. Since this system is
known to be TDI if and only if the graph is perfect [34], a graph is box-perfect if and
only if it is perfect and its stable set polytope is box-TDI. The characterization of box-
perfect graphs is a long standing open question raised by Cameron and Edmonds [8].
Recent progress has been made on this topic by Ding et al. [19]. They exhibit several
new subclasses of perfect graphs, and in particular prove the conjecture of Cameron
and Edmonds [8] that parity graphs are box-perfect. They also propose a conjecture
for the characterization of box-perfect graphs.

To state their conjecture, they introduce the class of graphs R, built as follows. Let
G = (U , V , E) be a bipartite graph whose biadjacency matrix is minimally non-TU.
Add a set of edges F between vertices of V such that the neighborhood NG ′(u) of u
in G ′ = (U ∪ V , E ∪ F) is a clique for all u ∈ U . If there exists u ∈ U such that
NG ′(u) = V , then G ′\{u} is in R, otherwise G ′ is in R.

Conjecture 1 (Ding et al. [19]) A perfect graph is box-perfect if and only if it contains
no graph from R as an induced subgraph.

We introduce the operation of unfolding a vertex v ∈ V in G = (V , E). Take a
vertex v ∈ V and two sets of vertices X and Y such that X ∪ Y = NG(v) and no
edge connects X\Y and Y\X . Delete v and add two new vertices x and y such that
the neighborhoods of x and y are respectively X and Y . Finally, add another vertex z
adjacent only to x and y.

We mention that unfolding a vertex might not preserve perfection. Nevertheless, if
the starting graph is perfect but not box-perfect, then the graph obtained by unfolding
is not box-perfect.

Lemma 8 Unfolding any vertex in a perfect but not box-perfect graph yields a non
box-perfect graph.

Proof We show that if the stable set polytope of a graph has a nonequimodular face-
defining matrix, then so does any graph obtained by unfolding. By Theorem 2, this
proves the Lemma.

Let G = (V , E) be a graph which is perfect but not box-perfect, let v be a vertex
of G, let H be obtained from G by unfolding v, and x, y, z be the new vertices. Let
n = |V |. Since G is not box-prefect, its stable set polytope has a nonequimodular
face-defining matrix M ∈ Qk×n for a face F . Since G is perfect, we may assume that
the rows of M are the incidence vectors of a set K of cliques of G. Indeed, it can be
checked that removing the rows corresponding to nonnegativity constraints yields a
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Fig. 3 A non box-perfect graph
obtained by unfolding the vertex
v in S3, with X = {b, c, e} and
Y = {b, c, d}

G = S3

a b d

c v

e

Gv

a b d

c y

zxe

smaller nonequimodular face-defining matrix. By Observation 4, there exists a family
S of affinely independent stable sets of F with |S| = n − dim(F) + 1. Build a family
T of stable sets of H from S as follows: if S ∈ S contains v, then S\{v}∪ {x, y} ∈ T ,
otherwise S ∪ {z} ∈ T . All these sets are stable sets and are affinely independent.
Build a family L of k + 2 cliques of H as follows. For each K ∈ K,

• If v /∈ K , then K ∈ L.
• If v ∈ K , the fact that X ∪ Y = NG(v) and no edge connects X\Y and Y\X
ensures that at least one of K\{v} ∪ {x} and K\{v} ∪ {y} is a clique of H . If both
are cliques, then add one of them to L, otherwise add the clique.

• Add {x, z} and {y, z} to L.
Let N denote the (k + 2) × (n + 2) matrix whose rows are the incidence vectors of
the cliques of L. The matrix N has full row rank and each stable set T of T satisfies
|T ∩ L| = 1 for all L ∈ L, hence N is face-defining for the stable set polytope of H by
Observation 4. There only remains to show that N is not equimodular. To prove this,
we show that each k × k submatrix of M gives rise to a (k + 2) × (k + 2) submatrix
of N having the same determinant. Since M is not equimodular, neither is N .

Let A be a k × k submatrix of M . If A does not contains v’s column Mv , then add
two rows of zeros and then the two columns N y and Nz . Note that the determinant has
not changed: first develop with respect to {x, z}’s row, and then with respect to {y, z}’s
row, to obtain the starting matrix. If A contains v’s column Mv , then delete it, add two
rows of zeros and finally add the three columns Nx , N y , and Nz . Let A′ denote this
new matrix. We obtain det(A′) = det(A) as follows: first replace the column Ax by
Ax + Ay − Az , then develop with respect to {x, z}’s row, and finally with respect to
{y, z}’s row. The resulting matrix is precisely A. ��

Unfolding a vertex in S3 as shown in Fig. 3 yields a graph which is perfect but
not box-perfect, and contains no induced subgraphs from R. This disproves Conjec-
ture 1—see Proposition 5.

It is well-known that the graph S3 in Fig. 3 is not box-perfect [9]. It can also be
seen because the nonequimodular matrix M below is face-defining for the stable set
polytope of S3.

M =
⎡

⎣
1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1

⎤

⎦
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Indeed, up to reordering the vertices, the rows of M correspond to the three external
triangles, and the four affinely independent stable sets {a, v}, {b, e}, {c, d}, {a, d, e}
belong to the corresponding face. By Observation 4 and Theorem 2, S3 is not box-
perfect.

Proposition 5 The graph G of Fig. 3 is perfect but not box-perfect and none of its
induced subgraphs belongs to R.

Proof Note that the graphs G and Gv are perfect. By Lemma 8, Gv is not box-perfect.
The graph Gv\{z} is box-perfect, as one can check that the constraint matrix of its
stable set polytope is totally unimodular. Hence, if Gv contains an induced subgraph
H ∈ R, then z ∈ V (H). As no graph in R has a vertex of degree one, this contradicts
the claim below.

• If H ∈ R has a vertex z with only two neighbors x and y, then xy is an edge of
H .

Recall that vertices of H are partitioned into setsU and V such that the neighborhood
of every vertex of U is a clique of V , and the biadjacency matrix M of the edges
between U and V is either minimally non-TU or obtained from such a matrix by
removing a row. In particular, every column of M contains at least a one, and every
row of M contains at least two ones.

If z ∈ U , then xy is an edge of H . Suppose now z ∈ V . The z-column ofM contains
a one, so a neighbor of z, say x , belongs to U . The x-row of M contains two ones, so
x has an other neighbor in V , which is connected to z. Therefore, this neighbor is y,
and xy is an edge of H . ��

Note that choosing X = {c, e} and Y = {b, c, d} when unfolding v in Fig. 3
yields another perfect but not box-perfect graph with no graph from R as an induced
subgraph.

6.3 Integer decomposition property

In this section, we discuss possible connections between full box-integrality and the
integer decomposition property. This property arises in various fields such as inte-
ger programming, algebraic geometry, combinatorial commutative algebra. Several
classes of polyhedra are known to have the integer decomposition property, as for
instance: projections of polyhedra defined by totally unimodular matrices [40], poly-
hedra defined by nearly totally unimodular matrices [26], certain polyhedra defined
by k-balanced matrices [46], the stable set polytope of claw-free t-perfect graphs and
h-perfect line-graphs [6].

A polyhedron P has the integer decomposition property, if for any natural number k
and any integer vector x ∈ kP , there exist k integer vectors x1, . . . , xk ∈ P with
x1 + · · · + xk = x . A stronger property is when the polyhedron P has the Integer
Carathéodory Property, that is, if for every positive integer k and every integer vector
x ∈ kP , there exist n1, . . . , nt ∈ Z≥0 and affinely independent x1, . . . , xt ∈ P ∩ Zn

such that n1 + · · · + nt = k and x = ∑
i ni xi .
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In [27], Gijswijt and Regts introduce a classP of polyhedra and show that they have
the Integer Carathéodory Property. They define P to be the set of polyhedra P such
that for any k ∈ Z≥0, r ∈ {0, . . . , k}, andw ∈ Zn the intersection r P∩(w − (k − r)P)

is box-integer. They also show [27, Proposition 4] that every P ∈ P is box-integer.
Given the definition of P , note that if a polyhedron is in P , then so are all its dilations.
Therefore, every P in P is fully box-integer. By Theorem 9, this has the following
consequence.

Corollary 9 Every P ∈ P is box-TDI.

The converse of Corollary 9 does not hold. We show below that polyhedra in P
satisfy the stronger property that not only the affine hulls of their faces are principally
box-integer, but also the intersection of the affine hulls of any two faces. In terms of
matrices, this is phrased as follows.

Proposition 6 If P ∈ P , then aff(F)∩aff(G) has an equimodular face-definingmatrix
for all faces F and G of P.

Proof Let F and G be faces of P , and let xF and xG be rational points in their
respective relative interiors. There exists k ∈ Z>0 such that both kxF and kxG are
integer. Let w = k(xF + xG), and Q = kP ∩ (w − kP) = k(P ∩ (xF + xG − P)).
Since P ∈ P , note that r Q is box-integer for all r ∈ Z>0, that is, Q is fully box-
integer. By the choice of xF and xG , the minimal face H of Q containing kxF satisfies
aff(H) = k (aff(F) ∩ −(xF + xG + aff(G))). Thus, the latter is a translation of
aff(F) ∩ −aff(G). Since Q is fully box-integer, aff(H) has an equimodular face-
defining matrix by Theorem 8, hence so has aff(F) ∩ −aff(G) by translation. Since
aff(F) ∩ aff(G) can be described using the matrix of constraints of aff(F) ∩ aff(G)

and multiplying by −1 the right-hand sides corresponding to aff(G), we get an
equimodular face-defining matrix for aff(F) ∩ aff(G). ��

Fully box-integer polyhedra do not inherit the Integer Carathéodory Property.
Actually, they do not even inherit the integer decomposition property, as the
classical example of polytope without the integer decomposition property P =
conv ((0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)) is fully box-integer. To see that P is fully
box-integer, note that in the minimal linear description of P given below, the matrix
of constraints is totally equimodular. Since P is also integer, this implies that P is
fully box-integer by Theorem 7. The point (1, 1, 1) is in 2P and cannot be written as
an integer combination of the integer points of P , hence P does not have the integer
decomposition property.

P =

⎧
⎪⎪⎨

⎪⎪⎩

x ∈ R3:

⎡

⎢
⎢
⎣

1 − 1 − 1
− 1 1 − 1
− 1 − 1 1
1 1 1

⎤

⎥
⎥
⎦ x ≤

⎡

⎢
⎢
⎣

0
0
0
2

⎤

⎥
⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭

Nevertheless, given the strong integrality properties of fully box-integer polyhedra and
as the above large subclass P has the Integer Carathéodory Property, it might be that
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many of them have the integer decomposition property. In this area, a long standing
open question is known as Oda’s question [35]: is it true that every smooth polytope
has the integer decomposition property? A full-dimensional polytope of Rn is simple
if every vertex has n neighbors. A simple integer polytope is smooth if for every vertex
v the generators of the associated minimal tangent cone form a basis of the lattice Zn .

The polyhedron of the example above is not smooth, and the following special
case of Oda’s question is a reasonable first step to determine which fully box-integer
polyhedra have the integer decomposition property.

Open Problem 3 Do smooth fully box-integer polyhedra have the integer decomposi-
tion property?

6.4 Box-TDIness for conservative functions

In [15], the authors prove that the standard system describing the circuit cone is box-
TDI if and only if the graph is series-parallel. We illustrate that polarity preserves the
box-TDIness of cones by providing a box-TDI system for the cone of conservative
function—polar of the circuit cone.

Let G = (V , E) be an undirected graph. The set of edges connecting a given set of
vertices and its complement is called a cut. A cut containing no other nonempty cut
is called a bond. A set of edges is called a circuit if it induces a connected subgraph
where every vertex has degree two. The minors of a graph are the graphs obtained by
repeatedly contracting edges and deleting edges and isolated vertices. Given e ∈ E ,
the graphs obtained from G by respectively deleting and contracting e are denoted by
G\e and G/e. A graph is series-parallel if and only if contains no K4 minor [20].

The circuit cone Ccircuit(G) = cone{χC for all circuits C of G} is the cone gen-
erated by the incidence vectors of the circuits of G. Seymour [42] proved that
Ccircuit(G) = {x ∈ RE : x ≥ 0, x(D\e) ≥ xe for all cuts D of G and e ∈ D}. A
function f : E → R is conservative if f (C) ≥ 0 for each circuit C of G. These
functions form the cone of conservative functions Ccons(G) = {x ∈ RE : x(C) ≥
0 for all circuits C of G}. By polarity [39, Corollary 29.2h], we have Ccons(G) =
−Ccircuit(G)� = cone{χe for all e ∈ E, χD\e − χe for all cuts D of G and e ∈ D}.

We show that box-TDI systems describing Ccons(G) only exist when G is series-
parallel. In this case, we provide such a system in the following proposition.

Proposition 7 For a graph G = (V , E), the following statements are equivalent.

1. The graph G is series-parallel.
2. The cone of conservative functions of G is box-TDI.
3. The system 1

2 x(C) ≥ 0 for all circuits C of G is box-TDI.

Proof Since the cone of conservative functions of G is described by 1
2 x(C) ≥ 0 for

all circuits C of G, statement 3 implies statement 2.
To prove that statement 1 implies statement 3, suppose that G is series-parallel.

Then, [15, Theorem 1] asserts that the system x ≥ 0, x(D\e) ≥ x(e) for all cuts
D of G and e ∈ C is box-TDI. Hence the circuit cone of G is a box-TDI cone. By
Lemma 6, Ccons(G) = −Ccircuit(G)� is box-TDI. By Theorem 1, it remains to show

123



Box-total dual integrality, box-integrality, and…

Fig. 4 The graph K4 and a
face-defining matrix M of
Ccons(K4) 1

32

54

6

M =
1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1

that the system 1
2 x(C) ≥ 0 for all circuits C of G is TDI. [38, Corollary 22.5a] states

that a system Ax ≤ 0 is TDI if and only if the rows of A form a Hilbert basis. In
other words, it remains to show that any integer vector z in the circuit cone of G is
a nonnegative integer combination of vectors of H = { 12χC : C is a circuit of G}. [1,
Theorem 1] asserts that, in graphs with no Petersen minors, if p is an integer vector of
the circuit cone such that p(C) is even for all cuts C of G, then p is a sum of circuits.
Since the Petersen graph contains a K4 minor, [1, Theorem 1] applies to G. Since 2z
satisfies the conditions, 2z = ∑

C∈C χC for some family C of circuits ofG. Therefore,
z = ∑

C∈C
1
2χ

C .
To prove that statement 2 implies statement 1, we show that if the graph G is not

series-parallel, then its cone of conservative functions is not box-TDI. For e ∈ E ,
one can see that Ccons(G\e) and Ccons(G/e) are respectively obtained by deleting e’s
coordinate in Ccons(G)∩{xe = +∞} and Ccons(G)∩{xe = 0}. Hence, taking minors
preserves the box-TDIness of the cone of conservative functions. It remains to prove
that Ccons(K4) is not box-TDI. Let us apply Theorem 2.

The nonequimodular matrix M of Fig. 4 is the constraint matrix obtained by con-
sidering the inequalities associated with the three circuits formed by the three internal
triangles of K4. By Observation 4, M is face-defining forCcons(K4) because 0 and the
three conservative functions χ4+χ5−χ1, χ4+χ6−χ2 and χ5+χ6−χ3 are affinely
independent, belong to Ccons(K4) and satisfy Mx = 0. Therefore, by statement 3 of
Theorem 2, the cone Ccons(K4) is not box-TDI. ��

Note that the coefficients of the system in Proposition 7 are half-integral. We leave
open the question3 of finding a box-TDI system with integer coefficients, which exists
by [38, Theorem 22.6(i)] and Theorem 1.

By planar duality, there is a correspondence between the circuits of a planar graph
and the bonds of its planar dual. This is used in [15] to obtain the box-TDIness of the
standard system describing the cut cone of a series-parallel graph. Applying planar
duality to Proposition 7 provides the following: if the graph is series-parallel, then
1
2 x(B) ≥ 0 for all bonds B is a box-TDI system describing the polar of the cut
cone. This is in fact an equivalence as one can check that the box-TDIness of the
corresponding cone is preserved under taking minors and that the matrix of Fig. 4 is
face-defining when G = K4.

Acknowledgements We are grateful to András Sebő for his invaluable comments and suggestions. We also
thank the referees for their very careful reading and useful suggestions.

3 Between the submission and the publication of this paper, the question was answered in [4].
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a b s t r a c t

Series–parallel graphs are known to be precisely the graphs for which the standard
linear systems describing the cut cone, the cycle cone, the T -join polytope, the cut
polytope, the multicut polytope and the T -join dominant are TDI. We prove that
these systems are actually box-TDI. As a byproduct, our result yields a min–max
relation for a new problem: the trader multiflow problem. The latter generalizes
both the maximum multiflow and min-cost multiflow problems and we show that it
is polynomial-time solvable in series–parallel graphs.

© 2018ElsevierB.V.All rights reserved.

1. Introduction

Throughout the paper, all the entries will be rational. A linear system Ax ≥ b, x ≥ 0 is totally dual
integral (TDI for short) if the maximum in the LP-duality equation

min{c⊤x : Ax ≥ b, x ≥ 0} = max{b⊤y : A⊤y ≤ c, y ≥ 0}

has an integer optimal solution for all integer vectors c for which the optimum is finite. This property
is much sought-after since such systems describe integer polyhedra when b is integer and yield min–max
relations [1]. An even stronger property than TDIness is box-TDIness, where a box-TDI system is a TDI
system Ax ≥ b, x ≥ 0 which remains TDI when adding box-constraints ℓ ≤ x ≤ u, for all rational1 vectors
ℓ, u. In other words, it is box-TDI if

max{b⊤y + ℓ⊤z1 − u⊤z2 : A⊤y + z1 − z2 ≤ c, y ≥ 0, z1, z2 ≥ 0}

∗ Corresponding author.
E-mail addresses: denis.cornaz@dauphine.fr (D. Cornaz), grappe@lipn.univ-paris13.fr (R. Grappe),

lacroix@lipn.univ-paris13.fr (M. Lacroix).
1 Allowed to take infinite values.
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1572-5286/© 2018 Elsevier B.V. All rights reserved.
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has an integer solution for all integer vectors c and all rational vectors ℓ, u for which the optimum is finite.
General properties of such systems can be found in Cook [2] and Chapter 22.4 of Schrijver [3]. Note that,
although every rational polyhedron {x : Ax ≥ b, x ≥ 0} is described by a TDI system 1

k Ax ≥ 1
k b, x ≥ 0, for

some integer k, not every polyhedron is described by a box-TDI system.
The book by Schrijver [4] contains numerous min–max relations of combinatorial optimization derived

from TDI systems. When such systems are box-TDI, most of the time, the matrix A is totally unimodular.
The past few years, this topic has received a renewed interest [5,6], and other box-TDI systems have been
studied [7–9], with matrices that are not totally unimodular. A 0–1 matrix A so that the linear system
Ax ≥ 1, x ≥ 0 is (box-) TDI is called (box-) Mengerian. In 1977, Seymour [10] proved that a 0–1 matrix
associated with a binary clutter is Mengerian if and only if it does not contain Q6 as a minor. In 2008, Chen,
Ding and Zang [8] proved that such matrices are box-Mengerian if and only if they contain neither Q6 nor
Q7 as a minor. Recently, Ding, Tan and Zang [11] announced a characterization of the graphs for which a
box-TDI system describes the matching polytope.

