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ABSTRACT
Simultaneous selection of the number of clusters and of
a relevant subset of features is part of data mining chal-
lenges. A new approach is proposed to address this dif-
ficult issue. It takes benefits of both two-levels clustering
approaches and wrapper features selection algorithms. On
the one hands, the former enhances the robustness to out-
liers and to reduce the running time of the algorithm. On
the other hands, wrapper features selection (FS) approaches
are known to given better results than filter FS methods
because the algorithm that uses the data is taken into ac-
count. First, a Self-Organizing Maps (SOM), trained using
the original data sets, is clustered using k-means and the
Davies-Bouldin index to determinate the best number of
a clusters. Then, an individual pertinence measure guides
the backward elimination procedure and the feature mutual
pertinence is measure using a collective pertinence based
on the quality of the clustering.
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1 Introduction

During the last decade, it became obvious that adapted
tools are needed to exploit more and more huge companies
databases. Actually, databases contain important hidden
knowledge and the matter of data mining is to emphasize
it. The curse of dimensionality problem states that the num-
ber of needed examples for training grows exponentionnaly
with the dimensionality of the data. That way, whereas
Knowledge Discovery from Database (KDD) is only pos-
sible because of the data redundancy, too many redundant
features stand in the way of the nuggets discovery. This is-
sue can be addressed by one of the two main approaches,
namely, features extraction or feature selection.
The former presents a major drawback, actually, an impor-
tant effort from the user is required to interpret and under-
stand the new representation his data. Among the tech-
niques of this category, the most widely used are proba-
bly Principal Component Analysis (PCA) [1, 2] which suf-
fers from numerical instabilities whenever the correlation
of the data is ill-conditionned. Moreover, this methods as-
sume that the most relevant dimensions are those with the

largest variance which not always the case as it is showed
by the figure 1. Other approaches that does not suffer from
the same numerical instabilities has been proposed [3] al-
though the features extracted are not as intuitive as the orig-
inal features. Whereas, the problem of feature selection
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Figure 1. The feature variance is not always a relevant
pertinence measure; actually, in this example, whereas
σ2(X) = 1.03 andσ2(Y ) = 0.25, the best separation is
provided by theY axis.

had been widely studied in the context of supervised learn-
ing, it gains researchers interest more recently in the con-
text of unsupervised learning. In the context of supervised
learning, feature selection is driven by the main purpose :
achieve better accuracy on unseen data. Nevertheless, in
the unsupervised learning framework, the issue is very dif-
ferent because neither the data labels nor their number are
available. Therefore, the notion of feature relevance is not
as obvious the latter context as in the former context. Any-
way, selection of a relevant features subset remains a cru-
cial stake for the data-mining techniques. In this paper, we
propose an original method to find both the right number
of clusters and the respective subset of features. Our ap-
proach is based on both the Davies-Bouldin index [4, 5]
and the Test Values [6]. It is assumed that features that
does not participate in the structure identified are irrelevant
and should be thrusted away from the subset of features se-
lected.



The rest of this paper is organized as follows. The two-
levels clustering approache used is presented in section 2.
Then, the feature selection method proposed is presented
in section 3. Finally, some experimental results are given
befor to conclude.

2 Method

2.1 Self-Organizing Maps

SOM was introduced by Pr. Teuvo Kohonen in the early
80’s as a convenient clustering and visualization tool.
High-dimensional data are projected on a low dimension
discrete space, called the topological map, preserving the
local topology of the initial space; thus, the observations
which are close to each other are projected on a localized
area. A map should be viewed as a set of neurons (or units),
organized according to a grid that defines their neighbour-
hood relationships. Each neuron is associated to one point
of the observations’ space: its prototype.
Self-Organizing Maps (SOM) implement a particular form
of competitive artificial neural networks; when an observa-
tion is recognized, activation of an output cell competition
layer leads to inhibit activation of other neurons and re-
inforce itself. It is said that it follows the so calledWin-
ner Takes Allrule. Actually, neurons are specialized in the
recognition of one kind of observations. The learning is un-
supervised because neither the classes nor their number is
fixed a priori. A SOM consists in a two dimensional layer
of neurons which are connected to the inputs with exciting
connections and to their neighbors with inhibiting links.
The training set is used to organize these maps under topo-
logical constraints of the input space. Thus, a mapping be-
tween the input space and the network space is constructed;
closed observations in the input space would activate two
closed units of the SOM. An optimal spatial organization is
determined by the SOM from the received information, and
when the dimension of the input space is lower than three,
both position of weights vectors and direct neighbourhood
relations between cells can be represented visually.

