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a b s t r a c t

We represent a flow of a graph G = (V , E) as a couple (C, e) with C a circuit of G and e
an edge of C , and its incidence vector is the 0/±1 vector χC\e

− χ e. The flow cone of G
is the cone generated by the flows of G and the unit vectors.

When G has no K5-minor, this cone can be described by the system x(M) ≥ 0 for all
multicuts M of G. We prove that this system is box-totally dual integral if and only if G
is series–parallel. Then, we refine this result to provide the Schrijver system describing
the flow cone in series–parallel graphs.

This answers a question raised by Chervet et al., (2018).
© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Totally dual integral systems were introduced in the late 70s and are strongly connected to min–max relations in
combinatorial optimization [16]. A rational system of linear inequalities Ax ≤ b is totally dual integral (TDI) if the
minimization problem in the linear programming duality:

max{cx: Ax ≤ b} = min{yb: y ≥ 0, yA = c}

admits an integer optimal solution for each integer vector c such that the maximum is finite. Such systems describe
integer polyhedra when b is integer [13]. Schrijver [15] proved that every full-dimensional polyhedron is described by a
unique minimal TDI system Ax ≤ b with A integer—its Schrijver system [6].

A stronger property is the box-total dual integrality, where a system Ax ≤ b is box-totally dual integral (box-TDI) if

Ax ≤ b, ℓ ≤ x ≤ u

is TDI for all rational vectors ℓ and u (with possible infinite components). General properties of such systems can be found
in Cook [5] and Chapter 22.4 of Schrijver [16]. Note that, although every rational polyhedron {x : Ax ≤ b} is described
by a TDI system 1

kAx ≤
1
k b, for some integer k, not every polyhedron is described by a box-TDI system. A polyhedron
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described by a box-TDI system is called a box-TDI polyhedron. As proved by Cook [5], every TDI system describing such a
polyhedron is actually box-TDI.

In the last decade, several new box-TDI systems were exhibited. Chen, Ding, and Zang [1] characterized box-Mengerian
matroid ports. In [2], they provided a box-TDI system describing the 2-edge-connected spanning subgraph polyhedron
for series–parallel graphs. Ding, Tan, and Zang [10] characterized the graphs for which the TDI system of Cunningam and
Marsh [9] describing the matching polytope is actually box-TDI. Ding, Zang, and Zhao [11] introduced new subclasses of
box-perfect graphs. Cornaz, Grappe, and Lacroix [8] provided several box-TDI systems in series–parallel graphs. Recently,
Chervet, Grappe, and Robert [3] gave new geometric characterizations of box-TDI polyhedra.

As mentioned by Pulleyblank [14], it is not uncommon that the minimal integer system and the Schrijver system of
a polyhedron coincide. This is the case of the matching polytope and matroid polyhedra. However, this does not hold
in general, as shown by Cook [4] and Pulleyblank [14] for the b-matching polyhedron, and by Sebő [18] for the T -join
polyhedron.

In this paper, we are interested in TDI, box-TDI, and Schrijver systems for the flow cone of series–parallel graphs.
Given a graph G = (V , E), a flow of G is a couple (C, e) with C a circuit of G and e an edge of C . In a flow (C, e), the edge
e represents a demand and C \ e represents the path satisfying this demand. The incidence vector of a flow (C, e) is the
0/±1 vector χC\e

− χ e. The flow cone of G is the cone generated by the flows of G and the unit vectors χ e of RE .
The cut δ(W ) is the set of edges having exactly one endpoint in a subset W of V . A bond is an inclusionwise minimal

nonempty cut. Note that a nonempty cut is the disjoint union of bonds. Given a partition {V1, . . . , Vk} of V , the set of
edges having endpoints in two distinct Vi’s is called multicut and is denoted by δ(V1, . . . , Vk). The cut cone of G is the cone
generated by the incidence vectors of the cuts of G. Equivalently, it is the cone generated by the incidence vectors of the
bonds of G, or by those of the multicuts of G.

When G has no K5-minor, the flow cone of G is the polar of the cut cone and is described by x(C) ≥ 0, for all cuts C
of G [19]. Chervet, Grappe, and Robert [3] proved that the flow cone is a box-TDI polyhedron if and only if the graph is
series–parallel. Moreover they provided the following box-TDI system:

1
2
x(B) ≥ 0 for all bonds B of G. (1)

Quoting them, they ‘‘leave open the question of finding a box-TDI system with integer coefficients, which exists by [16,
Theorem 22.6(i)] and [5, Corollary 2.5]’’.