In 2009, Chen, Ding and Zang [9] proved that a graph is series–parallel if and only if the system 1
2Ax ≥ 1,

x ≥ 0 describing the 2-edge-connected spanning subgraph polytope is box-TDI, where A is the cut-edge
incidence matrix of the graph. Another set of characterizations of series–parallel graphs given by Schrijver
asserts that they are precisely the graphs for which the standard linear systems describing the cut cone, the
cycle cone [12], the cut polytope [13], the T -join polytope [14] and the T -join dominant [15] are TDI — see
Corollary 29.9c of [4]. Moreover, it is proved in [16] that a graph is series–parallel if and only if the standard
linear system describing its multicut polytope is TDI.

Multiflows are among the most famous NP-hard problems in combinatorial optimization and have been
considerably studied, see for instance [4]. We focus on integer multiflows in the present paper. Multiflow
problems involve two simple undirected graphs, a supply graph G = (V, E) and a demand graph H = (V, R),
and two vectors, a capacity vector c ∈ ZE

+ and a demand vector d ∈ ZR
+. An edge e ∈ E is a link of capacity

ce whereas an edge r ∈ R is a net of demand dr. From now on, (G, H, c, d) will refer to such a quadruplet.
For a net r = st, let P(r) be the set of all st-paths in G, and let P be the union of P(r) for all nets r. A
multiflow of (G, H, c, d) is an integer vector y ∈ ZP satisfying the following system of linear inequalities:

(mflow)

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑

P ∈P(r)

yP ≥ dr for each net r ∈ R,

∑

P ∈P: e∈P

yP ≤ ce for each link e ∈ E,

y ≥ 0.

Two famous NP-hard problems are related to multiflows. Given G, H and c, the maximum multiflow problem
asks for a demand vector d such that there exists a multiflow for (G, H, c, d) and

∑
r∈R dr is maximum.

Given (G, H, c, d) and some cost vector w ∈ ZE
+ on the links, the min-cost multiflow problem asks for a

multiflow minimizing the sum of weye over all links e ∈ E, where ye :=
∑

P ∈P: e∈P yP is the amount of flow
through link e.

A necessary condition for the existence of a multiflow in (G, H, c, d) is the cut condition which requires
that d(D ∩ R) ≤ c(D ∩ E) for all cuts D of G + H, the latter being G + H = (V, E ∪ R) where E and R are
considered as disjoint, that is, G + H may contain parallel edges. Seymour [14] proved that a graph (V, F )
is series–parallel if and only if for all partitions F into E and R, and for all c ∈ ZE

+ and d ∈ ZR
+, the cut

condition implies the existence of a multiflow.

Contribution. In this paper, we investigate some box-TDI systems related to multiflows. Our main result
is to strengthen the TDI characterizations of series–parallel graphs mentioned earlier by proving that the
standard linear systems describing the cut cone, the cycle cone, the T -join polytope, the cut polytope, the
multicut polytope, and the T -join dominant are actually box-TDI systems for series–parallel graphs — see
Theorem 1.
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From the box-TDIness of the cut cone, we derive a min–max relation for series–parallel graphs that
involves a new multiflow problem generalizing both the maximum multiflow and min-cost multiflow problems.
Given (G, H, c, d), a profit ℓ ∈ ZR

+ and a cost u ∈ ZE
+, the trader multiflow problem asks to maximize

ℓ⊤z1 − u⊤z2 over all (y, z1, z2) ∈ ZP
+ × ZR

+ × ZE
+ such that y is a multiflow of (G, H, c̃, d̃) with c̃ = c + z2

and d̃ = d + z1. Therefore, in this new multiflow problem, we gain ℓr for each additional unit of demand on
net r ∈ R that we are able to satisfy, we pay ue to add a unit of capacity on link e ∈ E, and the goal is
to maximize the total benefit. The min–max relation we derive connects the trader multiflow problem and
box-multicuts, where box-multicuts are a generalization of multicuts. We also show that the trader multiflow
problem is polynomial time solvable in series–parallel graphs.

Outline. In Section 2, we establish our characterization of series–parallel graphs in terms of box-TDI systems.
Section 3 is devoted to the trader multiflow problem. We first show how it generalizes both the maximum
multiflow and min-cost multiflow problems. Then, we provide our min–max relation for the trader multiflow
problem in series–parallel graphs and explain why this problem is polynomial in these graphs. For the sake
of clarity, the most technical part of the proof of Theorem 1 is postponed to the Appendix. The rest of this
section is devoted to definitions.

Definitions. Throughout, G = (V, E) will denote an undirected graph and T ⊆ V a set of vertices of even
cardinality. A graph is series–parallel if it is obtained from a forest by repeating the operations of replacing
one edge by two edges in parallel, or by two edges in series. Equivalently, these are the graphs without K4

minor [17]. Then, a series–parallel graph is planar and its planar dual is also series–parallel. Following [4], a
cycle is a subset C ⊆ E so that every vertex of (V, C) has an even degree. A minimal nonempty cycle is a
circuit. The cut defined by a subset of vertices U , denoted by δ(U), is the set of edges having one extremity
in U and the other one in V \ U . A minimal nonempty cut is a bond. Note that cycles (resp. cuts) are
disjoint unions of circuits (resp. bonds). A multicut is the set of all the edges between different classes of
some partition of the vertex set. A T -join is a subset of edges F such that the odd degree vertices of (V, F )
are the ones in T . Note that a cycle is an ∅-join. A T -cut is a cut δ(U) with |U ∩ T | odd. For x ∈ RE and
F ⊆ E, we use the notation x(F ) =

∑
e∈F xe. We will make no difference between combinatorial objects

and their characteristic vectors, that is, for instance, we will speak of nonnegative combinations of cycles
instead of nonnegative combinations of characteristic vectors of cycles.

2. Box-TDI systems of series–parallel graphs

In this section, we first provide the systems involved in our main theorem. Then, we state and prove
Theorem 1, which establishes that the standard linear systems describing the cut cone, the cycle cone, the
T -join polytope, the cut polytope, the multicut polytope and the T -join dominant are box-TDI if and only
if the graph is series–parallel. These systems were already known to be TDI [4,16].

2.1. TDI systems of series–parallel graphs. . .

Let us write now the systems involved in Theorem 1. Let G = (V, E) be an undirected graph and T ⊆ V

a set of vertices of even cardinality.
Seymour [12] proved that the cycle cone of G, that is, the set of nonnegative combinations of cycles of

G, is described by the following set of inequalities.

(Cycle cone)
{

x(δ(U) \ {e}) − xe ≥ 0 for each U ⊆ V and each e ∈ δ(U),
x ≥ 0.
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The T -join polytope of G is the convex hull of its T -joins. Seymour [14] proved that it is described by the
following set of inequalities.

(T -join)

⎧
⎨
⎩

x(F ) − x(δ(U) \ F ) ≤ |F | − 1 for each U ⊆ V , F ⊆ δ(U)
with |U ∩ T | + |F | odd,

0 ≤ x ≤ 1.

The T -join dominant of G is the set of vectors greater than or equal to some T -join of G. This dominant is
described by the following set of inequalities, see Corollary 29.2b in [4].

(T -join dominant)
{

x(C) ≥ 1 for each T -cut C,
x ≥ 0.

Sebő [18] provided a minimal TDI system describing the T -join dominant of G.
Let us assume that G is planar and let G∗ denote its dual graph. Recall that the cycles of G are the cuts

of G∗. Hence,

(Cut cone)
{

x(C \ {e}) − xe ≥ 0 for each circuit C and each edge e ∈ C,
x ≥ 0,

describes the cut cone of G, that is, the set of nonnegative combinations of cuts of G. Moreover, by taking
T = ∅ in system (T -join), and then writing the planar dual, we have the following description of the cut
polytope of G, that is, the convex hull of its cuts.

(Cut)

⎧
⎨
⎩

x(F ) − x(C \ F ) ≤ |F | − 1 for each circuit C and F ⊆ C
with |F | odd,

0 ≤ x ≤ 1.

Actually, the systems (Cut cone) and (Cut) describe the cut cone and the cut polytope for a larger class
than planar graphs, namely graphs with no K5-minor — see [14] and [13], respectively.

Schrijver showed that the systems (Cycle cone), (T -join) and (T -join dominant) are TDI if and only if
the graph is series–parallel— see Corollary 29.9c of [4]. A graph is series–parallel if and only if its dual is;
this result, combined with the fact that cycles are ∅-joins, implies that (Cut cone) and (Cut) are TDI if and
only if the graph is series–parallel.

Multicuts can be equivalently defined as arbitrary unions of cuts, or as sets of edges D ⊆ E such that
|D ∩ C| ̸= 1 for all cycles C. The multicut polytope of a graph is the convex hull of its multicuts, and is
therefore contained in the polyhedron defined by the inequalities of (Cut cone) and x ≤ 1. Chopra [19]
showed that the following system, called (Multicut), describes the multicut polytope of a graph if and only
if the graph is series–parallel.

(Multicut)
{

x(C \ {e}) − xe ≥ 0 for each circuit C and each edge e ∈ C,
0 ≤ x ≤ 1.

Corollary 4.1 of [16] strengthens the result of Chopra [19] by stating that system (Multicut) is TDI if and
only if the graph is series–parallel.

2.2. . . . are actually box-TDI

We now strengthen the aforementioned TDIness results. More precisely, we show that each system
mentioned in Section 2.1 which is TDI for series–parallel graphs is actually box-TDI for these graphs.
Our theorem implies Corollary 4.1 of [16] and Corollary 29.9c of [4].

Theorem 1. Let G = (V, E) be a graph. The following statements are equivalent.
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(i) G is series–parallel.
(ii) System (Cut cone) is box-TDI.

(iii) System (Cycle cone) is box-TDI.
(iv) System (T -join) is box-TDI, for all T ⊆ V of even cardinality.
(v) System (Cut) is box-TDI.

(vi) System (Multicut) is box-TDI.
(vii) System (T -join dominant) is box-TDI, for all T ⊆ V of even cardinality.

Proof. Proof. Series-parallelness is already necessary for the systems of (ii)–(vii) to be TDI — see [16] for
(vi) and Corollary 29.9c of [4] for the others. A box-TDI system being TDI, the necessity of (i) follows. For
the other directions, we will show that (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (v) and (ii) ⇒ (vi) and (iv) ⇒ (vii).

(i) ⇒ (ii): Let G = (V, E) be series–parallel, c ∈ ZE and ℓ, u ∈ QE with ℓ ≤ u. The primal problem is
to optimize over the system (Cut cone) intersected with the box {x : ℓ ≤ x ≤ u}. Since we have x ≥ 0, we
may suppose that ℓ ≥ 0 and we get:

(P )

⎧
⎨
⎩

min c⊤x
x(C \ {e}) − xe ≥ 0 for each circuit C of G and each edge e ∈ C,
0 ≤ ℓ ≤ x ≤ u.

To prove box-TDIness, one has to show that if the dual given below has an optimal solution, then it also
has an integer one.

(D)

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

max ℓ⊤z1 − u⊤z2
∑

circuit C∋e

( ∑

f∈C\{e}
yC,f − yC,e

)
≤ ce − z1

e + z2
e for each e ∈ E,

y ≥ 0, z1, z2 ≥ 0.

The feasible set for (D) has the form Q = {z1, z2 ≥ 0, y ≥ 0: z1 − z2 + Ay ≤ c}, and its projection onto
the space of z = (z1, z2) ∈ RE×E is projz(Q) = {z1, z2 ≥ 0 : v⊤z1 − v⊤z2 ≤ v⊤c, for each v ∈ K} where K

is the projection cone K = {v ∈ RE : v⊤A ≥ 0⊤, v ≥ 0}. Observe that K is the set of v ∈ RE satisfying
the inequalities of the system (Cut cone). Since G is series–parallel, K is the cut cone of G [14]. Therefore

projz(Q) = {(z1, z2) ∈ RE×E
+ : z1(D) − z2(D) ≤ c(D), for each cut D of G}.

The following claim states that projz(Q) is an integer polyhedron. It is a direct corollary of a technical
result whose statement and proof are postponed to the Appendix.

Claim 2. projz(Q) is integer whenever c is integer.

Suppose (D) has an optimal solution. By Claim 2, there exists an integer optimal solution (z̄1, z̄2) of
max ℓ⊤z1 − u⊤z2 over projz(Q). We now build an optimal solution (ȳ, z̄1, z̄2) of (D) as follows.

Let b := c − z̄1 + z̄2. Then b is integer and satisfies b(D) ≥ 0 for each cut D of G. Define R as the set
of all e ∈ E with be ≤ 0 and E′ = E \ R. Let G′ = (V, E′) and H = (V, R). Let c′ ∈ ZE′

+ and d ∈ ZR
+

be defined by c′
e = be for all e ∈ E′ and dr = −br for all r ∈ R. Then d(D ∩ R) ≤ c′(D ∩ E′) for each

cut D of G′ + H. In other words, the cut condition is satisfied in (G′, H, c′, d). Hence, G′ + H = G being
series–parallel, Theorem 8.1 of [14] implies that there exists a multiflow ŷ of (G′, H, c′, d). Define ȳ as follows:

ȳC,e :=
{

ŷP if be ≤ 0 and P = C \ {e},
0 otherwise.

By construction, (ȳ, z̄1, z̄2) is an integer optimal solution of (D), and we are done.
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(ii) ⇒ (iii): The system (Cycle cone) of a series–parallel graph is the system (Cut cone) of its planar
dual which is also a series–parallel graph. As the latter system is box-TDI precisely for such graphs, we get
the desired implication.

(iii) ⇒ (iv): In the following, Ax ≤ b is a system whose underlying polyhedron P = {x : Ax ≤ b} is
pointed. The vertex system associated with a vertex z of {x : Ax ≤ b} is the system Azx ≤ bz composed of
the inequalities of Ax ≤ b satisfied with equality by z.

Claim 3. The system Ax ≤ b is box-TDI if and only if the vertex system associated with each vertex of
P = {x : Ax ≤ b} is box-TDI.

Proof. Cook proves that a system is box-TDI if and only if, for each face F of the associated polyhedron,
the set of active rows for F forms a box Hilbert basis [2, Proposition 2.2].

Suppose that all the vertex systems of P are box-TDI. Let F be a proper face of P and z be a vertex
of F . Then, the active rows in Azx ≤ bz for the minimal face of {x : Azx ≤ bz} containing F are exactly
the same as those in Ax ≤ b for F . Hence, by [2, Proposition 2.2], the set of active rows for F forms a box
Hilbert basis. Since this holds for every face of P , [2, Proposition 2.2] implies that Ax ≤ b is box-TDI. The
converse can be proved in a similar way. ■

Let T ⊆ V . Recall that vertices of the polytope defined by the system (T -join) correspond to T -joins
of G, and conversely. Let J be any T -join of G. By Claim 3, it suffices to show that the vertex system of
(T -join) associated with vertex J is box-TDI. Let ϕJ : RE → RE be defined by

[ϕJ(x)]e :=
{

1 − xe if e ∈ J ,
xe if e ∈ E \ J .

The next two claims exhibit properties of ϕJ .

Claim 4. The system obtained from (Cycle cone) by replacing x by ϕJ(x) is the vertex system of (T -join)
associated with J .

Proof. Schrijver proves that replacing x by ϕJ(x) in the vertex system of (T -join) associated with J gives
the system (Cycle cone) — see (29.61) to (29.63) page 506 in [4] for the details. As ϕJ(ϕJ(x)) = x, the
assertion follows. ■

Claim 5. Replacing x by ϕJ(x) preserves box-TDIness.

Proof. From the definition of box-TDI systems, it follows that replacing some coordinates by their opposite
preserves box-TDIness. So does translation, see Theorem 5.34 in [4]. ■

The (Cycle cone) being box-TDI by (iii), Claims 4 and 5 imply the box-TDIness of the vertex system of
(T -join) associated with J . Since this holds for any T -join J of G, Claim 3 gives the box-TDIness of (T -join).

(iv) ⇒ (v): We have already shown that (T -join) is box-TDI if and only if the graph is series–parallel.
Recall that the cuts of a planar graph are the cycles of its planar dual, and that cycles are ∅-joins. Therefore,
(Cut) is nothing but the system (∅-join) for the planar dual of the graph, and since planar duality preserves
series–parallelness, we get that (iv) implies (v).

(ii) ⇒ (vi): This is immediate because (Multicut) is nothing but the box-TDI system (Cut cone) together
with the box-constraints x ≤ 1.

(iv) ⇒ (vii): The system describing the T -join polytope being box-TDI, the TDI system (T -join dominant)
describing its dominant is also box-TDI — by Theorem 22.11 of [3]. □
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Box-TDI systems have the remarkable property that any TDI system describing the same polyhedron is
also box-TDI [2]. This gives the following consequence of Theorem 1. The minimal TDI system describing
the T -join dominant given by Sebő [18] becomes box-TDI when the graph is series–parallel.

3. Trader multiflow vs box-multicut

In this section, we first explain how the trader multiflow problem generalizes both the min-cost multiflow
and maximum multiflow problems. We then provide a min–max relation involving the trader multiflow
problem and the so-called box-multicuts. Finally, we briefly explain why the trader multiflow problem is
polynomial in series–parallel graphs.

3.1. Related multiflow problems

Recall that an instance (G, H, c, d, ℓ, u) of the trader multiflow problem is composed of two simple
undirected graphs G = (V, E) and H = (V, R), a capacity c ∈ ZE

+, a demand d ∈ ZR
+, a profit ℓ ∈ ZR

+ and a
cost u ∈ ZE

+. The trader multiflow problem aims at maximizing ℓ⊤z1−u⊤z2 over all (y, z1, z2) ∈ ZP
+×ZR

+×ZE
+

such that y is a multiflow of (G, H, c̃, d̃) with c̃ = c + z2 and d̃ = d + z1.
This problem contains the maximum multiflow problem as a special case. Let (G, H, c, d, ℓ, u) be an

instance of the trader multiflow problem with d = 0, ℓ = 1 and u = +∞. In any optimal solution (ȳ, z̄1, z̄2),
since u = +∞, we have z̄2 = 0, that is, capacities remain unchanged. Since d = 0 and ℓ = 1, the problem
reduces to find z̄1 such that

∑
r∈R z̄1

r is maximum and there exists a multiflow in (G, H, c, z̄1). This is nothing
but the maximum multiflow problem associated with (G, H, c).

The trader multiflow problem also contains the min-cost multiflow problem as a special case. Let
(G, H, c, d, w) be an instance of the min-cost multiflow problem. It is transformed into an instance
(G′, H ′, c′, d′, ℓ′, u′) of the trader multiflow problem as follows. Let G′ = (V ′, E′) be the graph obtained
from G by subdividing every link e ∈ E into two links e1, e2 in series. Then, the amount of flow passing by
e1 equals the amount of flow passing by e2. Let c′

e1 = ce and u′
e1 = +∞. The capacity of e1 is chosen in

order to limit the value of the flow passing by e1, e2 to ce. Let c′
e2 = 0 and u′

e2 = we. The role of e2 is to
charge a fee we for each unit of flow passing by e1, e2. Let H ′ = (V ′, R), d′ = d and ℓ′ = 0. In an optimal
solution (ȳ, z̄1, z̄2) of the trader multiflow problem, we may suppose without loss of generality that z̄1 = 0
since ℓ′ = 0. Since u′

e1 = +∞, the amount of flow passing by e1, e2 is no more than c′
e1 = ce. Since c′

e2 = 0,
for each unit of flow passing by e1, e2, one has to increase the capacity of e2 by one at cost u′

e2 = we. Hence,
ȳ defines a multiflow in (G, H, c, d) minimizing the total cost of the flow.

3.2. Min–max theorem

Given a graph and integer vectors ℓ and u indexed on its edges, the integer vectors x satisfying system
(Cut cone) and ℓ ≤ x ≤ u are called box-multicuts within [ℓ, u]. If we are also given a cost vector c defined
on the edges, the minimum box-multicut problem seeks a box-multicut x within [ℓ, u] of minimum cost c⊤x.