2.2 Learning algorithms

For convenience, let us mention some notations : letN be
the number of sample points in the data setΩ, n be the
number of features in the original feature setF , r be the
number of features in the reduced feature setFR, M be the
size of the map units setU andωj be the prototype of the
jth unit.
Connectionist learning is often presented as a minimiza-
tion of a risk function (cost function). In our case, it will be
carried out by the minimization of the distance between the
input samples and the map prototypes (referents), weighted
by a neighbourhood functionhij . The criterion to be mini-

mized is defined by:

RSOM =
1

N

∑

xi∈Ω

∑

j∈U

hbij . ‖ωj − xi‖
2 (1)

wherebi is theBest Matching Unit(BMU) of the sample
point xi ∈ Ω and is defined as the unit with the closest
prototype:

bi = arg min
j∈U

{‖ωj − xi‖
2
}

In our experiments, we use the gaussian neighbor-
hood functionh defined

hij = exp

(

−
d2 (i, j)

2.σ2 (t)

)

whered (i, j) is the distance between unitsi andj on the
map andσ (t) is a decreasing function that defines the size
of the neighborhood considered at stept.
Two main approaches can be used to optimize the crite-
rion mentionned above, namely theon-line algorithmand
the batch algorithm. Whereas the latter suffers from sev-
eral drawbacks [7], it provides faster convergence. So we
choose the batch Kohonen’s algorithm [8] because our ap-
proach necessitates several running of the learning of the
learning algorithm. The weights of all the neurons are up-
dated until stabilization according to the following adapta-
tion rules:

ωj (t + 1) =

∑

i∈Ω hbijxi
∑

i∈Ω hbij

(2)

2.3 SOM segmentation

Whereas both agglomerative and partitive clustering algo-
rithm have been successfully applied to the segmentation
of SOM [9], several specific approaches have been pro-
posed to take into account the topological ordering of the
unit maps. They rely on either the contiguity study [10] or
the U-matrix (the matrix of distances between adjacent map
units) [11, 12, 13]. We adopted thekmeansbased approach
proposed by J. Vesanto [9]. Although the number of clus-
ters is needed to run thekmeansalgorithm, it is not known
in the unsupervised learning framework. So several values
should be tried and the best one according to the Davies-
Bouldin index [4] is selected. Assuming thatC, Sc(k) and
dce(k, l) respectively refers to the number of clusters, the
mean quantization error in clusterk and the distance be-
tween the centers of clustersk and l, the Davies-Bouldin
index is defined by

IDB =
1

C

C
∑

k=1

max
l 6=k

{

(Sc(k) + Sc(l))

dce(k, l)

}

It should be noticed that the kmeans algorithm is a special
case of the SOM training algorithm when no neighborhood
constraints are imposed to the center. In other words, the
neighborhood functionhbij is replaced by the chronecker
symbolδbij .



3 Feature Selection

Feature Selection necessitates three essential elements
[14]:

• A pertinence measure

• A search procedure

• A stop criterion

3.1 Pertinence measure

Whereas in the supervised learning case, a pertinence mea-
sure can be easily defines using the performance of the
model in the task it has been designed to, in the unsuper-
vised learning framework, it is not possible anymore.
So we have to define new criteria. We propose to use two
different feature evaluation criteria : an individual criteria,
Rindividual(j), to guide the search procedure and a collec-
tive criteria,Rcollective(j), to take the mutual relevance of
features.
We propose to select features that involve a good cluster-
ing; thus, the SOM is segmented using the method pre-
sented above and the test-values [6] of each feature accord-
ing each cluster are computed. Therefore, the maximum of
absolute test values along the the different clusters is used
as an individual relevance measure. The first individual rel-
evance criteria is defined by

Rindividual(j) = max
k=1,...,C

{
∣

∣

∣

∣

µkj − µj

σkj

∣

∣

∣

∣

}

(3)

whereC, µj , µkj andσkj are respectively the number of
clusters, the mean values of the featurej in the whole data
set and in the clusterk, and the standard deviation of feature
j in the clusterk.
Then, whenever the removing of a feature involves an in-
creasing of theIDB , we consider that it is relevant accord-
ing the current clustering. Thus, we define the collective
relevance of a feature as the increasing of theIDB involved
by its removing :