Contribution. The goal of this paper is to answer the question of [3] mentioned above. Throughout, the main concept that
we use is that of Hilbert basis, whose definition and connection with TDIness are given at the end of the introduction.

We first prove that

x(M) ≥ 0 for all multicuts M of G, (2)

is a TDI system describing the flow cone if and only if the graph is series–parallel. As the flow cone is a box-TDI polyhedron
for such graphs, this implies that System (2) is a box-TDI system if and only if the graph is series–parallel. We then refine
this result by providing the corresponding Schrijver system, which is composed of the so-called chordal multicuts—see
Corollary 3.4.

This completely answers the question of [3].

Outline. In the next paragraph, we provide definitions and notation. In Section 2, we first characterize the graphs for which
multicuts form a Hilbert basis. It follows that System (2) is box-TDI precisely for series–parallel graphs. In Section 3, we
provide a minimal integer Hilbert basis for multicuts in series–parallel graphs. This gives the Schrijver system for the flow
cone in series–parallel graphs.

Definitions. Given a finite set S and a subset T of S, we denote by χ T
∈ {0, 1}S the incidence vector of T , that is χ T

s equals
1 if s belongs to T and 0 otherwise, for all s ∈ S. Since there is a bijection between sets and their incidence vectors, we
will often use the same terminology for both.

Let G = (V , E) be a loopless undirected graph. Given U ⊆ V , the graph G[U] is obtained from G by removing all the
vertices not in U . A set of edges M is a multicut if and only if |M ∩ C | ̸= 1 for all circuits C of G—see e.g. [7]. The reduced
graph of a multicut M is the graph GM obtained by contracting all the edges of E \M . Note that a multicut of GM is also a
multicut of G. We denote respectively by MG and BG the set of multicuts and the set of bonds of G. A subset of edges of
G is called a circuit if it induces a connected graph in which every vertex has degree 2. Given a circuit C , an edge of G is
a chord of C if its endpoints are two nonadjacent vertices of C . A graph is 2-connected if it remains connected whenever
a vertex is removed.

A graph is series–parallel if its 2-connected components either consist of a single edge or can be constructed from the
circuit of length two C2 by repeatedly adding edges parallel to an existing one, and subdividing edges, that is, replacing
an edge by a path of length two. Series–parallel graphs are those having no K4-minor [12]. A graph is chordal if every
circuit of length 4 or more has a chord.

The cone C generated by a set of vectors {v1, . . . , vk} of Rn is the set of nonnegative combinations of v1, . . . , vk, that
is, C =

{∑k
j=1 λjvj : λ1, . . . , λk ≥ 0

}
. A set of vectors {v1, . . . , vk} is a Hilbert basis if each integer vector in their cone can
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Fig. 1. Edges in the figure represent sets of edges of G having endpoints in distinct Vi ’s. Solid lines depict e1, . . . , e6 given in the proof of Theorem 2.1.

be expressed as a nonnegative integer combination of v1, . . . , vk. A Hilbert basis is integer if it is composed of integer
vectors, and it is a minimal integer Hilbert basis if it has the smallest number of vectors among all integer Hilbert basis
generating the same cone. Each pointed rational cone has a unique minimal integer Hilbert basis [15, Theorems 16.4]. The
link between Hilbert basis and TDIness is in the following result.

Theorem 1.1 (Corollary 22.5a of [16]). A system Ax ≥ 0 is TDI if and only if the rows of A form a Hilbert basis.

2. When do multicuts form a Hilbert basis?

2.1. Characterization

The following result characterizes the graphs for which the multicuts form a Hilbert basis.

Theorem 2.1. The multicuts of a graph form a Hilbert basis if and only if the graph is series–parallel.

Proof. First, let us show that the incidence vectors of the multicuts of a non series–parallel graph do not form a Hilbert
basis. Suppose that G = (V , E) has K4 as a minor. Without loss of generality, we may assume G connected. Then, V can
be partitioned into four sets {V1, . . . , V4} such that Vi induces a connected subgraph and at least one edge connects each
pair Vi, Vj for i, j = 1, . . . , 4. We subdivide δ(V1, V2, V3, V4) into E1, . . . , E6 as in Fig. 1.