Box-multicuts are a generalization of multicuts, these latter being box-multicuts within [0, 1]. Box-
multicuts also generalize separating multicuts, where, given a supply graph G and a demand graph
H = (V, R), a separating multicut is a multicut of G + H containing R. Indeed, separating multicuts
are box-multicuts of G + H within [ℓ, 1] where ℓ equals 1 for every net of R and 0 otherwise.

The min–max relation between the trader multiflow and minimum box-multicut problems given in the
following Corollary 6 is a consequence of Theorem 1. Its statement uses the following notation: given a
supply graph G = (V, E) and a demand graph H = (V, R) and two vectors v1 ∈ ZE

+ and v2 ∈ ZR
+, the vector

associated with the edges of G + H defined by v1 and v2 is denoted by (v1, v2).
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Corollary 6. The maximum trader multiflow of (G, H, c, d, ℓ, u) equals the minimum box-multicut of G+H

within [(0, ℓ), (u, +∞)] with respect to costs (c, −d), if G + H is series–parallel.

Proof. First, set ĉ = (c, −d), ℓ̂ = (0, ℓ) and û = (u, +∞). Consider the linear program (P ) of the proof
of Theorem 1 where G, c, ℓ and u are replaced by G + H, ĉ, ℓ̂ and û, respectively. Since ℓ̂e = 0, we may
suppose, without loss of generality, that z̄1

e = 0 for all links e ∈ E in an optimal solution (ȳ, z̄1, z̄2) of the
dual (D). Moreover, as ur = +∞, z̄2

r = 0 for all nets r ∈ R. The dual can then be written as:

(D′)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
∑

r∈R

ℓrz1
r −

∑

e∈E

uez2
e

∑

circuit C∋r

(
yC,r −

∑

f∈C\{r}
yC,f

)
≥ dr + z1

r for each r ∈ R,

∑

circuit C∋e

( ∑

f∈C\{e}
yC,f − yC,e

)
≤ ce + z2

e for each e ∈ E,

y ≥ 0, z1, z2 ≥ 0.

By strong duality, the optimal values of (P ) and (D′) are equal, when finite. In this case, we will show
that there exists an integer optimal solution for both problems.

We may suppose that ȳC,f = 0 if f ∈ E. Otherwise, one may decrease ȳC,f by some ϵ > 0. If the solution
becomes infeasible, then there exist a circuit C ′ ∋ f and link f ′ ∈ C ′ \ {f} with ȳC′,f ′ ≥ ϵ since c ≥ 0.
Decreasing ȳC′,f ′ by ϵ and increasing ȳC′′,f ′ by ϵ where C ′′ is the circuit of C∆C ′ containing f ′ restores its
feasibility. Similarly, we may suppose that ȳC,f = 0 if C \f intersects R. Thus, for every ȳC,f > 0, f ∈ R and
C \ f ∈ P(r). Since G + H is series–parallel, system (Cut cone) is box-TDI and (ȳ, z̄1, z̄2) may be assumed
integer. The latter then corresponds to an optimal solution to the trader multiflow problem. Finally, since ℓ̂

and û are integer, the box-TDIness of system (Cut cone) implies that the optimal solution of (P ) is integer,
that is, a box-multicut of G + H within [ℓ̂, û]. □

Min–max relations involving min-cost multiflow and maximum multiflow stem from Corollary 6 since the
transformations described in Section 3.1 preserve series-parallelness. In particular, Corollary 6 implies that
the two following min–max relations of [16] that hold if G + H is series–parallel:

• the maximum multiflow equals the minimum separating multicut,
• the minimum multiflow loss equals the maximum multicut,

where the minimum multiflow loss problem asks to remove a minimum number of demands of H to ensure
the existence of a multiflow in G + H.

Applying the arguments used in the proof of (i) ⇒ (ii) of Theorem 1, it can be shown that optimizing
over (D′) amounts to optimize over an integer polyhedron similar to projz(Q). For series–parallel graphs,
optimizing over such a polyhedron is polynomial-time solvable [20,21]. It yields an increase of capacities
and demands which maximizes the objective function and ensures that the cut condition is satisfied. Then,
applying Theorem 8.1 of [14] provides an optimal solution to the trader multiflow problem. To sum up, we
have the following complexity result.

Corollary 7. If G + H is series–parallel, then the maximum trader multiflow problem on (G, H, c, d, ℓ, u)
is polynomial-time solvable for all vectors ℓ and u and for all integer vectors c and d.

As seen in Corollary 7, our approach yields a polynomial algorithm, however it relies on the ellipsoid
method. We conclude with the question: is there a combinatorial algorithm that solves the trader multiflow
problem in series–parallel graphs?
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Appendix

The proof of Theorem 1 is based on Claim 2 which is a direct consequence of the following result.

Lemma 8. Let G = (V, E) be a graph. The polyhedron P (G, c) defined by

P (G, c) := {(x, y) ∈ RE×E
+ : x(D) − y(D) ≤ c(D), for each cut D of G}

is integer for all integer weights c ∈ ZE if and only if G is series–parallel.

Proof. Necessity. First, note that P (Ĝ, ĉ) has a fractional extreme point if Ĝ is the complete graph K4
with cost ĉe = −1 on the three edges of a triangle and ĉe = +1 on the remaining star. Indeed, the point
p̂ = (x̂, ŷ) defined by ŷe = 1/2 for the edges of the triangle and zero elsewhere is the unique optimal solution
of maximizing ℓ̂⊤x − û⊤y over P (Ĝ, ĉ), where ℓ̂ is zero and û is the all-one vector. Now, let Ḡ be a graph
which is not series–parallel, then, by [17], it has a K4-minor, that is we can remove and contract some edges
of Ḡ to obtain K4. Let us extend (ĉ, ℓ̂, û) to (c̄, ℓ̄, ū) by defining ℓ̄e = −∞ and ūe = +∞ for the new edges
e, with c̄e = +∞ if e must be contracted, and c̄e = 0 if it must be deleted. Clearly, the point p̄ obtained by
extending p̂ with zero components is the unique optimal solution of maximizing ℓ̄⊤x − ū⊤y over P (Ḡ, c̄).

Sufficiency. By contradiction, let (G, c) be a counter-example with a minimum number of edges.
Throughout, p̄ = (x̄, ȳ) will denote some fractional extreme point of P (G, c) and

b̄ := c − x̄ + ȳ.

Note that b̄(D) ≥ 0, for each cut D.
First, note that G has no loops or bridges. Indeed, a loop belongs to no cut, and a bridge e appears exactly

in three nonredundant constraints, namely xe ≥ 0, ye ≥ 0 and ye − xe ≥ ce, two of which are satisfied with
equality by any extreme point.

Moreover, P (G, c) is full-dimensional. To see this, observe that the point p = (x, y) ∈ RE×E defined by
xe = 1 and ye = +∞ for all e ∈ E belongs to P (G, c). Moreover, for each edge e ∈ E, the point px

e (resp. py
e)

obtained from p by resetting xe to zero (resp. ye to zero) also belongs to P (G, c) since each cut has size at
least two. The 2|E| + 1 points p, px

e , py
e , for e ∈ E, are affinely independent, hence the dimension of P (G, c)

is 2|E|.
In consequence, the point p̄ is the solution of a system of 2|E| equations of the following type, where the

left-hand-side forms a full-rank matrix.

x̄e = 0 for some edges e, (A.1)
ȳe = 0 for some edges e, (A.2)
x̄(D) − ȳ(D) = c(D) for some bonds D ̸= ∅. (A.3)

Suppose G has two parallel edges ē and f̄ . Then, replacing (x̄ē, ȳē) by (x̄ē, ȳē) + (x̄f̄ , ȳf̄ ) and (x̄f̄ , ȳf̄ )
by (0, 0) yields a feasible point (x̃, ỹ) because ē and f̄ belong to the same cuts. This point (x̃, ỹ) satisfies
all Eqs. (A.1)–(A.3) except possibly the Eqs. (A.1) and (A.2) associated with ē. But these two equations
are not satisfied only if x̄f̄ > 0 or ȳf̄ > 0 respectively. This implies that (x̃, ỹ) satisfies 2|E| equations
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among (A.1)–(A.3), x̄f̄ = 0, and ȳf̄ = 0. Hence, it is also an extreme point of P (G, c). Therefore resetting
cē := cē + cf̄ and removing f̄ gives a counter-example with a smaller number of edges, a contradiction. We
have just proved the following.

G has no parallel edges. (A.4)

Note that, if both x̄e > 0 and ȳe > 0 for some edge e, then one could reset x̄e := x̄e − ε and ȳe := ȳe − ε

(for some ε > 0) and still satisfy (A.1)–(A.3), contradicting the extremality of p̄. Thus,

for all e, either x̄e = 0 or ȳe = 0. (A.5)

We can choose c so as to minimize the norm of p̄ (e.g. Euclidean). Consequently, nonzero coordinates of
p̄ are fractional. Indeed, we have

0 ≤ p̄ < 1, (A.6)

as otherwise, if x̄e ≥ 1 (resp. ȳe ≥ 1) for some edge e, then (A.1)–(A.3) would still be satisfied after resetting
x̄e := x̄e − 1 and ce := ce − 1 (resp. ȳe := ȳe − 1 and ce := ce + 1).

By (A.4) and by construction of series–parallel graphs, there are two edges ē and f̄ in series. We may
assume w.l.o.g. that b̄ē ≤ b̄f̄ . Since D̄ = {ē, f̄} is a cut, we have b̄f̄ ≥ −b̄ē. Denote by p̂ = (x̂, ŷ) ∈
RE\{f̄}×E\{f̄} the restriction of p̄ to E\{f̄}×E\{f̄}, and let Ĝ be the graph obtained from G by contracting
f̄ , and ĉ the restriction of c to E \ {f̄}. Clearly, p̂ belongs to P (Ĝ, ĉ), and the latter is full-dimensional since
neither loops nor bridges appeared in Ĝ.

Moreover, since c is integer and p̄ fractional, (A.3) and (A.5) imply that at least two edges have a fractional
x̄ or ȳ coordinate. Therefore p̂ is fractional, and hence, by minimality of |E|, p̂ is not an extreme point of
P (Ĝ, ĉ).

Remark that in fact we have:
b̄f̄ = |b̄ē| (A.7)

If it is not true, then p̄ does not saturate the constraint associated to D̄, and moreover b̄f̄ > b̄ē. Hence,
except maybe for x̄f̄ = 0 or ȳf̄ = 0, the edge f̄ appears in no equation among (A.1)–(A.3). Then p̂ is an
extreme point, a contradiction.

By the integrality of c, a direct consequence of (A.5)–(A.7) is that:

Exactly one of x̄ē, ȳē is fractional ⇐⇒ exactly one of x̄f̄ , ȳf̄ is fractional. (A.8)

Since p̂ is not extreme, there is a (nonzero) direction d̂ = (d̂x, d̂y) ∈ RE\{f̄}×E\{f̄} and an ε > 0 such that

p̂ = 1
2(p̂ + ε · d̂) + 1

2(p̂ − ε · d̂)

where both p̂ + ε · d̂ and p̂ − ε · d̂ belong to P (Ĝ, ĉ). Extend the direction d̂ = (d̂x, d̂y) ∈ RE\{f̄}×E\{f̄} to a
direction d̄ = (d̄x, d̄y) ∈ RE×E by arbitrarily defining the two missing components d̄x

f̄
and d̄y

f̄
. So

p̄ = 1
2(p̄ + ε · d̄) + 1

2(p̄ − ε · d̄) ∀ε > 0

where the points p̄+ = p̄ + ε · d̄ and p̄− = p̄ − ε · d̄ are different. Since p̄ is extreme, we can assume that
p̄+ = (x̄+, ȳ+) /∈ P (G, c). Clearly, we have

x̄ē = 0 (resp. ȳē = 0) implies d̄x
ē = 0 (resp. d̄y

ē = 0). (A.9)

Define b̄+ := c − x̄+ + ȳ+. By (A.7), there are two cases.

Case 1: b̄ē = b̄f̄ ≥ 0.
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Define
d̄x

f̄
=

{
d̄x

ē − d̄y
ē if x̄f̄ > 0

0 otherwise and d̄y

f̄
=

{
d̄y

ē − d̄x
ē if ȳf̄ > 0

0 otherwise.

By definition of d̄, and by (A.8)–(A.9), we have

b̄+
ē − b̄ē = (ȳ+

ē − ȳē) − (x̄+
ē − x̄ē) = ε(d̄y

ē − d̄x
ē ) = (ȳ+

f̄
− ȳf̄ ) − (x̄+

f̄
− x̄f̄ ) = b̄+

f̄
− b̄f̄ .

Therefore, b̄+
ē = b̄+

f̄
. By (A.9), choosing a small enough ε ensures the nonnegativity of p̄+. Since p̄+ does not

belong to P (G, c), we get that p̄+ violates x(D̄) − y(D̄) ≤ c(D̄), that is,

b̄+
ē + b̄+

f̄
= b̄ē + b̄f̄ + 2ε(d̄y

ē − d̄x
ē ) < 0, ∀ε > 0 (A.10)

Notice that exactly one of x̄ē and ȳē is fractional, as otherwise (A.9) would imply d̄x
ē = d̄y

ē = 0, and then
(A.10) would give the contradiction b̄(D̄) < 0. Consequently, we have b̄ē + b̄f̄ > 0, a contradiction to the
fact that (A.10) holds for all ϵ > 0. This settles Case 1.

Case 2: b̄ē = −b̄f̄ < 0.
Define

d̄x
f̄

=
{

d̄y
ē − d̄x

ē if x̄f̄ > 0
0 otherwise and d̄y

f̄
=

{
d̄x

ē − d̄y
ē if ȳf̄ > 0

0 otherwise.

By definition of d̄, and by (A.8)–(A.9), we have b̄+
ē − b̄ē = ε(d̄y

ē − d̄x
ē ) = (x̄+

f̄
− x̄f̄ ) − (ȳ+

f̄
− ȳf̄ ) = b̄f̄ − b̄+

f̄
.

Therefore, b̄+
f̄

= −b̄+
ē .

In particular, p̄+ satisfies the constraint of the cut D̄, and since nonnegativity is ensured, then p̄+ violates
the constraint of a cut D containing f̄ but not ē, that is

b̄+(D) = b̄(D) + ε(d̄y(D) − d̄x(D)) < 0 (∀ε > 0) (A.11)

Since D′ = D ∪ {ē} \ {f̄} is a cut, we have b̄(D′) ≥ 0, thus b̄(D) = b̄(D′) − b̄ē + b̄f̄ > 0. This contradiction
to (A.11) finishes the proof. □
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a b s t r a c t

We represent a flow of a graph G = (V , E) as a couple (C, e) with C a circuit of G and e
an edge of C , and its incidence vector is the 0/±1 vector χC\e

− χ e. The flow cone of G
is the cone generated by the flows of G and the unit vectors.

When G has no K5-minor, this cone can be described by the system x(M) ≥ 0 for all
multicuts M of G. We prove that this system is box-totally dual integral if and only if G
is series–parallel. Then, we refine this result to provide the Schrijver system describing
the flow cone in series–parallel graphs.

This answers a question raised by Chervet et al., (2018).
© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Totally dual integral systems were introduced in the late 70s and are strongly connected to min–max relations in
combinatorial optimization [16]. A rational system of linear inequalities Ax ≤ b is totally dual integral (TDI) if the
minimization problem in the linear programming duality:

max{cx: Ax ≤ b} = min{yb: y ≥ 0, yA = c}

admits an integer optimal solution for each integer vector c such that the maximum is finite. Such systems describe
integer polyhedra when b is integer [13]. Schrijver [15] proved that every full-dimensional polyhedron is described by a
unique minimal TDI system Ax ≤ b with A integer—its Schrijver system [6].

A stronger property is the box-total dual integrality, where a system Ax ≤ b is box-totally dual integral (box-TDI) if

Ax ≤ b, ℓ ≤ x ≤ u

is TDI for all rational vectors ℓ and u (with possible infinite components). General properties of such systems can be found
in Cook [5] and Chapter 22.4 of Schrijver [16]. Note that, although every rational polyhedron {x : Ax ≤ b} is described
by a TDI system 1

kAx ≤
1
k b, for some integer k, not every polyhedron is described by a box-TDI system. A polyhedron

∗ Corresponding author.
E-mail address: lancini@lipn.univ-paris13.fr (E. Lancini).

1 Michele Barbato participated in this work as a member of FCiências.ID (University of Lisbon) and was financially supported by Portuguese
National Funding under Project PTDC/MAT-NAN/2196/2014.
2 Supported by ANR, France DISTANCIA (ANR-17-CE40-0015).

https://doi.org/10.1016/j.dam.2020.03.054
0166-218X/© 2020 Elsevier B.V. All rights reserved.



Please cite this article as: M. Barbato, R. Grappe, M. Lacroix et al., The Schrijver system of the flow cone in series–parallel graphs, Discrete Applied
Mathematics (2020), https://doi.org/10.1016/j.dam.2020.03.054.

2 M. Barbato, R. Grappe, M. Lacroix et al. / Discrete Applied Mathematics xxx (xxxx) xxx

described by a box-TDI system is called a box-TDI polyhedron. As proved by Cook [5], every TDI system describing such a
polyhedron is actually box-TDI.

In the last decade, several new box-TDI systems were exhibited. Chen, Ding, and Zang [1] characterized box-Mengerian
matroid ports. In [2], they provided a box-TDI system describing the 2-edge-connected spanning subgraph polyhedron
for series–parallel graphs. Ding, Tan, and Zang [10] characterized the graphs for which the TDI system of Cunningam and
Marsh [9] describing the matching polytope is actually box-TDI. Ding, Zang, and Zhao [11] introduced new subclasses of
box-perfect graphs. Cornaz, Grappe, and Lacroix [8] provided several box-TDI systems in series–parallel graphs. Recently,
Chervet, Grappe, and Robert [3] gave new geometric characterizations of box-TDI polyhedra.

As mentioned by Pulleyblank [14], it is not uncommon that the minimal integer system and the Schrijver system of
a polyhedron coincide. This is the case of the matching polytope and matroid polyhedra. However, this does not hold
in general, as shown by Cook [4] and Pulleyblank [14] for the b-matching polyhedron, and by Sebő [18] for the T -join
polyhedron.

In this paper, we are interested in TDI, box-TDI, and Schrijver systems for the flow cone of series–parallel graphs.
Given a graph G = (V , E), a flow of G is a couple (C, e) with C a circuit of G and e an edge of C . In a flow (C, e), the edge
e represents a demand and C \ e represents the path satisfying this demand. The incidence vector of a flow (C, e) is the
0/±1 vector χC\e

− χ e. The flow cone of G is the cone generated by the flows of G and the unit vectors χ e of RE .
The cut δ(W ) is the set of edges having exactly one endpoint in a subset W of V . A bond is an inclusionwise minimal

nonempty cut. Note that a nonempty cut is the disjoint union of bonds. Given a partition {V1, . . . , Vk} of V , the set of
edges having endpoints in two distinct Vi’s is called multicut and is denoted by δ(V1, . . . , Vk). The cut cone of G is the cone
generated by the incidence vectors of the cuts of G. Equivalently, it is the cone generated by the incidence vectors of the
bonds of G, or by those of the multicuts of G.

When G has no K5-minor, the flow cone of G is the polar of the cut cone and is described by x(C) ≥ 0, for all cuts C
of G [19]. Chervet, Grappe, and Robert [3] proved that the flow cone is a box-TDI polyhedron if and only if the graph is
series–parallel. Moreover they provided the following box-TDI system:

1
2
x(B) ≥ 0 for all bonds B of G. (1)

Quoting them, they ‘‘leave open the question of finding a box-TDI system with integer coefficients, which exists by [16,
Theorem 22.6(i)] and [5, Corollary 2.5]’’.