Rcollective(j) = IDB − IDB|FR\{j} (4)

whereIDB |FR\{j} is the Davies-Bouldin index evaluated
without taking in account the featurej.
Whereas these criteria have been successfully apply to sev-
eral data set from UCI [15], they present some drawbacks.
On the one hand, they rely on the kmeans algorithm which
is well known for its strong dependance with the initial
centers. So, to insure the reliability of the result several
running of the algorithm have to be done at each step of
the feature selection procedure and for each possible num-
ber of clusters. On the other hand, when many features are
noisy or irrelevant, they may prevent kmeans algorithm and
Davies-Bouldin to identified the right clusters; therefore
the feature selection procedure might fail. Two other cri-
teria which avoid the additional computational cost due to
the map segmentation and the possible weak of robustness
of the above criteria are presented in the next paragraph.

3.2 Search procedure

To find an optimal solution requires either an exhaustive
search or the monotonicity of the pertinence measure. On
the ones hand, the former involves the pertinence evalua-
tion of 2n subsets wheren is the number of features and it
becomes infeasible sincen is large. On the other hand, the
latter is difficult to insure. We propose a Backward Elimi-
nation procedure that takes into account both the individual
and the collective pertinence measures defined in the pre-
vious section. It begins with the whole features set and
progressively eliminates the less interesting features. The
individual measure guides the selection and the collective
pertinence insures that the removing of the feature candi-
date do not alter the quality of the model. The thresholdθ

in the algorithm 1 is used to balance the relative importance
of the two pertinence measures.

Algorithm 1 Feature Selection Procedure
FR ← F

while (¬stopping criterion) do
Build a model.
Evaluate individual relevanceRindividual(j)
Sort features according ascending individual rele-
vance ordering
found← false

while (¬found) do
Evaluate the collective criterionRcollective(j) of
the less relevant feature according individual crite-
rion
if (Rcollective(j) ≤ θ) then

found← true

R← R \ {j}
end if

end while
if (¬found) then

j ← arg mink∈R {Rcollective(k)}
R← R \ {j}

end if
end while

3.3 Stop criterion

We use the statistic criterion proposed by T. Cibas [16] to
evaluate whether a feature subset gives any additionnal in-
formation according another one. Therefore, the backward
elimination procedure is stopped since the removing of the
feature selected involves a loss of information.
Assuming thatF , the set of features, andF \ FR, the re-
moved features subset, are distributed according a gaussian
law

N(µ(k), Σ) : k = 1, . . . , C

whereµ(k), the mean of the features fromF in the cluster



k, andΣ, the covariance matrices, are defined as follows

µ(k) =
(

µ
(k)
1 , µ

(k)
2

)

, Σ =

(

Σ11 Σ12

Σ21 Σ22

)

where 1 and 2 as index respectively stand forFR and
F \ FR. Then, the null hypothesis which says thatF \ FR

does not give any additionnal information thanFR is ex-
pressed as follows :

H0 : µ
(k)
2 − µ

(h)
2 − Σ21Σ

−1
11

(

µ
(k)
1 − µ

(h)
1

)

= 0 (5)

with k 6= h = 1, . . . , C.
A test of this hypothesis is based on Wilks statistics. LetB

andW be respectively the between and the within covari-
ance matrices :

B =

C
∑

k=1

N (k)
(

µ(k) − µ
) (

µ(k) − µ
)T

W =
C

∑

k=1

N(k)
∑

i=1

(

x
(k)
i − µ(k)

)(

x
(k)
i − µ(k)

)T

whereN (k) is the number of elements in the clusterk and
µ is the mean of the features fromF for the whole sam-
ple. Then, the same block decomposition as forΣ can be
applied to the matricesB, W and their sumT :

B =

(

B11 B12

B21 B22

)

W =

(

W11 W12

W21 W22

)

T = B + W =

(

T11 T12

T21 T22

)

Therefore, the determinants of the matricesW andT can
be written

|W | = |W11|
∣

∣W22 −W21W
−1
11 W12

∣

∣

|T | = |T11|
∣

∣T22 − T21T
−1
11 T12

∣

∣

Thus, we denote

K =

∣

∣W22 −W21W
−1
11 W12

∣

∣

∣

∣T22 − T21T
−1
11 T12

∣

∣

which has(N−C−r)
(C−1) degrees of freedom. With the above

notations, the Wilks statistics forn variables are :