Let Ê = {e1, . . . , e6} where ei ∈ Ei for all i = 1, . . . , 6, and let w ∈ ZE be as follows:

we =

{2 if e ∈ E1,
1 if e ∈ E2, . . . , E6,
0 otherwise.

Since w =
1
2χ

δ(V1) + 1
2χ

δ(V2) + 1
2χ

δ(V1∪V3) + 1
2χ

δ(V1∪V4), it belongs to the cut cone of G. Moreover, w⊤χ Ê
= 7. Any conic

combination of multicuts yielding w involves only multicuts contained in δ(V1, . . . , V4). Each of these multicuts contains
between 3 and 6 edges of Ê. Hence, if w is an integer combination of such multicuts, it is the sum of two multicuts
containing 3 and 4 edges of Ê, respectively. This means that w is the sum of χ δ(Vi) and χ δ(Vi,Vj) for some i ̸= j. Since
we1 = 2, we have i ∈ {1, 2} and j ∈ {3, 4}. But then δ(Vi) ∩ δ(Vi, Vj) contains an edge among e2, . . . , e5, a contradiction
with we2 = we3 = we4 = we5 = 1.

Therefore, w is not an integer combination of multicuts, implying that the set of multicuts of G is not a Hilbert basis.
For the other direction, remark that each multicut of a series–parallel graph is the disjoint union of multicuts of its

2-connected components. Since they belong to disjoint spaces, if the set of multicuts of each 2-connected component
forms a Hilbert basis, then so does their union. Hence, it is enough to prove that the multicuts of a 2-connected
series–parallel graph form a Hilbert basis. From now on, assume the graph to be 2-connected.

We prove the result by induction on the number of edges of G. When G = ({u, v}, {e, f }) is the circuit of length two,
the only nonempty multicut is {e, f }, and its incidence vector forms a Hilbert basis. Similarly, when G consists of a single
edge, its incidence vector forms a Hilbert basis.

Now, let G̃ = (Ṽ , Ẽ) be obtained from a 2-connected series–parallel graph G = (V , E) by either adding a parallel edge
or subdividing an edge. By the induction hypothesis, MG is a Hilbert basis.

Suppose first that G̃ is obtained from G by adding an edge f parallel to an edge e of E. A subset of edges M of G
containing (respectively not containing) e is a multicut if and only if M ∪ f (respectively M) is a multicut of G̃. Thus, the
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incidence vector of each multicut of G̃ is obtained by copying the component associated with e in the component of f .
Since the incidence vectors of the multicuts of G are a Hilbert basis, so are the incidence vectors of the multicuts of G̃.

Suppose now that G̃ is obtained from G by subdividing an edge ē ∈ E. We denote by u the new vertex and by f and g
the edges adjacent to it. A multicut M of G̃ can be expressed as the half-sum of the bonds of G̃. Moreover, as each bond
is a multicut, bonds and multicuts of G̃ generate the same cone: the cut cone. Since System (1) is TDI in series–parallel
graphs [3, end of Section 6.4], the set of vectors {

1
2χ

B
: B ∈ BG̃} forms a Hilbert basis.

Let v be an integer vector in the cut cone. There exist λB ∈
1
2Z+ for all B ∈ BG̃ such that v =

∑
B∈BG̃

λBχ
B. The vector

v is an integer combination of multicuts of G̃ if and only if v − ⌊λδ(u)⌋χ
δ(u) is, thus we may assume that λδ(u) ∈ {0, 1

2 }.
Define w ∈ ZE by:

we =

{
vf + vg − 2λδ(u) if e = ē,
ve otherwise.

Remark that (B \ ē) ∪ f and (B \ ē) ∪ g are bonds of G̃ whenever B is a bond of G containing ē. Moreover, a bond B of G
which does not contain ē is a bond of G̃. Since δ(u) is the unique bond of G̃ containing both f and g , we have:

w =

∑
B∈BG:ē∈B

(λ(B\ē)∪f + λ(B\ē)∪g )χB
+

∑
B∈BG:ē̸∈B

λBχ
B.

Thus, w belongs to the cut cone of G. Moreover, as λδ(u) is half-integer, w is integer. By the induction hypothesis, MG
is a Hilbert basis, hence there exist µM ∈ Z+ for all M ∈ MG such that w =

∑
M∈MG

µMχM . Consider the family N of
multicuts of G where each multicut M of G appears µM times.