Contribution. The goal of this paper is to answer the question of [3] mentioned above. Throughout, the main concept that
we use is that of Hilbert basis, whose definition and connection with TDIness are given at the end of the introduction.

We first prove that

x(M) ≥ 0 for all multicuts M of G, (2)

is a TDI system describing the flow cone if and only if the graph is series–parallel. As the flow cone is a box-TDI polyhedron
for such graphs, this implies that System (2) is a box-TDI system if and only if the graph is series–parallel. We then refine
this result by providing the corresponding Schrijver system, which is composed of the so-called chordal multicuts—see
Corollary 3.4.

This completely answers the question of [3].

Outline. In the next paragraph, we provide definitions and notation. In Section 2, we first characterize the graphs for which
multicuts form a Hilbert basis. It follows that System (2) is box-TDI precisely for series–parallel graphs. In Section 3, we
provide a minimal integer Hilbert basis for multicuts in series–parallel graphs. This gives the Schrijver system for the flow
cone in series–parallel graphs.

Definitions. Given a finite set S and a subset T of S, we denote by χ T
∈ {0, 1}S the incidence vector of T , that is χ T

s equals
1 if s belongs to T and 0 otherwise, for all s ∈ S. Since there is a bijection between sets and their incidence vectors, we
will often use the same terminology for both.

Let G = (V , E) be a loopless undirected graph. Given U ⊆ V , the graph G[U] is obtained from G by removing all the
vertices not in U . A set of edges M is a multicut if and only if |M ∩ C | ̸= 1 for all circuits C of G—see e.g. [7]. The reduced
graph of a multicut M is the graph GM obtained by contracting all the edges of E \M . Note that a multicut of GM is also a
multicut of G. We denote respectively by MG and BG the set of multicuts and the set of bonds of G. A subset of edges of
G is called a circuit if it induces a connected graph in which every vertex has degree 2. Given a circuit C , an edge of G is
a chord of C if its endpoints are two nonadjacent vertices of C . A graph is 2-connected if it remains connected whenever
a vertex is removed.

A graph is series–parallel if its 2-connected components either consist of a single edge or can be constructed from the
circuit of length two C2 by repeatedly adding edges parallel to an existing one, and subdividing edges, that is, replacing
an edge by a path of length two. Series–parallel graphs are those having no K4-minor [12]. A graph is chordal if every
circuit of length 4 or more has a chord.

The cone C generated by a set of vectors {v1, . . . , vk} of Rn is the set of nonnegative combinations of v1, . . . , vk, that
is, C =

{∑k
j=1 λjvj : λ1, . . . , λk ≥ 0

}
. A set of vectors {v1, . . . , vk} is a Hilbert basis if each integer vector in their cone can
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Fig. 1. Edges in the figure represent sets of edges of G having endpoints in distinct Vi ’s. Solid lines depict e1, . . . , e6 given in the proof of Theorem 2.1.

be expressed as a nonnegative integer combination of v1, . . . , vk. A Hilbert basis is integer if it is composed of integer
vectors, and it is a minimal integer Hilbert basis if it has the smallest number of vectors among all integer Hilbert basis
generating the same cone. Each pointed rational cone has a unique minimal integer Hilbert basis [15, Theorems 16.4]. The
link between Hilbert basis and TDIness is in the following result.

Theorem 1.1 (Corollary 22.5a of [16]). A system Ax ≥ 0 is TDI if and only if the rows of A form a Hilbert basis.

2. When do multicuts form a Hilbert basis?

2.1. Characterization

The following result characterizes the graphs for which the multicuts form a Hilbert basis.

Theorem 2.1. The multicuts of a graph form a Hilbert basis if and only if the graph is series–parallel.

Proof. First, let us show that the incidence vectors of the multicuts of a non series–parallel graph do not form a Hilbert
basis. Suppose that G = (V , E) has K4 as a minor. Without loss of generality, we may assume G connected. Then, V can
be partitioned into four sets {V1, . . . , V4} such that Vi induces a connected subgraph and at least one edge connects each
pair Vi, Vj for i, j = 1, . . . , 4. We subdivide δ(V1, V2, V3, V4) into E1, . . . , E6 as in Fig. 1.

Let Ê = {e1, . . . , e6} where ei ∈ Ei for all i = 1, . . . , 6, and let w ∈ ZE be as follows:

we =

{2 if e ∈ E1,
1 if e ∈ E2, . . . , E6,
0 otherwise.

Since w =
1
2χ

δ(V1) + 1
2χ

δ(V2) + 1
2χ

δ(V1∪V3) + 1
2χ

δ(V1∪V4), it belongs to the cut cone of G. Moreover, w⊤χ Ê
= 7. Any conic

combination of multicuts yielding w involves only multicuts contained in δ(V1, . . . , V4). Each of these multicuts contains
between 3 and 6 edges of Ê. Hence, if w is an integer combination of such multicuts, it is the sum of two multicuts
containing 3 and 4 edges of Ê, respectively. This means that w is the sum of χ δ(Vi) and χ δ(Vi,Vj) for some i ̸= j. Since
we1 = 2, we have i ∈ {1, 2} and j ∈ {3, 4}. But then δ(Vi) ∩ δ(Vi, Vj) contains an edge among e2, . . . , e5, a contradiction
with we2 = we3 = we4 = we5 = 1.

Therefore, w is not an integer combination of multicuts, implying that the set of multicuts of G is not a Hilbert basis.
For the other direction, remark that each multicut of a series–parallel graph is the disjoint union of multicuts of its

2-connected components. Since they belong to disjoint spaces, if the set of multicuts of each 2-connected component
forms a Hilbert basis, then so does their union. Hence, it is enough to prove that the multicuts of a 2-connected
series–parallel graph form a Hilbert basis. From now on, assume the graph to be 2-connected.

We prove the result by induction on the number of edges of G. When G = ({u, v}, {e, f }) is the circuit of length two,
the only nonempty multicut is {e, f }, and its incidence vector forms a Hilbert basis. Similarly, when G consists of a single
edge, its incidence vector forms a Hilbert basis.

Now, let G̃ = (Ṽ , Ẽ) be obtained from a 2-connected series–parallel graph G = (V , E) by either adding a parallel edge
or subdividing an edge. By the induction hypothesis, MG is a Hilbert basis.

Suppose first that G̃ is obtained from G by adding an edge f parallel to an edge e of E. A subset of edges M of G
containing (respectively not containing) e is a multicut if and only if M ∪ f (respectively M) is a multicut of G̃. Thus, the
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incidence vector of each multicut of G̃ is obtained by copying the component associated with e in the component of f .
Since the incidence vectors of the multicuts of G are a Hilbert basis, so are the incidence vectors of the multicuts of G̃.

Suppose now that G̃ is obtained from G by subdividing an edge ē ∈ E. We denote by u the new vertex and by f and g
the edges adjacent to it. A multicut M of G̃ can be expressed as the half-sum of the bonds of G̃. Moreover, as each bond
is a multicut, bonds and multicuts of G̃ generate the same cone: the cut cone. Since System (1) is TDI in series–parallel
graphs [3, end of Section 6.4], the set of vectors {

1
2χ

B
: B ∈ BG̃} forms a Hilbert basis.

Let v be an integer vector in the cut cone. There exist λB ∈
1
2Z+ for all B ∈ BG̃ such that v =

∑
B∈BG̃

λBχ
B. The vector

v is an integer combination of multicuts of G̃ if and only if v − ⌊λδ(u)⌋χ
δ(u) is, thus we may assume that λδ(u) ∈ {0, 1

2 }.
Define w ∈ ZE by:

we =

{
vf + vg − 2λδ(u) if e = ē,
ve otherwise.

Remark that (B \ ē) ∪ f and (B \ ē) ∪ g are bonds of G̃ whenever B is a bond of G containing ē. Moreover, a bond B of G
which does not contain ē is a bond of G̃. Since δ(u) is the unique bond of G̃ containing both f and g , we have:

w =

∑
B∈BG:ē∈B

(λ(B\ē)∪f + λ(B\ē)∪g )χB
+

∑
B∈BG:ē̸∈B

λBχ
B.

Thus, w belongs to the cut cone of G. Moreover, as λδ(u) is half-integer, w is integer. By the induction hypothesis, MG
is a Hilbert basis, hence there exist µM ∈ Z+ for all M ∈ MG such that w =

∑
M∈MG

µMχM . Consider the family N of
multicuts of G where each multicut M of G appears µM times.

Suppose first that λδ(u) = 0. Then, vf + vg multicuts of N contain ē. Let P be a family of vf multicuts of N containing
ē and Q = {M ∈ N : ē ∈ M} \ P . Then, we have

v =

∑
M∈N :ē/∈M

χM
+

∑
M∈P

χ (M\ē)∪f
+

∑
M∈Q

χ (M\ē)∪g ,

hence v is a nonnegative integer combination of multicuts of G̃.
Suppose now that λδ(u) =

1
2 . Then, vf + vg − 1 multicuts of N contain ē. Let P be a family of vf − 1 multicuts of N

containing ē, let Q be a family of vg − 1 multicuts in {M ∈ N : ē ∈ M} \ P , and denote by N the unique multicut of N
containing ē which is not in P ∪ Q. Then, we have

v =

∑
M∈N :ē/∈M

χM
+

∑
M∈P

χ (M\ē)∪f
+

∑
M∈Q

χ (M\ē)∪g
+ χN\ē∪{f ,g}.

Hence v is a nonnegative integer combination of multicuts of G̃. This proves that MG̃ is a Hilbert basis. □

2.2. An integer box-TDI system for the flow cone in series–parallel graphs

Combining the box-TDIness of the flow cone and Theorems 1.1 and 2.1 yields a box-TDI system for the flow cone of a
series–parallel graph with only integer coefficients. This provides a first answer to the question of [3].

Corollary 2.2. The following statements are equivalent:

i. G is a series–parallel graph,
ii. System (2) is TDI,
iii. System (2) is box-TDI.

Proof (i.⇔ii.). This equivalence follows by combining Theorems 1.1 and 2.1.
(ii.⇔iii.) If G is series–parallel, then System (1) is box-TDI [3, end of Section 6.4]. Hence, the flow cone of G is box-TDI.

Since a TDI system describing a box-TDI polyhedron is a box-TDI system [5], point ii. implies point iii.. A box-TDI system
being TDI by definition, point iii. implies point ii.. □

3. Which multicuts form Hilbert basis?

3.1. A minimal integer Hilbert basis

Theorem 2.1 provides the set of graphs whose multicuts form a Hilbert basis. The following theorem refines this result
by characterizing the multicuts which form the minimal Hilbert basis.

A multicut is chordal when its reduced graph is 2-connected and chordal. Note that bonds are chordal multicuts.

Theorem 3.1. The chordal multicuts of a series–parallel graph form a minimal integer Hilbert basis.
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Proof. Let G = (V , E) be a series–parallel graph. By Theorem 2.1, the multicuts of G form an integer Hilbert basis. Hence,
the minimal integer Hilbert basis is composed of the multicuts which are not disjoint union of other multicuts. These
multicuts are characterized in the following lemma, from which stems the desired theorem.

Lemma 3.2. A multicut of a series–parallel graph G is chordal if and only if it cannot be expressed as the disjoint union of
other nonempty multicuts.

Proof. Let M be a multicut of G. Recall that every multicut of GM is a multicut of G. Besides, since the disjoint union of
multicuts is a multicut, a disjoint union of nonempty multicuts is actually the disjoint union of two nonempty multicuts.

We first prove that, if GM is 2-connected and chordal, then M is not the disjoint union of two nonempty multicuts. By
contradiction, suppose that GM is 2-connected and chordal, and M = M1 ∪M2 where M1,M2 are disjoint multicuts of GM .
If C is a circuit of length at most three in GM , then C ⊆ Mi for some i = 1, 2. Indeed, the edges of C are partitioned by
M1 and M2, and a multicut and a circuit intersect in either none or at least two edges.

Since GM is 2-connected and Mi is nonempty for i = 1, 2, there exists at least a circuit containing edges of both M1
and M2. Let C be such a circuit, of smallest length. Then, C has length at least 4, as otherwise it would be contained in
one of M1 and M2. Since GM is chordal, there exists a chord c of C . Denote by P1 and P2 the two paths of C between the
endpoints of c. For i = 1, 2, the circuit Pi ∪ {c} is strictly shorter than C . Since C is the shortest circuit intersecting both
M1 and M2, we get that Pi ∪ {c} ⊆ Mi for i = 1, 2. But then c ∈ M1 ∩ M2, a contradiction.

To prove the other direction, first suppose that GM is not 2-connected. Then, the set of edges of each 2-connected
component of GM is a multicut of G, and M is the disjoint union of these multicuts. Now, suppose that GM is not chordal,
that is, GM contains a chordless circuit C of length at least 4. We will apply the following.

Claim 3.3. Let C be a circuit of length at least 4 in a series–parallel graph G. Then, there exists a pair of vertices nonadjacent
in G[V (C)] whose removal disconnects G.

Proof. We can assume that there are two nonadjacent vertices u and v of G[V (C)] such that there exists a path P between
u and v that has no internal vertex in C . Indeed, otherwise, removing any two nonadjacent vertices of G[V (C)] would
disconnect G.

Let us show that removing u and v disconnects G. Denote by Q and R the two paths of C between u and v. By
contradiction, suppose that G\{u, v} is connected. Then, there exists a path containing neither u nor v between an internal
vertex of R and an internal vertex of either P or Q . Let S be a minimal path of this kind. Then, no internal vertex of S
belongs to P , Q , or R, and the subgraph composed of P , Q , R and S is a subdivision of K4. This contradicts the hypothesis
that G is series–parallel. □

By Claim 3.3 there exist two vertices u and v of C , nonadjacent in G[V (C)], whose removal disconnects G. Denote by
V1, . . . , Vk the sets of vertices of the connected components of G \ {u, v}. Let Gi = G[Vi ∪ {u, v}] and denote by E(Gi) the
set of edges of Gi, for i = 1, . . . , k. Note that, since u and v are not adjacent, E(Gi)∩ E(Gj) = ∅ for all distinct i and j. Thus,
M is the disjoint union of E(G1), . . . , E(Gk).

Let us prove that E(Gi) is a multicut of GM , for i = 1, . . . , k. Consider a circuit D of GM . If D is contained in one of the
Gi’s, then |D ∩ E(Gj)| ̸= 1 for j = 1, . . . , k. Otherwise, D is the union of two paths from u to v, these paths being contained
in two different Gi’s. Without loss of generality, let these paths be P1 ∈ G1 and P2 ∈ G2. Then, we have D ∩ E(Gi) = Pi if
i = 1, 2, and ∅ otherwise. Since u and v are not adjacent, the shortest path from u to v in each Gi is of length at least
two, hence |Pi| ≥ 2. Therefore |D ∩ E(Gi)| ̸= 1 for i = 1, . . . , k.

Therefore, E(Gi) is a multicut of GM , and hence of G, for i = 1, . . . , k. Hence, M is the disjoint union of multicuts of G. □

□

3.2. The Schrijver system of the flow cone in series–parallel graphs

Corollary 2.2 provides an integer box-TDI description of the flow cone in series–parallel graphs. However, this box-TDI
description is not minimal: there are redundant inequalities whose removal preserves box-TDIness. Here, we provide the
minimal integer box-TDI system for this cone. This completely answers the question of [3, end of Section 6.4].

Corollary 3.4. The Schrijver system for the flow cone of a series–parallel graph G is the following:

x(M) ≥ 0 for all chordal multicuts M of G. (3)

Moreover, this system is box-TDI.

Proof. By Theorems 1.1 and 3.1, System (3) is a minimal integer TDI system. Since every bond is a chordal multicut,
this system describes the flow cone for series–parallel graphs. Therefore, by [5, Corollary 2.5] and by the flow cone being
box-TDI for series–parallel graphs, System (3) is box-TDI. □

We mention that, by planar duality, Corollary 3.4 provides the Schrijver system for the cone of conservative func-
tions [17, Corollary 29.2h] in series–parallel graphs.
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Abstract Given a graph G = (V,E) and an integer k ≥ 1, the graph H = (V, F ),
where F is a family of elements (with repetitions allowed) of E, is a k-edge-
connected spanning subgraph of G if H cannot be disconnected by deleting any
k− 1 elements of F . The convex hull of incidence vectors of the k-edge-connected
subgraphs of a graph G forms the k-edge-connected subgraph polyhedron of G.
We prove that this polyhedron is box-totally dual integral if and only if G is series-
parallel. In this case, we also provide an integer box-totally dual integral system
describing this polyhedron.
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1 Introduction

Totally dual integral systems, introduced in the late 70’s, are strongly connected to
min-max relations in combinatorial optimization [34]. A rational system of linear
inequalities Ax ≥ b is totally dual integral (TDI) if the maximization problem in
the linear programming duality

min{c>x : Ax ≥ b} = max{b>y : A>y = c, y ≥ 0}
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admits an integer optimal solution for each integer vector c such that the optimum
is finite. Every rational polyhedron can be described by a TDI system [28]. For
instance, the polyhedron {x : Ax ≥ b} can be described by TDI systems of the
form 1

qAx ≥ 1
q b for certain positive q. However, a polyhedron is integer if and only

if it can be described by a TDI system with only integer coefficients [23,28]. Integer
TDI systems yield min-max results that may have combinatorial interpretation.

A stronger property is box-total dual integrality: a system Ax ≥ b is box-totally
dual integral (box-TDI) if Ax ≥ b, ` ≤ x ≤ u is TDI for all rational vectors ` and
u (possibly with infinite components). General properties of such systems can be
found in Cook [12] and Chapter 22.4 of Schrijver [34]. Note that, although every
rational polyhedron can be described by a TDI system, not every polyhedron can
be described by a box-TDI system. A polyhedron which can be described by a
box-TDI system is called a box-TDI polyhedron. As proved by Cook [12], every
TDI system describing such a polyhedron is actually box-TDI.

Recently, several new box-TDI systems have been exhibited. Chen, Ding, and
Zang [6] characterized box-Mengerian matroid ports. Ding, Tan, and Zang [18]
characterized the graphs for which the Edmonds’ system defining the matching
polytope [21] is box-TDI. Ding, Zang, and Zhao [19] exhibited new subclasses of
box-perfect graphs. Cornaz, Grappe, and Lacroix [14] provided several box-TDI
systems in series-parallel graphs. Barbato, Grappe, Lacroix, Lancini, and Wolfler
Calvo [3] gave the minimal box-TDI system with integer coefficients for the flow
cone for series-parallel graphs. For these graphs, Chen, Ding, and Zang [7] provided
a box-TDI system describing the 2-edge-connected spanning subgraph polyhedron.

In this paper, we are interested in integrality properties of systems related to
k-edge-connected spanning subgraphs. A k-edge-connected spanning subgraph of a
graph G = (V,E) is a graph H = (V, F ), with F being a collection of elements of
E where each element can appear several times, that remains connected after the
removal of any k − 1 edges.

These objects model a kind of failure resistance of telecommunication networks.
More precisely, they represent networks which remain connected when k− 1 links
fail. The underlying network design problem is the k-edge-connected spanning sub-
graph problem (k-ECSSP): given a graph G and positive edge costs, find a k-edge-
connected spanning subgraph of G of minimum cost. Special cases of this problem
are related to classical combinatorial optimization problems. The 2-ECSSP is a
well-studied relaxation of the traveling salesman problem [24] and the 1-ECSSP is
nothing but the well-known minimum spanning tree problem. While this latter is
polynomial-time solvable, the k-ECSSP is NP-hard for every fixed k ≥ 2 [27].

Different algorithms have been devised in order to deal with the k-ECSSP, such
as branch-and-cut procedures [4][15], approximation algorithms [8][26], cutting
plane algorithms [30], and heuristics [11]. In [36], Winter introduced a linear-time
algorithm solving the 2-ECSSP on series-parallel graphs. Most of these algorithms
rely on polyhedral considerations.