ΛF =
|W |

|T |

= K.
|W11|

|T11|

= K.ΛFR

which shows that, with a small value ofK, the clusters
separability is larger withn than r features. Therefore,

the null hypothesis (5) is true if and if only features from
FR involve the same separability as the whole features set
F . Then, the Wilks statisticΛ is equivalent to the Fisher-
Snedecor one :

Fs =
(N − C − r)

(C − 1)

1−K

K

which is distributed accordingF (C − 1, N − C − r)

4 Experiments and results

The method presented above has been apply to several
commonly used UCI machine learning data sets [15].
Whereas the data labels havent’t been used during the
learning stage, they can be used for evaluation purpose;
actually, the ability of our approach to identified the true
clusters can be measured using the following criterion :

• the number of identified clusters refered byCT

• the couple error which measures how far the discov-
ered partition is from thetrue classes and is defined
by EC = 2

N(N−1)

∑

(i,j)∈{1,...,N}2, i<j ǫij whereǫij

is null when samples pointsi andj are either grouped
or separated in both true and discovered partitions.

• the Purity of clusters in term of known classes
PR = 1

N

∑CT

k=1 maxMk whereM is the confusion
matrix.

In our experiments, we used thebatchKohonen’s algorithm
and thefast global k-meansalgorithm [17] which are both
deterministic. For each of the data sets considered, we run
five 10-folds validation and we summarized the results ob-
tained in Table 1. Then, the figure 4 shows the evolution of
the Davie-Bouldin index during the feature selection pro-
cess. The last model index value can be considered as an
outlier, therefore, the best model according to the Davies-
Bouldin index is obtained when five features have been re-
moved. Nevertheless, our stop criterion indicates that the
model with eleven removed features should be retained.

5 Conclusion

A new approach to select both the number of clusters and
the related features subset has been proposed in an unsuper-
vised learning framework. Whereas the preliminary results
are encourageous, the stop criterion proposed can not al-
ways be uses. For instance, it requires thatN − c ≥ p,
whereN , c andp are respectively the number of map units,
the number of identified clusters and the total number of
features, to insure that the within covariance matrixW is
not singular. Research work are on the way to enhance the
proposed method to data sets with more features than ob-
servations.



Training set Testing set
CT [σCT

] nFS [σnF S
] EC [ σEC

] PR [ σPR
] EC [ σEC

] PR [ σPR
]

Glass F 7.04 [0.73] 9.0 [ − ] 0.301 [0.012] 56.25 [ 2.56 ] 0.295 [0.068] 67.52 [ 9.01 ]
189 - 21 FR 5.10 [1.83] 2.84 [ 1.46 ] 0.376 [0.082] 50.83 [ 6.54 ] 0.382 [0.121] 58.38 [10.40]

Wine F 6.86 [0.81] 13.0 [ − ] 0.171 [0.022] 93.59 [ 1.97 ] 0.165 [0.064] 95.28 [ 5.11 ]
189 - 21 FR 5.70 [2.34] 6.3 [ 2.1 ] 0.247 [0.060] 80.32 [12.02] 0.239 [0.096] 83.44 [13.78]
Cancer F 9.72 [0.67] 30.0 [ − ] 0.414 [0.014] 93.83 [ 1.56 ] 0.417 [0.026] 94.16 [ 3.03 ]
242 - 27 FR 2.72 [1.96] 12.4 [ 3.3 ] 0.182 [0.077] 91.53 [ 1.04 ] 0.184 [0.091] 91.60 [ 3.49 ]
Wave F 6.18 [2.56] 40.0 [ − ] 0.304 [0.016] 68.64 [ 8.48 ] 0.309 [0.014] 66.17 [ 7.82 ]

500 - 4500 FR 4.82 [1.55] 28.2 [ 9.56 ] 0.304 [0.020] 66.93 [ 6.62 ] 0.306 [0.018] 65.97 [ 6.68 ]

Table 1. The two numbers under the data set name indicates thesize of the training and testing sets respectively. ThenF and
FR stands for the whole features set and the reduced subset selected.
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Figure 2. Evolution of the Davies-Bouldin index during the backward features elimination procedure : the vertical dashline
indicates the model retained by our stop criterion and some of the best index values are indicated too.
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