Suppose first that λδ(u) = 0. Then, vf + vg multicuts of N contain ē. Let P be a family of vf multicuts of N containing
ē and Q = {M ∈ N : ē ∈ M} \ P . Then, we have

v =

∑
M∈N :ē/∈M

χM
+

∑
M∈P

χ (M\ē)∪f
+

∑
M∈Q

χ (M\ē)∪g ,

hence v is a nonnegative integer combination of multicuts of G̃.
Suppose now that λδ(u) =

1
2 . Then, vf + vg − 1 multicuts of N contain ē. Let P be a family of vf − 1 multicuts of N

containing ē, let Q be a family of vg − 1 multicuts in {M ∈ N : ē ∈ M} \ P , and denote by N the unique multicut of N
containing ē which is not in P ∪ Q. Then, we have

v =

∑
M∈N :ē/∈M

χM
+

∑
M∈P

χ (M\ē)∪f
+

∑
M∈Q

χ (M\ē)∪g
+ χN\ē∪{f ,g}.

Hence v is a nonnegative integer combination of multicuts of G̃. This proves that MG̃ is a Hilbert basis. □

2.2. An integer box-TDI system for the flow cone in series–parallel graphs

Combining the box-TDIness of the flow cone and Theorems 1.1 and 2.1 yields a box-TDI system for the flow cone of a
series–parallel graph with only integer coefficients. This provides a first answer to the question of [3].

Corollary 2.2. The following statements are equivalent:

i. G is a series–parallel graph,
ii. System (2) is TDI,
iii. System (2) is box-TDI.

Proof (i.⇔ii.). This equivalence follows by combining Theorems 1.1 and 2.1.
(ii.⇔iii.) If G is series–parallel, then System (1) is box-TDI [3, end of Section 6.4]. Hence, the flow cone of G is box-TDI.

Since a TDI system describing a box-TDI polyhedron is a box-TDI system [5], point ii. implies point iii.. A box-TDI system
being TDI by definition, point iii. implies point ii.. □

3. Which multicuts form Hilbert basis?

3.1. A minimal integer Hilbert basis

Theorem 2.1 provides the set of graphs whose multicuts form a Hilbert basis. The following theorem refines this result
by characterizing the multicuts which form the minimal Hilbert basis.

A multicut is chordal when its reduced graph is 2-connected and chordal. Note that bonds are chordal multicuts.

Theorem 3.1. The chordal multicuts of a series–parallel graph form a minimal integer Hilbert basis.
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Proof. Let G = (V , E) be a series–parallel graph. By Theorem 2.1, the multicuts of G form an integer Hilbert basis. Hence,
the minimal integer Hilbert basis is composed of the multicuts which are not disjoint union of other multicuts. These
multicuts are characterized in the following lemma, from which stems the desired theorem.

Lemma 3.2. A multicut of a series–parallel graph G is chordal if and only if it cannot be expressed as the disjoint union of
other nonempty multicuts.

Proof. Let M be a multicut of G. Recall that every multicut of GM is a multicut of G. Besides, since the disjoint union of
multicuts is a multicut, a disjoint union of nonempty multicuts is actually the disjoint union of two nonempty multicuts.

We first prove that, if GM is 2-connected and chordal, then M is not the disjoint union of two nonempty multicuts. By
contradiction, suppose that GM is 2-connected and chordal, and M = M1 ∪M2 where M1,M2 are disjoint multicuts of GM .
If C is a circuit of length at most three in GM , then C ⊆ Mi for some i = 1, 2. Indeed, the edges of C are partitioned by
M1 and M2, and a multicut and a circuit intersect in either none or at least two edges.

Since GM is 2-connected and Mi is nonempty for i = 1, 2, there exists at least a circuit containing edges of both M1
and M2. Let C be such a circuit, of smallest length. Then, C has length at least 4, as otherwise it would be contained in
one of M1 and M2. Since GM is chordal, there exists a chord c of C . Denote by P1 and P2 the two paths of C between the
endpoints of c. For i = 1, 2, the circuit Pi ∪ {c} is strictly shorter than C . Since C is the shortest circuit intersecting both
M1 and M2, we get that Pi ∪ {c} ⊆ Mi for i = 1, 2. But then c ∈ M1 ∩ M2, a contradiction.

To prove the other direction, first suppose that GM is not 2-connected. Then, the set of edges of each 2-connected
component of GM is a multicut of G, and M is the disjoint union of these multicuts. Now, suppose that GM is not chordal,
that is, GM contains a chordless circuit C of length at least 4. We will apply the following.