Given a graph G = (V,E), the convex hull of incidence vectors of all the fami-
lies of E inducing a k-edge-connected spanning subgraph of G forms a polyhedron,
hereafter called the k-edge-connected spanning subgraph polyhedron of G and de-
noted by Pk(G). Cornuéjols, Fonlupt, and Naddef [16] gave a system describing
P2(G) when G is series-parallel. Vandenbussche and Nemhauser [35] characterized
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in terms of forbidden minors the graphs for which this system describes P2(G).
Chopra [10] described Pk(G) for outerplanar graphs when k is odd. Didi Biha and
Mahjoub [17] extended these results to series-parallel graphs for all k ≥ 2. By a
result of Bäıou, Barahona, and Mahjoub [1], the inequalities in these descriptions
can be separated in polynomial time, which implies that the k-ECSSP is solvable
in polynomial time for series-parallel graphs.

When studying k-edge-connected spanning subgraphs of a graph G, we can
add the constraint that each edge of G can be taken at most once. We denote
the corresponding polyhedron by Qk(G). Barahona and Mahjoub [2] described
Q2(G) for Halin graphs. Further polyhedral results for the case k = 2 have been
obtained by Boyd and Hao [5] and Mahjoub [32][33]. Grötschel and Monma [29]
described several classes of facets of Qk(G). Moreover, Fonlupt and Mahjoub [25]
extensively studied the extremal points of Qk(G) and characterized the class of
graphs for which this polytope is described by cut inequalities and 0 ≤ x ≤ 1.

The polyhedron P1(G) is known to be box-TDI for all graphs [31]. For series-
parallel graphs, the system given in [16] describing P2(G) is not TDI. Chen, Ding,
and Zang [7] showed that dividing it by 2 yields a TDI system for such graphs.
Actually, they proved that this system is box-TDI if and only if the graph is
series-parallel.

Contributions. Our starting point is the result of Chen, Ding, and Zang [7]. First,
their result implies that P2(G) is a box-TDI polyhedron for series-parallel graphs.
However, this leaves open the question of the box-TDIness of P2(G) for non series-
parallel graphs. More generally, for which integers k and graphs G is Pk(G) a
box-TDI polyhedron?

We answer this question by proving that, for k ≥ 2, Pk(G) is a box-TDI poly-
hedron if and only if G is series-parallel. Note that this work is one of the first ones
that proves the box-TDIness of a polyhedron without giving a box-TDI system
describing it. Instead, our proof is based on the recent matricial characterization
of box-TDI polyhedra given by Chervet, Grappe, and Robert [9].

By [34, Theorem 22.6], there exists a TDI system with integer coefficients
describing Pk(G). For series-parallel graphs, the system provided by Chen, Ding,
and Zang [7] has noninteger coefficients. Moreover, the system given by Didi Biha
and Mahjoub [17] describing Pk(G) when k is even is not TDI. When k ≥ 2
and G is series-parallel, which combinatorial objects yield an integer TDI system
describing Pk(G)?

We answer this question by exhibiting integer TDI systems based on multicuts.
When k is even, we use multicuts to provide an integer TDI system for Pk(G) when
G is series-parallel. Our proof relies on the standard constructive characterization
of series-parallel graphs. When k is odd, we prove that the description of Pk(G)
given by Didi Biha and Mahjoub [17] based on multicuts is TDI if and only if the
graph is series-parallel. For this case, our proof relies on new properties of the set
of degree 2 vertices in simple series-parallel graphs stated in Lemma 2.3.

The box-totally dual integral characterization of Pk(G) implies that these sys-
tems are actually box-TDI if and only if G is series-parallel. By definition of
box-TDIness, adding x ≤ 1 to these systems yields box-TDI systems for Qk(G)
for series-parallel graphs.
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Outline. In Section 2, we give the definitions and preliminary results used through-
out the paper. In Section 3, we prove that, for k ≥ 2, Pk(G) is a box-TDI poly-
hedron if and only if G is series-parallel. In Section 4, we provide a TDI system
with integer coefficients describing Pk(G) when G is series-parallel and k ≥ 2 is
even. In Section 5, we show the TDIness of the system given by Didi Biha and
Mahjoub [17] that describes Pk(G) for G series-parallel and k ≥ 3 odd.

2 Definitions and Preliminary Results

This section is devoted to the definitions, notation, and preliminary results used
throughout the paper.

2.1 Graphs and Combinatorial Objects

Given a set E, a family of E is a collection of elements of E where each element
can appear multiple times. The incidence vector of a family F of E is the vector
χF of ZE+ such that e’s coordinate is the multiplicity of e in F for all e in E. Since
there is a bijection between families and their incidence vectors, we will often use
the same terminology for both.

Given a graph G = (V,E) and the incidence vector z ∈ ZE+ of a family F of E,
G(z) denotes the graph (V, F ).

Let G = (V,E) be a loopless undirected graph. Two edges of G are parallel if
they share the same endpoints, and G is simple if it does not have parallel edges.
A graph is 2-connected if it cannot be disconnected by removing a vertex. The
graph obtained from two disjoint graphs by identifying two vertices, one of each
graph, is called a 1-sum. A 2-connected graph is trivial if it is composed of a
single edge. We denote by Kn the complete graph on n vertices, that is the simple
graph with n vertices and one edge between each pair of vertices. Given an edge
e of G, we denote by G \ e (respectively G/e) the graph obtained by removing
(respectively contracting) the edge e, where contracting an edge uv consists in
removing it and identifying u and v. Similarly, we denote by G \ v the graph
obtained form G by removing the vertex v, and by G[W ] the graph induced by W ,
that is, the graph obtained by removing all vertices not in the vertex subset W .
Given a vector x ∈ RE and a subgraph H of G, we denote by x|H the vector
obtained by restricting x to the components associated with the edges of H.

A subset of edges of G is called a circuit if it induces a connected graph in
which every vertex has degree 2. Given a subset U of V , the cut δ(U) is the
set of edges having exactly one endpoint in U . A bond is a minimal nonempty
cut. Given a partition {V1, . . . , Vn} of V , the set of edges having endpoints in
two distinct Vi’s is called a multicut and is denoted by δ(V1, . . . , Vn). We denote
respectively by MG and BG the set of multicuts and the set of bonds of G. For
every multicut M , there exists a unique partition {V1, . . . , VdM } of vertices of V
such that M = δ(V1, . . . , VdM ), and G[Vi] is connected for all i = 1, . . . , dM . We
say that dM is the order of M and V1, . . . , VdM are the classes of M . Multicuts
are characterized in terms of circuits, as stated in the following.

Lemma 2.1 ([13]) A set of edges M is a multicut if and only if |M ∩C| 6= 1 for
all circuits C of G.



Box-TDIness and Edge-Connectivity 5

We denote the symmetric difference of two sets S and T by S4T . It is well-
known that the symmetric difference of two cuts is a cut. Moreover, the following
result holds.

Observation 2.2 Let G be a graph, v be a degree 2 vertex of G, and M be a
multicut such that |M ∩ δ(v)| = 1. Then, M ∪ δ(v) and M4δ(v) are multicuts.
Moreover, dM∪δ(v) = dM + 1, and dM4δ(v) = dM .

A graph is series-parallel if its nontrivial 2-connected components can be con-
structed from a circuit of length 2 by repeatedly adding edges parallel to an existing
one, and subdividing edges, that is, replacing an edge by a path of length two.
Equivalently, series-parallel graphs are those having no K4-minor [20].

By construction, simple nontrivial 2-connected series-parallel graphs have at
least one degree 2 vertex. Moreover, these vertices satisfy the following.

Lemma 2.3 For a simple nontrivial 2-connected series-parallel graph, at least one
of the following holds:

(i) two degree 2 vertices are adjacent,
(ii) a degree 2 vertex belongs to a circuit of length 3,

(iii) two degree 2 vertices belong to the same circuit of length 4.

Proof We proceed by induction, the base case is K3 for which (i) holds.
Let G be a simple 2-connected series-parallel graph. Since G is simple, it can be

built from a series-parallel graph H by subdividing an edge e into a path f, g. Let
v be the degree 2 vertex added with this operation. By the induction hypothesis,
either H is not simple, or one among (i), (ii), and (iii) holds for H. Hence, there
are four cases.
Case 1: H is not simple. Since G is simple, e is parallel to exactly one edge h.
Hence, f, g, h is a circuit of G length 3 containing v, thus (ii) holds for G.
Case 2: (i) holds for H. Then, it holds for G.
Case 3: (ii) holds for H. Let C be a circuit of H of length 3 containing a degree 2
vertex, say w. If e /∈ C, then (ii) holds for G. Otherwise, by subdividing e, we
obtain a circuit of length 4 containing v and w, and hence (iii) holds for G.
Case 4: (iii) holds for H. Let C be a circuit of H of length 4 containing two
degree 2 vertices. If e /∈ C, then (iii) holds for G. Otherwise, by subdividing e, we
obtain a circuit of length 5 containing three degree 2 vertices. Then, at least two
of them are adjacent, and so (i) holds for G. ut

2.2 Box-Total Dual Integrality

Let A ∈ Rm×n be a full-row rank matrix. This matrix is equimodular if all its
m×m non-zero determinants have the same absolute value. The matrix A is face-
defining for a face F of a polyhedron P ⊆ Rn if aff(F ) = {x ∈ Rn : Ax = b} for
some b ∈ Rm, where aff(F ) denotes the affine hull of F . Such matrices are the
face-defining matrices of P .

Theorem 2.4 ([9, Theorem 1.4]) Let P be a polyhedron. Then, the following
statements are equivalent:

(i) P is box-TDI.
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(ii) Every face-defining matrix of P is equimodular.
(iii) Each face of P has an equimodular face-defining matrix.

In Theorem 2.4, the equivalence of conditions (ii) and (iii) follows from the fol-
lowing observation.

Observation 2.5 ([9, Observation 4.10]) Let F be a face of a polyhedron. If a
face-defining matrix for F is equimodular, then so are all the face-defining matrices
for F .

We will also use the following.

Observation 2.6 Let A ∈ RI×J be a full row rank matrix and j ∈ J . If A is
equimodular, then so are following two matrices:

(i)

[
A

±χj
]

if it is full row-rank,

(ii)

[
A 0

±χj ±1

]
.

Observation 2.7 ([9, Observation 4.11]) Let P ⊆ Rn be a polyhedron and let
F = {x ∈ P : Bx = b} be a face of P . If B has full-row rank and n−dim(F ) rows,
then B is face-defining for F .

2.3 The k-Edge-Connected Spanning Subgraph Polyhedron

Note that Pk(G) is the dominant of the convex hull of incidence vectors of all
the families of E containing at most k copies of each edge and inducing a k-
edge-connected spanning subgraph of G. Since the dominant of a polyhedron is a
polyhedron, Pk(G) is a full-dimensional polyhedron even though it is the convex
hull of an infinite number of points.

From now on, we assume that k ≥ 2. Didi Biha and Mahjoub [17] gave a
complete description of Pk(G) for all k, when G is series-parallel.

Theorem 2.8 ([17]) Let G be a series-parallel graph and h be a positive integer.
Then, P2h(G) is described by:

(1)

{
x(D) ≥ 2h for all cuts D of G,

x ≥ 0,

(1a)

(1b)

and P2h+1(G) is described by:

(2)

{
x(M) ≥ (h+ 1)dM − 1 for all multicuts M of G,

x ≥ 0.

(2a)

(2b)

Since the incidence vector of a multicut δ(V1, . . . , V`) of order ` is the half-
sum of the incidence vectors of the bonds δ(V1), . . . , δ(V`), we can deduce another
description of P2h(G).
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Corollary 2.9 Let G be a series-parallel graph and h be a positive integer. Then,
P2h(G) is described by:

(3)

{
x(M) ≥ hdM for all multicuts M of G,

x ≥ 0.

(3a)

(3b)

We call constraints (2a) and (3a) partition constraints. A multicut M is tight for
a point of Pk(G) if this point satisfies with equality the partition constraint (2a)
(respectively (3a)) associated with M when k is odd (respectively even). Moreover,
M is tight for a face F of Pk(G) if it is tight for all the points of F .

The following results give some insights on the structure of tight multicuts.

Theorem 2.10 ([17, Theorem 2.3 and Lemma 3.1]) Let x be a point of
P2h+1(G), and let M = δ(V1, . . . , VdM ) be a multicut tight for x. Then, the follow-
ing hold:

(i) if dM ≥ 3, then x (δ(Vi) ∩ δ(Vj)) ≤ h+ 1 for all i 6= j ∈ {1, . . . , dM}.
(ii) G \ Vi is connected for all i = 1, . . . , dM .

Lemma 2.11 Let v be a degree 2 vertex of G and M be a multicut of G strictly
containing δ(v) = {uv, vw}. If M is tight for a point of Pk(G) with k ≥ 2, then
both M \ uv and M \ vw are multicuts of G of order dM − 1.

Proof It suffices to show that u and w belong to different classes ofM = δ(v, V2, . . . , VdM ).
Suppose that u,w ∈ V2. Then M is the union of the two multicuts δ(v) and
M ′ = δ(v ∪ V2, . . . , VdM ). Since dδ(v) + dM ′ = dM + 1, the sum of the partition
inequalities associated with δ(v) and M ′ implies that the partition inequality as-
sociated with M is tight for no point of Pk(G) for every k ≥ 2. ut

Chopra [10] gave sufficient conditions for an inequality to be facet-defining for
Pk(G). The following proposition is a direct consequence of Theorems 2.4 and 2.6
of [10].

Lemma 2.12 Let G be a connected graph having a K4-minor. Then, there exist
two disjoint nonempty subsets of edges of G, E′ and E′′, and a rational b such
that

x(E′) + 2x(E′′) ≥ b, (4)

is a facet-defining inequality of P2h+1(G).

Chen, Ding, and Zang [7] provided a box-TDI system for P2(G) for series-
parallel graphs.

Theorem 2.13 ([7, Theorem 1.1]) The system:
{

1
2x(D) ≥ 1 for all cuts D of G,
x ≥ 0

(5)

is box-TDI if and only if G is a series-parallel graph.

This result proves that the polyhedron P2(G) is box-TDI for all series-parallel
graphs, and gives a TDI system describing this polyhedron in this case. However,
Theorem 2.13 is not sufficient to state that P2(G) is a box-TDI polyhedron if and
only if G is series-parallel.
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3 Box-TDIness of Pk(G)

In this section we show that, for k ≥ 2, Pk(G) is a box-TDI polyhedron for a
connected graph G if and only if G is series-parallel. Since Pk(G) = ∅ when G is
not connected, we assume from now on that G is connected.

When k ≥ 2, Pk(G) is not always box-TDI, as stated in Lemma 3.1. Indeed,
by Theorem 2.4, if a polyhedron has a nonequimodular face-defining matrix, then
it is not box-TDI. The proof of Lemma 3.1 exhibits such a matrix when G has a
K4-minor. This follows from the existence of a particular facet-defining inequality
when k is odd, as shown by Chopra [10]. When k is even, we build a nonequimod-
ular face-defining matrix based on the structure of cuts in a K4-minor.

Lemma 3.1 For k ≥ 2, if G = (V,E) has a K4-minor, then Pk(G) is not box-
TDI.

Proof When k = 2h + 1 is odd, Lemma 2.12 shows that there exists a facet-
defining inequality that is described by a nonequimodular matrix as Pk(G) is
full-dimensional. Thus, Pk(G) is not box-TDI by Statement (ii) of Theorem 2.4.

We now prove the case when k is even. Since G has a K4-minor, there exists a
partition {V1, . . . , V4} of V such that G[Vi] is connected and δ(Vi, Vj) 6= ∅ for all
i < j ∈ {1, . . . , 4}. We now prove that the matrix A whose three rows are χδ(Vi)

for i = 1, 2, 3 is a face-defining matrix of Pk(G) which is not equimodular. This
will end the proof by Statement (ii) of Theorem 2.4.

Let eij be an edge in δ(Vi, Vj) for all i < j ∈ {1, . . . , 4}. The submatrix of A
formed by the columns associated with edges eij is the following:

e12 e13 e23 e14 e24 e34

χδ(V1)

χδ(V2)

χδ(V3)




1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1




The matrix A is not equimodular as the first three columns form a matrix of
determinant -2 whereas the last three ones give a matrix of determinant 1.

By Observation 2.7, to show that A is face-defining, it is enough to exhibit
|E| − 2 affinely independent points of Pk(G) satisfying x(δ(Vi)) = k for i = 1, 2, 3.

Let D1 = {e12, e14, e23, e34}, D2 = {e12, e13, e24, e34}, D3 = {e13, e14, e23, e24}
and D4 = {e14, e24, e34}. First, we define the points Sj =

∑4
i=1 kχ

E[Vi]+ k
2χ

Dj , for

j = 1, 2, 3, and S4 =
∑4
i=1 kχ

E[Vi]+kχD4 . Note that they are affinely independent.
Now, for each edge e /∈ {e12, e13, e14, e23, e24, e34}, we construct the point Se

as follows. When e ∈ E[Vi] for some i = 1, . . . , 4, we define Se = S4 + χe. Adding
the point Se maintains affine independence as Se is the only point not satisfying
xe = k. When e ∈ δ(Vi, Vj) for some i, j, we define Se = S` − χeij + χe, where
S` is S1 if e ∈ δ(V1, V4) ∪ δ(V2, V3) and S2 otherwise. Affine independence comes
because Se is the only point involving e.

In total, we built 4 + |E| − 6 = |E| − 2 affinely independent points. ut

The following theorem characterizes the class of graphs for which Pk(G) is box-
TDI. The case k even is obtained using the box-TDIness for k = 2 and the fact
that integer dilations maintain box-TDIness. For the case k odd, on the contrary
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to what is generally done, the proof does not exhibit a box-TDI system describing
Pk(G). For this case, the proof is by induction on the number of edges of G. We
prove that series-parallel operations preserve the box-TDIness of the polyhedron.
The most technical part of the proof is the subdivision of an edge uw into two
edges uv and vw. We proceed by contradiction: by Theorem 2.4, we suppose that
there exists a face F of Pk(G) defined by a nonequimodular matrix. We study the
structure of the inequalities corresponding to this matrix. In particular, we show
that they are all associated with multicuts, and that these multicuts contain either
both uv and vw, or none of them—see Claims 3.1, 3.2, and 3.3. These last results
allow us to build a nonequimodular face-defining matrix for the smaller graph,
which contradicts the induction hypothesis.

Theorem 3.2 For k ≥ 2, Pk(G) is a box-TDI polyhedron if and only if G is
series-parallel.

Proof Necessity follows from Lemma 3.1. Let us now prove sufficiency. When k = 2,
the box-TDIness of System (5) has been shown by Chen, Ding, and Zang [7]. This
implies box-TDIness for all even k: multiplying the right-hand side of a box-TDI
system by a positive rational preserves its box-TDIness [34, Section 22.5]. The
system obtained by multiplying by k

2 the right-hand side of System (5) describes
Pk(G) when k is even. Hence, the latter is a box-TDI polyhedron.

The rest of the proof is devoted to the case where k = 2h+ 1 for some h ≥ 1.
To this end, we prove that for every face of P2h+1(G) there exists an equimodular
face-defining matrix. The characterization of box-TDIness given in Theorem 2.4
concludes. We proceed by induction on the number of edges of G.

If G is trivial, then P2h+1(G) = {x ∈ R+ : x ≥ 2h+ 1} is box-TDI. If G is the
circuit {e, f}, then P2h+1(G) = {xe, xf ∈ R+ : xe +xf ≥ 2h+ 1} is also box-TDI.

(1-sum) Let G be the 1-sum of two series-parallel graphs G′ = (W ′, E′)
and G′′ = (W ′′, E′′). By induction, there exist two box-TDI systems A′y ≥ b′

and A′′z ≥ b′′ describing respectively P2h+1(G′) and P2h+1(G′′). If v is the vertex
of G obtained by the identification, G\v is not connected, hence, by Statement (ii)
of Theorem 2.10, a multicut M of G is tight for a face of P2h+1(G) only if M ⊆ E′
or M ⊆ E′′. It follows that for every face F of P2h+1(G) there exist faces F ′

and F ′′ of P2h+1(G′) and P2h+1(G′′) respectively, such that F = F ′ × F ′′. Then

P2h+1(G) = {(y, z) ∈ RE
′

+ × RE
′′

+ : A′y ≥ b′, A′′z ≥ b′′} and so it is box-TDI.

(Parallelization) Let G = (V,E) be obtained from a series-parallel graph G′

by adding an edge g parallel to an edge f of G′ and suppose that P2h+1(G′)
is box-TDI. Let A′x ≥ b be a box-TDI system describing P2h+1(G′). Note that
P2h+1(G) is described by Ax ≥ b, xf ≥ 0, xg ≥ 0, where A is the matrix obtained
by duplicating f ’s column. By Theorem 22.10 of [34], the system Ax ≥ b is box-
TDI, hence so is Ax ≥ b, xf ≥ 0, xg ≥ 0. Thus, P2h+1(G) is a box-TDI polyhedron.

(Subdivision) Let G = (V,E) be obtained by subdividing an edge uw of a series-
parallel graph G′ = (V ′, E′) into a path of length two uv, vw. By contradiction,
suppose there exists a nonempty face F = {x ∈ P2h+1(G) : AFx = bF } such that
AF is a face-defining matrix for F which is not equimodular. Take such a face
with maximum dimension. Then, every submatrix of AF which is face-defining
for a face of P2h+1(G) is equimodular. We may assume that AF is defined by
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the partition constraints (2a) associated with the set of multicuts MF and the
nonnegativity constraints associated with the set of edges EF .

Claim 3.1 EF = ∅.

Proof Suppose there exists an edge e ∈ EF . Let H = G \ e and let AFH
x =

bFH
be the system obtained from AFx = bF by removing the column and the

nonnegativity constraint associated with e. Since the matrix AF is of full row
rank, so is AFH

. Since e ∈ EF , for all multicuts M tight for F not containing e,
M ∪ e is not a multicut. Hence M \ e is a multicut of H of order dM , for all M in
MF . Hence, the set FH = {x ∈ P2h+1(H) : AFH

x = bFH
} is a face of P2h+1(H).

Moreover, deleting e’s coordinate of aff(F ) gives aff(FH) so AFH
is face-defining for

FH . By the induction hypothesis, AFH
is equimodular. Since maximal invertible

square submatrices of AF are in bijection with those of AFH
and have the same

determinant in absolute value, AF is equimodular, a contradiction. ut

Claim 3.2 For e ∈ {uv, vw}, at least one multicut of MF different from δ(v)
contains e.

Proof By contradiction, suppose for instance that uv belongs to no multicut ofMF

different from δ(v).
First, suppose that δ(v) does not belong to MF . Then, the column of AF

associated with uv is zero. Let A′F be the matrix obtained from AF by removing
this column. Every multicut of G not containing uv is a multicut of G′ (relabelling
vw by uw), so the rows of A′F are associated with multicuts of G′. Thus, F ′ =
{x ∈ Pk(G′) : A′Fx = bF } is a face of P2h+1(G′). Removing uv’s coordinate from
the points of F gives a set of points of F ′ of affine dimension at least dim(F )− 1.
Since A′F has the same rank as AF and has one column fewer than AF , then
A′F is face-defining for F ′ by Observation 2.7. By the induction hypothesis, A′F is
equimodular. Since adding a column of zeros preserves equimodularity, AF is also
equimodular.

Suppose now that δ(v) belongs to MF . Then, the column of AF associated
with uv has zeros in each row but χδ(v). Let A?Fx = b?F be the system obtained
from AFx = bF by removing the equation associated with δ(v). Then F ? = {x ∈
Pk(G) : A?Fx = b?F } is a face of Pk(G) of dimension dim(F )+1. Indeed, it contains
F and z + αχuv /∈ F for every point z of F and α > 0. Hence, A?F is face-defining
for F ?. This matrix is equimodular by the maximality assumption on F , and so
is AF by Statement (ii) of Observation 2.6. ut

Claim 3.3 |M ∩ δ(v)| 6= 1 for every multicut M ∈MF .

Proof Suppose there exists a multicut M tight for F such that |M ∩ δ(v)| = 1.
Without loss of generality, suppose that M contains uv but not vw. Then, F ⊆
{x ∈ P2h+1(G) : xvw ≥ xuv} because of the partition inequality (2a) associated
with the multicut M4δ(v). Moreover, the partition inequality associated with δ(v)
and the integrality of P2h+1(G) imply F ⊆ {x ∈ P2h+1(G) : xvw ≥ h + 1}. The
proof is divided into two cases.

Case 1: F ⊆ {x ∈ P2h+1(G) : xvw = h+ 1}. We prove this case by exhibiting an
equimodular face-defining matrix for F . By Observation 2.5, this implies that AF
is equimodular, which contradicts the assumption on F .
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Equality xvw = h+ 1 can be expressed as a linear combination of equations of
AFx = bF . Let A′Fx = b′F denote the system obtained by replacing an equation of
AFx = bF by xvw = h+ 1 in such a way that the underlying affine space remains
unchanged. Denote by N the set of multicuts ofMF containing vw but not uv. If
N 6= ∅, then let N be in N . We now modify the system A′Fx = b′F by performing
the following operations.

1. For all M ∈ MF strictly containing δ(v), replace the equation associated
with M by the partition constraint (2a) associated with M \vw set to equality,
that is, x(M \ vw) = (h+ 1)dM\vw − 1.

2. If δ(v) ∈ MF , then replace the equation associated with δ(v) by the box
constraint xuv = h.

3. If N 6= ∅, then replace the equation associated with N by the box constraint
xuv = h+ 1.

4. For all M ∈ N \ N , replace the equation associated with M by the partition
constraint (2a) associated with M4δ(v) set to equality, that is, x(M4δ(v)) =
(h+ 1)dM4δ(v) − 1.

These operations do not change the underlying affine space. Indeed, for every
multicut M strictly containing δ(v) and tight for F , the set M \ vw is a multicut
tight for F by Lemma 2.11 and F ⊆ {x ∈ P2h+1(G) : xvw = h+ 1}. If δ(v) is tight
for F , then F ⊆ {x ∈ P2h+1(G) : xuv = h} because F ⊆ {x ∈ P2h+1(G) : xvw =
h + 1}. For M ∈ N , by Observation 2.2, the set M4δ(v) is a multicut of order
dM . The tightness of the constraint (2a) associated with N and the constraint (2a)
associated with M4δ(v) imply that F ⊆ {x ∈ P2h+1(G) : xvw ≤ xuv}. Since
F ⊆ {x ∈ P2h+1(G) : xvw ≥ xuv}, we have F ⊆ {x ∈ P2h+1(G) : xuv = h + 1}
and M4δ(v) is tight for F . It follows that, if δ(v) ∈MF , then N = ∅. Therefore,
at most one among Operations 2 and 3 is applied so the rank of the matrix remains
unchanged.

Let A′′Fx = b′′F be the system obtained by removing the equation xvw = h+ 1
from A′Fx = b′F . By construction, A′′Fx = b′′F is composed of constraints (2a) set
to equality and possibly xuv = h or xuv = h + 1. Moreover, the column of A′′F
associated with vw is zero. Let F ′′ = {x ∈ P2h+1(G) : A′′Fx = b′′F }. For every point
z of F and α ≥ 0, z+αχvw belongs to F ′′ because the column of A′′F associated with
vw is zero, and z + αχvw ∈ P2h+1(G). This implies that dim(F ′′) ≥ dim(F ) + 1.

If F ′′ is a face of P2h+1(G), then A′′F is face-defining for F ′′ by Observation 2.7
and because A′F is face-defining for F . By the maximality assumption on F , A′′F
is equimodular, and hence so is A′F by Statement (i) of Observation 2.6.

Otherwise, by construction, F ′′ = F ? ∩ {x ∈ RE : xuv = t} where F ? is
a face of P2h+1(G) strictly containing F and t ∈ {h, h + 1}. Therefore, there
exists a face-defining matrix for F ′′ given by a face-defining matrix for F ? and the
row χuv. Such a matrix is equimodular by the maximality assumption of F and
Statement (i) of Observation 2.6. Hence, A′′F is equimodular by Observation 2.5,
and so is A′F by Statement (i) of Observation 2.6.

Case 2: F 6⊆ {x ∈ P2h+1(G) : xvw = h + 1}. Thus, there exists z ∈ F such
that zvw > h + 1. By Claim 3.2, there exists a multicut N 6= δ(v) containing
vw which is tight for F . By Statement (i) of Theorem 2.10, the existence of z
implies that N is a bond, hence it does not contain uv. The set L = N4δ(v) is
a bond of G. The partition inequality (2a) associated with L implies that F ⊆
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{x ∈ P2h+1(G) : xvw = xuv} and L is tight for F . Moreover, N is the unique
multicut tight for F containing vw. Suppose indeed that there exists a multicut B
containing vw tight for F . Then, B is a bond by Statement (i) of Theorem 2.10 and
the existence of z. Moreover, B4N is a multicut not containing vw. This implies
that no point x of F satisfies the partition constraint associated withB4N because
x(B4N) = x(B)+x(N)−2x(B∩N) = 2(2h+1)−2x(B∩N) ≤ 4h+2−2xvw ≤ 2h,
a contradiction.

Consider the matrix A?F obtained from AF by removing the row associated
with N . Matrix A?F is a face-defining matrix for a face F ? ⊇ F of P2h+1(G)
because F ? contains F and z + αχuv for every point z of F and α > 0. By the
maximality assumption, the matrix A?F is equimodular. Let BF be the matrix
obtained from AF by replacing the row χN by the row χN −χL. Then, BF is face-
defining for F . Moreover, BF is equimodular by Statement (ii) of Observation 2.6—
a contradiction. ut

Let A′Fx = b′F be the system obtained from AFx = bF by removing uv’s
column from AF and subtracting h + 1 times this column to bF . We now show
that {x ∈ P2h+1(G′) : A′Fx = b′F } is a face of P2h+1(G′) if δ(v) /∈ MF , and of
P2h+1(G′) ∩ {x : xuw = h} otherwise. Indeed, consider a multicut M in MF . If
M = δ(v), then the equation of A′Fx = b′F induced by M is nothing but xuw = h.
Otherwise, by Lemma 2.11 and Claim 3.3, the set M \ uv is a multicut of G′

(relabelling vw by uw) of order dM if uv /∈ M and dM − 1 otherwise. Thus, the
equation of A′Fx = b′F induced by M is the partition constraint (2a) associated
with M \ uv set to equality.

By construction and Claim 3.3, A′F has full row rank and one column less than
AF . We prove that A′F is face-defining by exhibiting dim(F ) affinely independent
points of P2h+1(G′) satisfying A′Fx = b′F . Because of the integrality of P2h+1(G),
there exist n = dim(F ) + 1 affinely independent integer points z1, . . . , zn of F .
By Claims 3.2 and 3.3, there exists a multicut strictly containing δ(v). Then,
Statement (i) of Theorem 2.10 implies that F ⊆ {x ∈ RE : xuv ≤ h + 1, xvw ≤
h + 1}. Combined with the partition inequality xuv + xvw ≥ 2h + 1 associated
with δ(v), this implies that at least one of ziuv and zivw is equal to h + 1 for
i = 1, . . . , n. Since exchanging the uv and vw coordinates of any point of F gives
a point of F by Claim 3.3, the hypotheses on z1, . . . , zn are preserved under the
assumption that ziuv = h + 1 for i = 1, . . . , n − 1. Let y1, . . . , yn−1 be the points
obtained from z1, . . . , zn−1 by removing uv’s coordinate. Since every multicut of
G′ is a multicut of G with the same order, y1, . . . , yn−1 belong to P2h+1(G′). By
construction, they satisfy A′Fx = b′F so they belong to a face of P2h+1(G′) or
P2h+1(G′) ∩ {x : xuw = h}. This implies that A′F is a face-defining matrix of
P2h+1(G′) if δ(v) /∈MF , and of P2h+1(G′) ∩ {x : xuw = h} otherwise.

By induction, P2h+1(G′) is a box-TDI polyhedron and hence so is P2h+1(G′)∩
{x : xuw = h}. Hence, A′F is equimodular by Theorem 2.4. Since AF is obtained
from A′F by copying a column, then also AF is equimodular—a contradiction. ut

By definition of box-TDIness and Qk(G), Theorem 3.2 implies that Qk(G) is
box-TDI whenG is series-parallel. The converse does not hold. Indeed, for instance,
when G = (V,E) is a minimal k-edge-connected graph, Qk(G) is nothing but the
single point χE so it is a box-TDI polyhedron.
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4 An Integer TDI System for P2h(G)

Let G be a series-parallel graph. In this section we provide an integer TDI system
for P2h(G) with h positive and integer.

The proof of the main result of the section is based on the characterization
of TDIness by means of Hilbert bases. A set of vectors {v1, . . . , vk} is a Hilbert
basis if each integer vector that is a nonnegative combination of v1, . . . , vk can be
expressed as a nonnegative integer combination of them. The link between Hilbert
basis and TDIness is stated in the following theorem.

Theorem 4.1 (Theorem 22.5 of [34]) A system Ax ≥ b is TDI if and only
if for every face F of P = {x : Ax ≥ b}, the rows of A associated with tight
constraints for F form a Hilbert basis.

In the previous theorem, we could restrict to minimal faces: indeed, the cone
generated by the constraints tight for a face F is a face of the cone generated by
the constraints active for a face F ′ ⊆ F [34].

Remark 4.2 A system Ax ≥ b is TDI if and only if, for each minimal face F of
P = {x : Ax ≥ b}, the rows of A associated with constraints tight for F form a
Hilbert basis.

The rest of the section is devoted to prove that the system given by the partition
constraints and the nonnegativity constraints, which describes Pk(G) when k is
even, is TDI when G is series-parallel.

The proof is based on the TDIness of System (5) and the structure of inequali-
ties (3a). Their right-hand sides are proportional to k, hence it is enough to prove
the case k = 2. This allows us to use Theorem 2.13 to obtain a TDI system for
P2(G). In terms of Hilbert bases, the TDIness of this system implies that, given a
face F of P2(G), the integer points of the associated cone are the half sum of the
cuts tight for F . The technical part of the proof is to show that each integer point
of this cone is also the sum of incidence vectors of the multicuts tight for F .

Theorem 4.3 For a series-parallel graph G and a positive integer h, System (3)
is TDI.

Proof We only prove the case h = 1 since multiplying the right hand side of a
system by a positive constant preserves its TDIness [34, Section 22.5].

The proof is done by induction on the number of edges of the graph G = (V,E).
When G consists of two vertices connected by a single edge `, System (3) is x` ≥
2, x` ≥ 0 and is TDI. If G is the circuit {e, f}, System (3) is xe + xf ≥ 2, x ≥ 0
and is TDI.

(Parallelization) Let now G be obtained from a series-parallel graph H by
adding an edge g parallel to an edge f of H. System (3) associated with G is
obtained from that associated with H by duplicating f ’s column in constraints (3a)
and adding the nonnegativity constraint xg ≥ 0. By Lemma 3.1 of [7], System (3)
is TDI.

For the other cases, we prove the TDIness of System (3) associated with G
using Remark 4.2. More precisely, we prove that for any extreme point z of P2(G),
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the set of vectors {χM : M ∈ Tz} ∪ {χe : e ∈ E, ze = 0} is a Hilbert basis, where
Tz is the set of multicuts tight for z.

(1-sum) Let G be the 1-sum of two series-parallel graphs G1 = (W 1, E1) and
G2 = (W 2, E2) and let z be an extreme point of P2(G). By construction, we have
z = (z1, z2) where zi ∈ P2(Gi) for i = 1, 2. Moreover, for each multicut M ∈ Tz,
the graph obtained from G(z) by contracting the edges of E \ M is a circuit.
Indeed, it is 2-edge-connected since G(z) is, and it has z(M) = dM edges and dM
vertices. Therefore M is either a multicut of G1 tight for z1 or one of G2 tight
for z2.

By induction, Systems (3) associated with G1 and G2 are TDI. Thus, {χM :
M ∈ Tz ∩ M(Gi)} ∪ {χe : e ∈ Ei, ze = 0} is a Hilbert basis for i = 1, 2 by
Theorem 4.1. Since they belong to disjoint spaces, their union is a Hilbert basis.
By Theorem 4.1, System (3) is TDI.

(Subdivision) Let G = (V,E) be obtained by subdividing an edge uw of a
series-parallel graph G′ = (V ′, E′) into a path of length two uv, vw, and let z be
an extreme point of P2(G).

Without loss of generality, suppose zuv ≥ zvw. Define z′ ∈ ZE
′

by z′uw = zvw
and z′e = ze for all edges e in E′ \ uw. Note that z′ belongs to P2(G′) since G′(z′)
is obtained by contracting the edge uv in G(z), and this contraction preserves
2-edge-connectivity.

Note that for all e ∈ E, ze ∈ {0, 1, 2}. Indeed, since z is an extreme point of
P2(G) which is also described by System (1), if ze > 0, then e belongs to a cut D
tight for z. Moreover, as zuv ≥ zvw, the partition constraint (3a) associated with
δ(v) implies that zuv ∈ {1, 2}. We now consider two different cases depending on
the value of zuv.

Case 1: zuv = 2.
We first show that every multicut of Tz containing uv is a bond. Indeed, note

that every multicut M with dM = 2 is a bond. If a multicut M = δ(V1, . . . , VdM ) ∈
Tz satisfies dM ≥ 3 and uv ∈ δ(V1, V2), then M ′ = δ(V1 ∪ V2, V3, . . . , VdM ) is a
multicut and satisfies

z(M ′) ≤ z(M)− 2 < dM − 1 = dM ′ .

Hence, the partition constraint (3a) associated withM ′ is violated, a contradiction.
Moreover, there exists at most one bond of Tz, say N , containing uv. As

otherwise suppose there exist two bonds B1 and B2 in Tz containing uv. Then,
z(B14B2) ≤ z(B1) + z(B2)− 2zuv = 0, which contradicts the constraint (3a) as-
sociated with the multicut B14B2. For a multicut M not containing uv, M ∈ Tz
if and only if M ∈ Tz′ . This implies that Tz = Tz′ ∪ N . By induction and Theo-
rem 4.1, Tz′ ∪ Ez′ is a Hilbert basis. As Ez = Ez′ (identifying uv and vw) and N is
the only member of Tz ∪ Ez containing uv, Tz ∪ Ez is also a Hilbert basis.

Case 2: zuv = 1.
Let v be an integer point of the cone generated by Tz ∪ Ez. We prove that v

can be expressed as an integer nonnegative combination of the vectors of Tz ∪ Ez.
This implies that Tz ∪ Ez is a Hilbert basis.
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Let Bz be the set of bonds of Tz. Since System (5) is a TDI system describing
P2(G) in series-parallel graphs, the set of vectors {1

2χ
B : B ∈ Bz} ∪ Ez forms a

Hilbert basis by Theorem 4.1. Then, there exist λB ∈ 1
2Z+ for all B ∈ Bz and

µe ∈ Z+ for all e ∈ Ez such that v =
∑
B∈Bz

λBχ
B +

∑
e∈Ez µeχ

e.
Since zuv ≥ zvw, the partition inequality (3a) associated with δ(v) implies

that zvw = 1 and δ(v) ∈ Tz. In particular, vw /∈ Ez. The vector v is an integer
combination of vectors of Tz ∪ Ez if and only if v − bλδ(v)cχδ(v) is, thus we may

assume that λδ(v) ∈ {0, 1
2}. Define w ∈ ZE

′
by:

we =

{
vuv + vvw − 2λδ(v) if e = uw,
ve otherwise.