Claim 3.3. Let C be a circuit of length at least 4 in a series–parallel graph G. Then, there exists a pair of vertices nonadjacent
in G[V (C)] whose removal disconnects G.

Proof. We can assume that there are two nonadjacent vertices u and v of G[V (C)] such that there exists a path P between
u and v that has no internal vertex in C . Indeed, otherwise, removing any two nonadjacent vertices of G[V (C)] would
disconnect G.

Let us show that removing u and v disconnects G. Denote by Q and R the two paths of C between u and v. By
contradiction, suppose that G\{u, v} is connected. Then, there exists a path containing neither u nor v between an internal
vertex of R and an internal vertex of either P or Q . Let S be a minimal path of this kind. Then, no internal vertex of S
belongs to P , Q , or R, and the subgraph composed of P , Q , R and S is a subdivision of K4. This contradicts the hypothesis
that G is series–parallel. □

By Claim 3.3 there exist two vertices u and v of C , nonadjacent in G[V (C)], whose removal disconnects G. Denote by
V1, . . . , Vk the sets of vertices of the connected components of G \ {u, v}. Let Gi = G[Vi ∪ {u, v}] and denote by E(Gi) the
set of edges of Gi, for i = 1, . . . , k. Note that, since u and v are not adjacent, E(Gi)∩ E(Gj) = ∅ for all distinct i and j. Thus,
M is the disjoint union of E(G1), . . . , E(Gk).

Let us prove that E(Gi) is a multicut of GM , for i = 1, . . . , k. Consider a circuit D of GM . If D is contained in one of the
Gi’s, then |D ∩ E(Gj)| ̸= 1 for j = 1, . . . , k. Otherwise, D is the union of two paths from u to v, these paths being contained
in two different Gi’s. Without loss of generality, let these paths be P1 ∈ G1 and P2 ∈ G2. Then, we have D ∩ E(Gi) = Pi if
i = 1, 2, and ∅ otherwise. Since u and v are not adjacent, the shortest path from u to v in each Gi is of length at least
two, hence |Pi| ≥ 2. Therefore |D ∩ E(Gi)| ̸= 1 for i = 1, . . . , k.

Therefore, E(Gi) is a multicut of GM , and hence of G, for i = 1, . . . , k. Hence, M is the disjoint union of multicuts of G. □

□

3.2. The Schrijver system of the flow cone in series–parallel graphs

Corollary 2.2 provides an integer box-TDI description of the flow cone in series–parallel graphs. However, this box-TDI
description is not minimal: there are redundant inequalities whose removal preserves box-TDIness. Here, we provide the
minimal integer box-TDI system for this cone. This completely answers the question of [3, end of Section 6.4].

Corollary 3.4. The Schrijver system for the flow cone of a series–parallel graph G is the following:

x(M) ≥ 0 for all chordal multicuts M of G. (3)

Moreover, this system is box-TDI.

Proof. By Theorems 1.1 and 3.1, System (3) is a minimal integer TDI system. Since every bond is a chordal multicut,
this system describes the flow cone for series–parallel graphs. Therefore, by [5, Corollary 2.5] and by the flow cone being
box-TDI for series–parallel graphs, System (3) is box-TDI. □

We mention that, by planar duality, Corollary 3.4 provides the Schrijver system for the cone of conservative func-
tions [17, Corollary 29.2h] in series–parallel graphs.



Please cite this article as: M. Barbato, R. Grappe, M. Lacroix et al., The Schrijver system of the flow cone in series–parallel graphs, Discrete Applied
Mathematics (2020), https://doi.org/10.1016/j.dam.2020.03.054.

6 M. Barbato, R. Grappe, M. Lacroix et al. / Discrete Applied Mathematics xxx (xxxx) xxx

Acknowledgments

We are indebted to the anonymous referees for their valuable comments which greatly helped to improve the
presentation of the paper.