Note that (B \ uw)∪ uv and (B \ uw)∪ vw are bonds of Tz whenever B is a bond
of Tz′ containing uw because z′uw = zuv = zvw = 1. Moreover, a bond B of Tz′
which does not contain uw is a bond of Tz. Since δ(v) is the unique bond of G
containing both uv and vw and Ez = Ez′ , we have:

w =
∑

B∈Bz′ :uw∈B
(λ(B\uw)∪uv + λ(B\uw)∪vw)χB +

∑

B∈Bz′ :uw 6∈B
λBχ

B +
∑

e∈Ez′
µeχ

e.

Thus, w belongs to the cone generated by Tz′ ∪ Ez′ . By the induction hypothesis,
Tz′ ∪Ez′ is a Hilbert basis, hence there exist λ′M ∈ Z+ for all M ∈ Tz′ and µ′e ∈ Z+

for all e ∈ Ez′ such that w =
∑
M∈Tz′ λ

′
Mχ

M +
∑
e∈Ez′ µ

′
eχ
e.

Consider the familyN of multicuts of Tz′ where each multicut M of Tz′ appears
λ′M times. Suppose first that λδ(v) = 0. Then, vuv+vvw multicuts ofN contain uw.
Let P be a family of vuv multicuts of N containing uw and Q = {F ∈ N : uw ∈
F} \ P. Then, we have

v =
∑

M∈N :uw/∈M
χM +

∑

M∈P
χ(M\uw)∪uv +

∑

M∈Q
χ(M\uw)∪vw +

∑

e∈Ez′
µ′eχ

e. (6)

Suppose now that λδ(v) = 1
2 . Then, wuw = vuv + vvw − 1 multicuts of N

contain uw. Let P be a family of vuv − 1 multicuts of N containing uw, let Q be
a family of vvw − 1 multicuts in {F ∈ N : uw ∈ F} \ P, and denote by N the
unique multicut of N containing uw which is not in P ∪Q. Then, we have

v =
∑

M∈N :uw/∈M
χM+

∑

M∈P
χ(M\uw)∪uv+

∑

M∈Q
χ(M\uw)∪vw+χ(N\uw)∪δ(v)+

∑

e∈Ez′
µ′eχ

e.

(7)
Every M ∈ Tz′ not containing uw is in Tz. For every M ∈ Tz′ containing uw,

(M \uw)∪uv, (M \uw)∪vw and (M \uw)∪ δ(v) belong to Tz since z′uw = zuv =
zvw = 1. Since Ez = Ez′ , then v is a nonnegative integer combination of vectors of
Tz ∪ Ez in both (6) and (7). This proves that Tz ∪ Ez is a Hilbert basis. Therefore
by Remark 4.2, System (3) is TDI. ut

The box-TDIness of Pk(G) and the TDIness of System (3) give the following
result.

Corollary 4.4 System (3) is box-TDI if and only if G is series-parallel.
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Proof If G is series-parallel, then System (3) is box-TDI by Theorems 3.2 and 4.3,
since a TDI system describing a box-TDI polyhedron is box-TDI [12]. If G is
not series-parallel, Theorem 3.2 ensures that Pk(G) is not box-TDI, therefore
System (3) is not box-TDI. ut

Theorem 4.3 leaves open the following problem:

Open Problem 4.5 Characterize the classes of graphs such that System (3) is
TDI.

5 An Integer TDI System for P2h+1(G)

In this section, we prove that System (2) is TDI if and only if G is a series-parallel
graph—see Theorem 5.1. Proving the TDIness for k odd is considerably more
involved than for k even. The first difference with the even case is the lack of a
known TDI system describing Pk(G) when k is odd, even a noninteger one. Thus,
no property of the Hilbert bases associated with Pk(G) is known, and the approach
used to prove Theorem 4.3 cannot be applied. Instead, following the definition of
TDIness, we prove the existence of an integer optimal solution to each feasible
dual problem.

Another difference with the case k even follows from the structure of the parti-
tion inequalities (2a). In particular, the presence of the constant “−1” in the right-
hand sides perturbs the structure of tight multicuts. Indeed, when k is odd, the
tightness of δ(V1, . . . , Vn) does not imply that of δ(V1), . . . , δ(Vn). Consequently,
it is not clear how the contraction of an edge impacts the tightness of a multicut
δ(V1, . . . , Vn): merging adjacent Vi’s is not sufficient to obtain new tight multicuts.
Due to the link between tight multicuts and positive dual variables, the structure
of the optimal solutions to the dual problem is completely modified when subdi-
viding an edge. Proving directly that subdivision preserves TDIness turned out
to be challenging, and we overcome this difficulty by deriving new properties of
series-parallel graphs—see Lemma 2.3.

The proof of Theorem 5.1 focuses on properties of vertices of degree 2 in a min-
imal counterexample to the TDIness of System (2). In particular, we prove that no
two vertices of degree 2 are adjacent (Claim 5.9), or in the same circuit of length 4
(Claim 5.11). Moreover, no triangle contains vertices of degree 2 (Claim 5.10).
By Lemma 2.3, this implies that the graph is not series-parallel. To derive these
properties, we study the interplay between cuts associated with degree 2 vertices
and dual optimal solutions—see Claims 5.3-5.8.

Theorem 5.1 For h positive and integer, System (2) is TDI if and only if G is
series-parallel.

Proof If G is not series-parallel, then System (2) is not TDI because every TDI
system with integer right-hand side describes an integer polyhedron [22], but when
G has a K4-minor, System (2) describes a noninteger polyhedron [10].

We now prove that, if G is series-parallel, then System (2) is TDI. We prove
the result by contradiction. Let G = (V,E) be a series-parallel graph such that
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System (2) is not TDI. By definition of TDIness, there exists c ∈ ZE such that
D(G,c):

max
∑

M∈MG

bMyM

s.t.



∑

M∈MG:e∈M
yM ≤ ce for all e ∈ E,

yM ≥ 0 for all M ∈MG,

(8a)

(8b)

is feasible, bounded, but admits no integer optimal solution, where bM = (h +
1)dM − 1 for all M ∈MG. Without loss of generality, we assume that:

(i) G has a minimum number of edges,
(ii)

∑
e∈E ce is minimum with respect to (i).

By definition, D(G,c) is feasible if and only if c ≥ 0. Hence, by minimality assump-
tion (ii), D(G,c′) has an optimal integer solution for every integer c′ 6= c such that
0 ≤ c′ ≤ c.

Let M be a multicut of G. We denote by ξM the vector of {0, 1}MG whose
only nonzero coordinate is the one associated with M . We say that M is active
for a solution y to D(G,c) if yM > 0. Note that, by complementary slackness, a
multicut is active for an optimal solution to D(G,c) only if it is tight for an optimal
solution to the primal problem. In particular, if a multicut is tight for no point
of P2h+1(G), then it is active for no optimal solution to D(G,c). Thus, we will use
Lemma 2.11 and Theorem 2.10 to deduce properties on the optimal solutions to
D(G,c).

Claim 5.1 G is simple, 2-connected, and nontrivial.

Proof Suppose for a contradiction that there exist two parallel edges e1 and e2

and ce1 ≤ ce2 . Since a multicut contains either both e1 and e2 or none of them, the
inequality (8a) associated with e2 is redundant because ce1 ≤ ce2 . This contradicts
minimality assumption (i), so G is simple.

Assume for a contradiction that G is not 2-connected. Then G is the 1-sum
of two distinct graphs G1 = (V1, E1) and G2 = (V2, E2). By Statement (ii) of
Theorem 2.10, the multicuts of G that intersect both E1 and E2 are not tight for
the points of P2h+1(G), by complementary slackness, these multicuts are not active
for the optimal solutions to D(G,c). Hence, every optimal solution y to D(G,c) is of
the form:

yM =




y1
M if M ∈MG1

,
y2
M if M ∈MG2

,
0 otherwise,

for all M ∈MG,

where yi is an optimal solution to D(Gi,c|Ei
) for i = 1, 2. By minimality assump-

tion (i), there exists an integer optimal solution ȳi to D(Gi,c|Ei
) for i = 1, 2,

implying that (ȳ1, ȳ2) is an integer optimal solution to D(G,c), a contradiction.
Finally, if G = K2, MG contains only one multicut, say {e}, and the optimal

solution to D(G,c) is y∗{e} = ce which is integer. ut

Claim 5.2 For all edges e ∈ E, ce ≥ 1.
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Proof By hypothesis, c ≥ 0 is integer and D(G,c) has an optimal solution, say
y∗. Suppose for a contradiction that there exists an edge e ∈ E with ce = 0. Set
G′ = G/e and c′ = c|(E\e). The active multicuts for y∗ do not contain the edge
e so they are multicuts of G′ since MG′ = {M ∈ MG|e /∈ M}. Hence, the point
y′ ∈ RMG′ defined by y′M = y∗M for all M ∈MG′ is a solution to D(G′,c′).

By minimality assumption (i), there exists an integer optimal solution ỹ to
D(G′,c′). Extending ỹ to a point of ZMG by setting to 0 the missing component

gives an integer solution to D(G,c) with cost b>ỹ ≥ b>y′ = b>y∗. This is an integer
optimal solution to D(G,c) since y∗ is optimal, a contradiction to the hypothesis
that D(G,c) has no integer optimal solution. ut

Claim 5.3 Every optimal solution y to D(G,c) satisfies 0 ≤ yM < 1 for all M ∈
MG.

Proof By contradiction, suppose that y∗ is an optimal solution to D(G,c) such
that there exists a multicut M such that y∗M ≥ 1. Therefore, the point y′ defined
by y′ = y∗ − ξM is a solution to D(G,c′) where c′ = c − χM . By minimality
assumption (ii), D(G,c′) admits an integer optimal solution y′′. The point ỹ defined
by ỹ = y′′ + ξM is an integer solution to D(G,c) and we have:

b>ỹ = b>y′′ + bM ≥ b>y′ + bM = b>y∗.

Therefore ỹ is an integer optimal solution to D(G,c), a contradiction. ut

From the definition of series-parallel graphs, Claim 5.1 implies that G contains
at least one degree 2 vertex. Let V̂ be the set of degree 2 vertices of G.

Claim 5.4 Let v ∈ V̂ , δ(v) = {e1, e2}, y be an optimal solution to D(G,c), and
M1 be an active multicut for y such that M1 ∩ δ(v) = e1. If δ(v) is active for y,
then no multicut whose intersection with δ(v) is e2 is active for y.

Proof We prove the result by contradiction. Assume thatM1 and δ(v) are active for
y and that there exists a M2 active for y with M2∩δ(v) = e2. By Observation 2.2,
M ′i = Mi ∪ δ(v) is a multicut of G such that dM ′i = dMi

+ 1 for i = 1, 2. Let
0 < ε ≤ min{yM1

, yM2
, yδ(v)}. Then, the point:

y′ = y − ε
(
χM1 + χM2 + χδ(v)

)
+ ε

(
χM

′
1 + χM

′
2

)

is a solution to D(G,c), and we have b>y′ = b>y+ε, implying that y is not optimal,
a contradiction. ut

Claim 5.5 For every optimal solution to D(G,c), the constraints (8a) associated
with the edges incident to a degree 2 vertex are tight.

Proof We prove the result by contradiction. Suppose that there exist an optimal
solution y∗ to D(G,c) and a vertex v with δ(v) = {e1, e2} such that the inequal-
ity (8a) associated with e1 is not tight. For i = 1, 2, let si be the slack of the
constraint associated with ei, that is,

si = cei −
∑

M∈MG:ei∈M
y∗M .



Box-TDIness and Edge-Connectivity 19

Inequality (8a) associated with e2 is tight, as otherwise there exists 0 < η ≤
min{s1, s2}, such that y∗ + ηξδ(v) is a solution to D(G,c), a contradiction to the
optimality of y∗. Hence, Claims 5.2 and 5.3 imply that there are at least two
distinct multicuts M1 and M2 active for y∗ and containing e2. Let 0 < ε ≤
min{y∗M1

, y∗M2
, s1}. For i = 1, 2, e1 ∈ Mi, as otherwise y′ = y∗ + ε(ξMi∪e1 − ξMi

)

is a solution to D(G,c). This solution is such that b>y′ = b>y∗ + ε(h+ 1) > b>y∗,
a contradiction to the optimality of y∗. Thus, both M1 and M2 contain δ(v).
Since they are distinct, at least one of them, say M1, strictly contains δ(v). Then,
y′′ = y∗+ε(−ξM1

+ξM1\e2 +ξδ(v)) is a solution to D(G,c) because M1\e2 belongs to

MG by Lemma 2.11. Then, b>y′′ = b>y∗+ε(−bM1
+bM1

−(h+1)+2h+1) > b>y∗,
a contradiction. ut

Given a solution y to D(G,c), we define for each vertex v ∈ V̂ the set Ayv as
the set of multicuts active for y that strictly contain δ(v). Moreover we define the
value αyv as:

αyv =
∑

M∈Ay
v

yM . (9)

Claim 5.6 Every optimal solution y to D(G,c) satisfies 0 < αyv < 1 for all v ∈ V̂ .

Proof Suppose for a contradiction that there exist an optimal solution y∗ to D(G,c)

and a vertex v of V̂ such that either αy
∗
v ≥ 1 or αy

∗
v = 0. Denote the two edges

incident to v by e1 and e2 in such a way that ce1 ≤ ce2 .

Suppose first that αy
∗
v ≥ 1. By Claim 5.3, there exist at least two multicuts in

Ay∗v . Let Ay∗v = {M1, . . . ,Mn}. By Lemma 2.11, for all i = 1, . . . , n, M ′i = Mi \ e1

is a multicut of G with dM ′i = dMi
− 1. Let c′ = c−χe1 . By αy

∗
v ≥ 1, there exist εi

for all i = 1, . . . , n, such that 0 ≤ εi ≤ y∗Mi
and

∑n
i=1 εi = 1. The point y1 defined

by:

y1 = y∗ +
n∑

i=1

(
−εiξMi

+ εiξM ′i
)

is a solution to D(G,c′). By definition of b, we have:

b>y1 = b>y∗ − h− 1. (10)

By minimality assumption (ii), D(G,c′) admits an integer optimal solution, say

y2. This solution satisfies with equality the constraint (8a) associated with e2

as otherwise y2 + ξδ(v) would be a solution to D(G,c) with cost b>y2 + bδ(v) ≥
b>y1 + 2h+ 1, contradicting the assumption that y∗ is optimal by (10) and h ≥ 1.
Hence, there exists a multicut M̄ active for y2 containing e2 but not e1 since
c′e1 + 1 ≤ c′e2 . By definition, M̄ ∪ e1 is a multicut of G of order dM̄ + 1. Define
y3 ∈ ZMG by:

y3
M = y2 − χM̄ + χM̄∪e1

By definition of c′ and y2, the point y3 is an integer solution to D(G,c). Therefore,

by (10), since y2 is optimal in D(G,c′) and by definition of y3, we have:

b>y∗ = b>y1 + h+ 1 ≤ b>y2 + h+ 1 ≤ b>y3.

Thus, y3 is an integer optimal solution to D(G,c), a contradiction.
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Suppose now that αy
∗
v = 0. First, note that δ(v) is not an active multicut for

y∗. Otherwise by Claims 5.2, 5.3 and 5.5, there would be a multicut containing
e1 and not e2, say N1, and a multicut containing e2 and not e1, say N2, which
are both active for y∗. This contradicts Claim 5.4. Hence, by definition of αy

∗
v , no

active multicut contains δ(v).

By Observation 2.2, if a multicut M contains e2 but not e1, then M4δ(v) is a
multicut with the same order and bM = bM4δ(v). Hence, we can define the point

y4 ∈ QMG :

y4
M =





0 if e1 ∈M ,
y∗M + y∗M4δ(v) if e1 /∈M and e2 ∈M ,

y∗M otherwise,
for all M ∈MG,

which is a solution to D(G,ĉ), where ĉ is defined by:

ĉe =




ce1 + ce2 if e = e2,
0 if e = e1,
ce otherwise,

for all e ∈ E.

By construction, we have:

b>y4 = b>y∗. (11)

Using the argument given in the proof of Claim 5.2, we deduce that D(G,ĉ)

admits an integer optimal solution, say y5. Let S be the family of active multicuts
for y5 containing e2, where each multicut M appears y5

M times in S. We have |S| >
ce2 as otherwise y5 would be an integer optimal solution to D(G,c), a contradiction.

We now construct from y5 an integer solution y6 to D(G,c) with the same

cost by replacing e2 by e1 in some active multicuts for y5. More formally, since
|S| ≥ ce1 , there exists S′ ⊆ S with |S′| = ce1 . By Observation 2.2, M4δ(v) is
a multicut of G for all M ∈ S′ and bM = bM4δ(v). Let y6 ∈ ZMG be the point
defined by:

y6 = y5 +
∑

M∈S′

(
ξM4δ(v) − ξM

)
(12)

By construction, we have:

b>y6 = b>y5. (13)

Note that for each M ∈ S′, adding ξM4δ(v) − ξM to a point of RMG increases
(resp. decreases) by 1 the left-hand side of the inequality (8a) associated with e1

(resp. e2) while not changing the left-hand side of the inequalities (8a) associated
with the edges of E \ {e1, e2}. Therefore, by definition of ĉ, y6 is a solution to
D(G,c). By (13), the optimality of y5, and (11), we have:

b>y6 = b>y5 ≥ b>y4 = b>y∗.

Therefore y6 is an integer optimal solution to D(G,c), a contradiction. ut
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Claim 5.6 implies that for each optimal solution y and for each v ∈ V̂ there
exists at least one multicut strictly containing δ(v) that is active for y. For the
following claims we need to define a subset of optimal solutions to D(G,c): let Dv
be the set of optimal solutions to D(G,c) for which δ(v) is not active. Note that
if Dv is not empty, then there exists a solution y in Dv maximizing αzv over all
z ∈ Dv.

The following claim presents the structure of a specific optimal solution to
D(G,c) for which δ(v) is not active.

Claim 5.7 Let v ∈ V̂ with δ(v) = {e1, e2} and let y∗ ∈ Dv maximize αzv over all
z ∈ Dv. Then, there are exactly 3 multicuts active for y∗ intersecting δ(v): two
bonds F ∪ e1 and F ∪ e2 and a multicut F ∪ {e1, e2} of order 3, for some F ⊆ E.

Proof By Claim 5.6, there exists at least one multicut strictly containing δ(v)
which is active for y∗, say M0. By definition of Dv, δ(v) is not active for y∗. Hence,
by Claim 5.5, there exists at least one multicut active for y∗ which contains ei and
not δ(v) \ ei, for i = 1, 2. Let Mi be such a multicut with maximum order.

First, we prove that dM0
= 3. By definition, M0 = δ(v, V2, V3, . . . , VdM0

).
Moreover, by Lemma 2.11 and complementary slackness, the two vertices adja-
cent to v belong to two different classes, say V2 and V3. By contradiction, sup-
pose that dM0

≥ 4. Then, M ′0 = δ(v ∪ V2 ∪ V3, . . . , VdM0
) is a multicut of or-

der dM0
− 2. For i = 1, 2, M ′i = Mi ∪ δ(v) is a multicut of order dMi

+ 1. Let
0 < ε ≤ min{y∗M0

, y∗M1
, y∗M2

}. Then, let y′ ∈ RMG be the point defined by:

y′ = y∗ − εξM0
+ εξM ′0 + ε

∑

i=1,2

(
−ξMi

+ ξM ′i
)
.