References

[1] X. Chen, G. Ding, W. Zang, A characterization of box-Mengerian matroid ports, Math. Oper. Res. 33 (2) (2008) 497–512.
[2] X. Chen, G. Ding, W. Zang, The box-TDI system associated with 2-edge connected spanning subgraphs, Discrete Appl. Math. 157 (1) (2009)

118–125.
[3] P. Chervet, R. Grappe, L.-H. Robert, Box-total dual integrality, box-integrality, and equimodular matrices., 2020, to appear in Math. Program..
[4] W. Cook, A minimal totally dual integral defining system for the b-matching polyhedron, SIAM J. Algebr. Discrete Methods 4 (2) (1983) 212–220.
[5] W. Cook, On box totally dual integral polyhedra, Math. Program. 34 (1) (1986) 48–61.
[6] W. Cook, W.R. Pulleyblank, Linear systems for constrained matching problems, Math. Oper. Res. 12 (1) (1987) 97–120.
[7] D. Cornaz, Max-multiflow/min-multicut for G+H series-parallel, Discrete Math. 311 (17) (2011) 1957–1967.
[8] D. Cornaz, R. Grappe, M. Lacroix, Trader multiflow and box-TDI systems in series–parallel graphs, Discrete Optim. 31 (2019) 103–114.
[9] W.H. Cunningham, A. Marsh, A primal algorithm for optimum matching, in: Polyhedral Combinatorics, Springer, 1978, pp. 50–72.

[10] G. Ding, L. Tan, W. Zang, When is the matching polytope box-totally dual integral? Math. Oper. Res. 43 (1) (2017) 64–99.
[11] G. Ding, W. Zang, Q. Zhao, On box-perfect graphs, J. Combin. Theory Ser. B 128 (2018) 17–46.
[12] R.J. Duffin, Topology of series-parallel networks, J. Math. Anal. Appl. 10 (2) (1965) 303–318.
[13] J. Edmonds, R. Giles, A min-max relation for submodular functions on graphs, in: Annals of Discrete Mathematics, Vol. 1, Elsevier, 1977, pp.

185–204.
[14] W.R. Pulleyblank, Total dual integrality and b-matchings, Oper. Res. Lett. 1 (1) (1981) 28–30.
[15] A. Schrijver, On total dual integrality, Linear Algebra Appl. 38 (1981) 27–32.
[16] A. Schrijver, Theory of Linear and Integer Programming, John Wiley & Sons, 1998.
[17] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Vol. 24, Springer Science & Business Media, 2003.
[18] A. Sebő, The Schrijver system of odd join polyhedra, Combinatorica 8 (1) (1988) 103–116.
[19] P.D. Seymour, Sums of circuits, in: J.A. Bondy, U.S.R. Murty (Eds.), Graph Theory and Related Topics, Vol. 1, Academic Press, 1979, pp. 341–355.

http://refhub.elsevier.com/S0166-218X(20)30153-0/sb1
http://refhub.elsevier.com/S0166-218X(20)30153-0/sb2
http://refhub.elsevier.com/S0166-218X(20)30153-0/sb2
http://refhub.elsevier.com/S0166-218X(20)30153-0/sb2
http://refhub.elsevier.com/S0166-218X(20)30153-0/sb3
http://refhub.elsevier.com/S0166-218X(20)30153-0/sb4
http://refhub.elsevier.com/S0166-218X(20)30153-0/sb5
http://refhub.elsevier.com/S0166-218X(20)30153-0/sb6
http://refhub.elsevier.com/S0166-218X(20)30153-0/sb7
http://refhub.elsevier.com/S0166-218X(20)30153-0/sb8
http://refhub.elsevier.com/S0166-218X(20)30153-0/sb9
http://refhub.elsevier.com/S0166-218X(20)30153-0/sb10
http://refhub.elsevier.com/S0166-218X(20)30153-0/sb11
http://refhub.elsevier.com/S0166-218X(20)30153-0/sb12
http://refhub.elsevier.com/S0166-218X(20)30153-0/sb13
http://refhub.elsevier.com/S0166-218X(20)30153-0/sb13
http://refhub.elsevier.com/S0166-218X(20)30153-0/sb13
http://refhub.elsevier.com/S0166-218X(20)30153-0/sb14
http://refhub.elsevier.com/S0166-218X(20)30153-0/sb15
http://refhub.elsevier.com/S0166-218X(20)30153-0/sb16
http://refhub.elsevier.com/S0166-218X(20)30153-0/sb17
http://refhub.elsevier.com/S0166-218X(20)30153-0/sb18
http://refhub.elsevier.com/S0166-218X(20)30153-0/sb19

	The Schrijver system of the flow cone in series–parallel graphs
	Introduction
	When do multicuts form a Hilbert basis?
	Characterization
	An integer box-TDI system for the flow cone in series–parallel graphs

	Which multicuts form Hilbert basis?
	A minimal integer Hilbert basis
	The Schrijver system of the flow cone in series–parallel graphs

	Acknowledgments
	References