By construction, y′ is a solution to D(G,c) with b>y∗ = b>y′. Hence y′ is an

optimal solution, but we have αy
′
v = αy

∗
v + ε because δ(v) ( M ′i for i = 1, 2. This

contradicts the maximality of αy
∗
v . Therefore dM0

= 3.
Now, we show that M1 is a bond. The result for M2 holds by symmetry. By

contradiction, suppose that M1 = δ(V1, . . . , VdM1
) with dM1

≥ 3. Without loss of

generality, we suppose that e ∈ δ(V1) ∩ δ(V2). Then, M ′1 = δ(V1 ∪ V2, . . . , VdM1
)

is a multicut of order dM1
− 1. Moreover, M ′2 = M2 ∪ δ(v) is a multicut of order

dM2
+ 1. Let 0 < ε ≤ min{y∗M1

, y∗M2
} and y′ ∈ RMG be the point defined by:

y′ = y∗ − εξM1
+ εξM ′1 − εξM2

+ εξM ′2 .

By construction, y′ is a solution to D(G,c) with b>y∗ = b>y′. Hence y′ is an

optimal solution, but we have αy
′
v = αy

∗
v + ε because δ(v) (M ′2. This contradicts

the maximality of αy
∗
v . Therefore, dM1

= dM2
= 2.

We now prove that there exists a set F such thatM0 = F∪δ(v), andMi = F∪ei
for i = 1, 2. Note that M1∪M2 is a multicut so y′′ = y∗+ε(ξM1∪M2

−ξM1
−ξM2

) is a
solution to D(G,c). The optimality of y∗ implies dM1∪M2

≤ 3. Since M1 and M2 are
distinct bonds, there exists F ⊆ E\δ(v) such that Mi = F∪ei, for i = 1, 2. Finally,
let N0 = M0 \ e2 and N1 = M1 ∪ e2. Note that ỹ = y∗+ ε(ξN0

− ξM0
+ ξN1

− ξM1
)

is an optimal solution to D(G,c) for which δ(v) is not active. Moreover, N0 and M2

are bonds active for ỹ since dM0
= 3. This implies that N0 = F ∪ e1, and hence

M0 = F ∪ δ(v).
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This implies that M0, M1, and M2 are the only multicuts active for y∗ inter-
secting δ(v). Indeed, if M is a multicut active for y∗ strictly containing δ(v), then
repeating the proof above with M , M1, and M2 shows that there exists F ′ such
that M = F ′ ∪ δ(v), and Mi = F ′ ∪ ei for i = 1, 2. Since Mi = F ∪ ei for i = 1, 2,
we have F ′ = F and hence M = M0. A similar argument holds for any multicut
active for y∗ and intersecting δ(v). ut

Claim 5.8 Let v ∈ V̂ and y∗ be an optimal solution to D(G,c). Then,

(i) if y∗δ(v) = 0, then ce = 1 for all e ∈ δ(v),

(ii) if y∗δ(v) > 0, then αy
∗
v + y∗δ(v) = 1, and there exists e ∈ δ(v) such that ce = 1.

Proof (i.) First suppose that y∗δ(v) = 0, then Dv 6= ∅. Let y′ ∈ Dv maximize αzv
over all z ∈ Dv. Then, by Claim 5.7, there exist exactly two active multicuts for
y′ containing ei for i = 1, 2. Combining Claims 5.3 and 5.5, and the integrality of
c, we obtain that cei = 1 for i = 1, 2.

(ii.) Let now y∗δ(v) > 0. By Claim 5.4, there exists an edge e ∈ δ(v) such that all
multicuts containing e that are active for y contain δ(v). Hence, the constraint (8a)
associated with e is:

ce ≥
∑

M :e∈M
y∗M = y∗δ(v) +

∑

M∈Ay∗
v

y∗M = y∗δ(v) + αy
∗
v . (14)

By Claim 5.5, the constraint (8a) associated with e is tight. Thus, y∗δ(v) +αy
∗
v = ce.

By Claims 5.3 and 5.6 and since ce is integer, we have ce = 1. ut
The last three claims of the proof give some structural property of the graph

G. In particular we focus our attention on the vertices of V̂ .

Claim 5.9 Vertices of degree 2 are pairwise nonadjacent.

Proof Assume for a contradiction that there exist two adjacent vertices v1 and v2

in V̂ , and denote δ(vi) = {e0, ei} for i = 1, 2.

We prove that δ(v1) is active for all optimal solutions to D(G,c), the result for
δ(v2) is obtained by symmetry. By contradiction, suppose that Dv1 6= ∅. Among all
the solutions y ∈ Dv1 , let y1 be one having αyv1 maximum. Then, by Claim 5.7, the
three multicuts active for y1 intersecting δ(v1) are M0 = F ∪ δ(v1), B0 = F ∪ e0,
and B1 = F ∪ e1, where Bi are bonds for i = 0, 1, and F ⊆ E \ δ(v1) contains no
nonempty multicut. By Claim 5.6 on v2, there exists a multicut M active for y1

strictly containing δ(v2). By δ(v1)∩ δ(v2) = e0, M intersects δ(v1). Since dM ≥ 3,
Claim 5.7 for v1 implies M = M0, F = {e2}, and B0 = δ(v2).

As y1
δ(v1) = 0, by Statement (i) of Claim 5.8, ce0 = ce1 = 1. By Claim 5.5, the

constraints associated with e0 and e1 are tight. Since Ay1

v1 = {M0} by Claim 5.7,
we have:

cei = y1
M0

+ y1
Bi

= 1 for i = 0, 1. (15)

Let {M1, . . . ,Mn} be the set of active multicuts for y1 such that Mi∩{e0, e1, e2} =
e2, for i = 1, . . . , n. By Claim 5.5, the constraint (8a) associated with e2 is tight,
hence, using (15):

ce2 = y1
M0

+ y1
B0

+ y1
B1

+

n∑

i=1

y1
Mi

= 1 + y1
B0

+

n∑

i=1

y1
Mi
. (16)
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By Claim 5.3, B0 active for y1, and ce2 ∈ Z, we have {M1, . . . ,Mn} 6= ∅ and
ce2 ≥ 2. Thus, combining (15) and (16), we have:

n∑

i=1

y1
Mi

= ce2 − 1− y1
B0
≥ y1

M0
. (17)

Then, there exist ε1, . . . , εn such that 0 ≤ εi ≤ y1
Mi

for i = 1, . . . , n, and

n∑

i=1

εi = y1
M0
.

For i = 1, . . . , n, Mi ∪ e0 is a multicut with order dMi
+ 1, hence we can consider

the following solution to D(G,c):

y2 = y1 −
(
y1
M0
ξM0

+

n∑

i=1

εiξMi

)
+

(
y1
M0
ξM0\e0 +

n∑

i=1

εiξMi∪e0

)
. (18)

We have b>y1 = b>y2, but αy
2

v1 = 0, a contradiction to Claim 5.6. Therefore
Dv 6= ∅, and by symmetry we deduce that both δ(v1) and δ(v2) are active for all
optimal solutions to D(G,c).

By Claim 5.4, for every optimal solution y to D(G,c) and every multicut M of
G, if M is active for y and contains ei for some i ∈ {1, 2}, then e0 ∈M .

Let y∗ be the optimal solution to D(G,c) maximizing αyv1 over all y solutions

to D(G,c). We have Ay∗v2 ⊆ Ay
∗
v1 and all the multicuts in Ay∗v2 have order at most 3.

Otherwise, let M ∈ Ay∗v2 \ Ay
∗
v1 (resp. M ∈ Ay∗v2 such that dM ≥ 4), and 0 < ε ≤

min{y∗M , y∗δ(v1)}. The solution

y3 = y∗ − ε(ξM + ξδ(v1)) + ε(ξM\e2 + ξδ(v1)∪e2)

is optimal, but αy
3

v1 = αy
∗
v1 +ε by the choice of M , a contradiction to the maximality

of αy
∗
v1 . Thus, M̄ = {e0, e1, e2} is the only multicut in Ay∗v2 .
Let {N1, . . . , Nm} be the set of active multicuts for y∗ such thatNi∩{e0, e1, e2} =

e0 for i = 1, . . . ,m. The constraint associated with e0 is tight by Claim 5.5, hence,
by Ay∗v2 ⊆ Ay

∗
v1 , we have:

ce0 = αy
∗
v1 + y∗δ(v1) + y∗δ(v2) +

m∑

i=1

y∗Ni
. (19)

By Statement (ii) of Claim 5.8 applied to v1, we have y∗δ(v1) + αy
∗
v1 = 1, and so:

ce0 = 1 + y∗δ(v2) +

m∑

i=1

y∗Ni
. (20)

ByAy∗v2 = {M̄} and Statement (ii) of Claim 5.8 applied to v2, we have y∗δ(v2)+y
∗
M̄ =

1, hence:

ce0 = 2− y∗M̄ +
m∑

i=1

y∗Ni
. (21)
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Since ce0 is integer and since y∗M̄ < 1 by Claim 5.3, by (21), we have:

m∑

i=1

y∗Ni
≥ y∗M̄ . (22)

Hence, let λ1, . . . , λm be such that 0 ≤ λi ≤ y∗Ni
for i = 1, . . . ,m, and∑m

i=1 λi = y∗M̄ . Note that δ(v2) = M̄ \ e1. Then, the point

y5 = y∗ −
(
y∗M̄ξM̄ +

m∑

i=1

λiξNi

)
+

(
y∗M̄ξδ(v2) +

m∑

i=1

λiξNi∪e1

)

is a solution to D(G,c), and it is optimal by definition of b. Moreover,

y5
δ(v2) = y∗M̄ + y∗δ(v2) = 1,

a contradiction to Claim 5.3. ut

The following claim forbids a circuit of length 3 to contain a vertex of V̂ .

Claim 5.10 No circuit of length 3 contains a vertex of degree 2.

Proof Assume for a contradiction that in G there exist a vertex v ∈ V̂ and a
circuit {e1, e2, e3} such that δ(v) = {e1, e2}. By Lemma 2.1, a multicut contains
e3 only if it intersects δ(v). On the other hand, by Lemma 2.11 and complementary
slackness, each multicut strictly containing δ(v) and active for an optimal solution
contains e3. Thus, for every optimal solution y to D(G,c), we have:

∑

M :e3∈M
yM =

∑

M :e1∈M,M 6=δ(v)

yM +
∑

M :e2∈M,M 6=δ(v)

yM − αyv. (23)

Let y∗ be an optimal solution to D(G,c). By the constraint (8a) associated with
e3, (23), and Claim 5.5, we have:

ce3 ≥
∑

M :e3∈M
y∗M = ce1 + ce2 − 2y∗δ(v) − αy

∗
v . (24)

By Claim 5.6 and Statement (ii) of Claim 5.8, we have 2y∗δ(v) + αy
∗
v < 2. Thus,

by (24) and ce3 ∈ Z, we have ce3 ≥ ce1 + ce2 − 1.

Define G′ = G \ e3 and c′ = c|(E\e3). Note that for each multicut M ∈ MG,
M \ e3 is a multicut of G′ with order at least dM . Hence, y∗ induces a solution
to D(G′,c′) of cost at least b>y∗. By minimality assumption (i), there exists an

integer optimal solution y′ to D(G′,c′), and we have b>y′ ≥ b>y∗.
Let M1 (resp. M2) be the set of multicuts M = δ(V1, . . . , VdM ) of G′ active

for y′ such that the endpoints of e3 belong (resp. do not belong) to a same Vi for
some i ∈ {1, . . . , dM}. For each M ∈ M1 (resp. M ∈ M2), M (resp. M ∪ e3) is a
multicut of G with the same order. Hence,

y′′ =
∑

M∈M1

y′MξM +
∑

M∈M2

y′MξM∪e3
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is a point of ZMG
+ with b>y′′ = b>y′. Thus, b>y′′ ≥ b>y∗, and y′′ is not a

solution to D(G,c). By definition, y′′ respects every constraint of D(G,c) but the
constraint (8a) associated with e3.

By definition of y′′, we have:
∑

M :e3∈M
y′′M =

∑

M :e1∈M,M 6=δ(v)

y′′M +
∑

M :e2∈M,M 6=δ(v)

y′′M − αy
′′
v . (25)

Therefore, by y′′ violating the constraint (8a) associated with e3, (25), Statement
(ii) of Claim 5.8, and the inequalities (8a) associated with e1 and e2, we have:

ce3 <
∑

M :e3∈M
y′′M =

∑

M :e1∈M
y′′M+

∑

M :e2∈M
y′′M−αy

′′
v −2y′′δ(v) ≤ ce1+ce2−αy

′′
v −2y′′δ(v).

(26)

Thus, by (24), we have αy
′′
v +2y′′δ(v) < αy

∗
v +2y∗δ(v) < 2. By ce3 ≥ ce2 + ce1 −1, the

integrality of y′′, and (26), we have αy
′′
v = y′′δ(v) = 0, and so ce3 = ce1 + ce2 − 1.

Hence, by the integrality of y′′ and equation (25):

ce3 + 1 =
∑

M :e3∈M
y′′M =

∑

M :e1∈M
y′′M +

∑

M :e2∈M
y′′M = ce1 + ce2 . (27)

For i = 1, 2, since cei ≥ 1, there exists a multicut Mi active for y′′ such that
Mi ∩ δ(v) = ei.

We claim that the constraint (8a) associated with e3 is not tight for y∗. By
ce3 = ce1+ce2−1, (24), and Claim 5.6, δ(v) is active for y∗. Hence, by Statement (ii)
of Claim 5.8, we have:

αy
∗
v + y∗δ(v) = 1. (28)

Hence, by (23) and Claim 5.5, (28), (27), and δ(v) active for y∗, we have:

∑

M :e3∈M
y∗M = ce1 + ce2 − 1− y∗δ(v) = ce3 − y∗δ(v) < ce3 . (29)

The point y′′ respects all the constraints of D(G,c) except the one associated
with e3, and this constraint is not tight for y∗. Therefore, there exists 0 < λ < 1
such that

ỹ = λy∗ + (1− λ)y′′

is a solution to D(G,c). Moreover, ỹ is optimal because b>y∗ ≤ b>y′′.
All multicuts active for at least one between y∗ and y′′ are active for ỹ. Since

δ(v) is active for y∗ and M1,M2 are active for y′′, the three multicuts M1,M2,
and δ(v) are active for ỹ, a contradiction to Claim 5.4. ut

Claim 5.11 Each circuit of length 4 contains at most one vertex of degree 2.

Proof Assume for a contradiction that there exists a circuit C = {e1, . . . , e4} in G

covering two vertices of V̂ , say v1, v2. By Claim 5.9, v1 and v2 are not adjacent,
hence we assume that δ(v1) = {e1, e2} and δ(v2) = {e3, e4}. Let v3 and v4 be the
remaining vertices of C.

We prove that δ(v1) is active for all optimal solutions to D(G,c). Indeed, if
Dv1 6= ∅, then let y′ ∈ Dv1 maximize αzv1 over all z ∈ Dv1 . By Statement (ii) of
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Theorem 2.10, for every multicut M in Ay′v2 , we have M = δ{v2, V2, . . . , VdM }, with
v3 and v4 belonging to different Vi’s, hence M ∩ δ(v1) 6= ∅. However, M \ δ(v1)
contains δ(v2), a contradiction to Claim 5.7 applied to v1. Exchanging the role of
v1 and v2, we deduce that δ(v2) is active for all optimal solutions to D(G,c).

Without loss of generality, there exists an optimal solution y such that αyv1 ≥
αyv2 . Then, we can build from y an optimal solution y∗ to D(G,c) such that Ay∗v2 ⊆
Ay∗v1 . Indeed, suppose Ayv2 \ Ayv1 = {M1, . . . ,Mn}. Then, since αyv1 ≥ αyv2 , there
exist N1, . . . , Nm ∈ Ayv1 \ Ayv2 such that:

n∑

i=1

yMi
≤

m∑

j=1

yNj
. (30)

Hence, there exist ε1, . . . , εm such that 0 ≤ εj ≤ yNj
, for j = 1, . . . ,m, and

m∑

j=1

εj =

n∑

i=1

yMi
. (31)

By Statement (ii) of Theorem 2.10 and complementary slackness, v3 and v4 be-
long to different classes of Nj for each j = 1, . . . ,m, implying that Nj ∩ δ(v2) 6= ∅.
Moreover, since Nj 6∈ Ayv2 , we have |Nj ∩ δ(v2)| = 1, for all j = 1, . . . ,m. Further-
more, since δ(v2) is active for y, by Claim 5.4, there exists an edge in δ(v2), say
e3, such that Nj ∩ δ(v2) = e3 for all j = 1, . . . ,m. Therefore, the point

y∗ = y −
(

n∑

i=1

yMi
ξMi
−

n∑

i=1

yMi
ξMi\e4

)
+




m∑

j=1

εjξNj∪e4 −
m∑

j=1

εjξNj


 (32)

is a solution to D(G,c) with b>y∗ = b>y and Ay∗v2 ⊆ Ay
∗
v1 . Let Ay∗v2 = {M ′1 . . . ,M ′p}.

For i = 1, . . . , p, since M ′i ∈ Ay
∗
v1 , Statement (ii) of Theorem 2.10 implies M ′i =

δ(v1, v2, V
i
3 , V

i
4 , . . . , V

i
dM′

i

), where V i3 and V i4 contain respectively v3 and v4. Then,

M ′′i = δ(v1, v2 ∪ V i3 ∪ V i4 , . . . , V idM′
i

) is a multicut of order dM ′i − 2 for i = 1, . . . , p.

Since δ(v2) is active for y∗, by Statement (ii) of Claim 5.8, we have αy
∗
v2 +y∗δ(v2) = 1.

Then, the point y1 ∈ QMG defined by:

y1 = y∗ −
(
y∗δ(v2)ξδ(v2) +

p∑

i=1

y∗M ′iξM ′i

)
+

(
p∑

i=1

y∗M ′iξM ′′i

)
,

is a solution to D(G,c′), where c′ = c− χδ(v2).

By dM ′′i = dM ′i − 2 for all i = 1, . . . , p, and αy
∗
v2 + y∗δ(v2) = 1, we have:

b>y1 = b>y∗ − αy∗v2 (2h+ 2)− y∗δ(v2)(2h+ 1) = b>y∗ − (2h+ 1)− αy∗v2 . (33)

By minimality assumption (ii), D(G,c′) admits an integer optimal solution, say y2.

The point y3 ∈ ZMG defined by y3 = y2 + ξδ(v2) is a solution to D(G,c) such that:

b>y3 = b>y2 + 2h+ 1. (34)
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Therefore, by (33), the optimality of y2, and (34), we have:

b>y∗ = b>y1 + 2h+ 1 + αy
∗
v2 ≤ b>y2 + 2h+ 1 + αy

∗
v2 = b>y3 + αy

∗
v2 . (35)

By integrality of P2h+1(G) and duality, we have b>y∗ ∈ Z. Furthermore, y3 is
integer by construction, so b>y3 ∈ Z. Then, by (35) and Claim 5.6, we have
b>y∗ ≤ b>y3, and so y3 is an integer optimal solution to D(G,c), a contradiction.

ut

Claims 5.1, 5.9, 5.10, 5.11 and Lemma 2.3 imply that G is not series-parallel,
a contradiction. ut

The box-TDIness of Pk(G) and the TDIness of System (2) give the following
result.

Corollary 5.2 System (2) is box-TDI if and only if G is series-parallel.

Proof By Theorem 5.1, when G is not series-parallel, System (2) is not TDI.
Whenever G is series-parallel, Pk(G) is box-TDI by Theorem 3.2 and System (2)
is TDI by Theorem 5.1. ut
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