
The Complexity of Semilinear Problems in

Succinct Representation

(Extended Abstract)
?

Peter Bürgisser??1, Felipe Cucker? ? ?2, and Paulin Jacobé de Naurois

1 Dept. of Mathematics, University of Paderborn, D-33095 Paderborn, Germany
pbuerg@upb.de

2 Department of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue,
Hong Kong, P. R. of China

macucker@math.cityu.edu.hk
3 LORIA, 615 rue du Jardin Botanique, BP 101, 54602 Villers-lès-Nancy Cedex,

Nancy, France
Paulin.De-Naurois@loria.fr

Abstract. We prove completeness results for twenty-three problems in
semilinear geometry. These results involve semilinear sets given by addi-
tive circuits as input data. If arbitrary real constants are allowed in the
circuit, the completeness results are for the Blum-Shub-Smale additive
model of computation. If, in contrast, the circuit is constant-free, then
the completeness results are for the Turing model of computation. One
such result, the PNP[log]-completeness of deciding Zariski irreducibility,
exhibits for the first time a problem with a geometric nature complete
in this class.

1 Introduction and Main Results

A subset S ⊆ R
n is semilinear if it is a Boolean combination of closed half-spaces

{x ∈ R
n | a1x1 + . . . + anxn ≤ b}. That is, S is derived from closed half-spaces

by taking a finite number of unions, intersections, and complements.
The geometry of semilinear sets and its algorithmics has been a subject of

interest for a long time not the least because of its close relationship with linear
programming and its applications. This relationship is at the heart of many
algorithmic results on both semilinear geometry and linear programming. It is
also a good starting point to motivate the results in this paper.

Consider the feasibility problem for linear programming. That is, the problem
of deciding whether a system of linear equalities and inequalities has a solution. A
celebrated result by Khachijan [8] states that if the coefficients of these equalities
and inequalities are integers then this problem can be solved in polynomial time

? A full version of this paper can be obtained at http://www-math.upb.de/agpb
?? Partially supported by DFG grant BU 1371 and Paderborn Institute for Scientific

Computation (PaSCo).
? ? ? Partially supported by City University SRG grant 7001558.



in the Turing machine model; that is, it belongs to the class P. If the coefficients
are not integers but arbitrary real numbers, the Turing machine model is no
longer appropriate. Instead, we analyze this version of the problem using the
machine model over the real numbers introduced by Blum, Shub and Smale
(the BSS model in the following). While it is not difficult to show that the
linear programming feasibility problem over R is in NPR ∩coNPR (this is merely
Farkas’ Lemma), or even that it can be solved in average polynomial time, its
membership to PR (i.e., its solvability in deterministic polynomial time in the
BSS model) remains an open problem. This membership problem has even been
proposed by Smale as one of the mathematical problems for the 21st century [17].

A situation intermediate between the two above is the one in which the
inequalities a1x1 + . . .+anxn ≤ b have integer coefficients ai and real right hand
side b. In this case, the appropriate model of computation is the additive model.
This is a restriction of the BSS model over R where multiplications and divisions
are excluded from the capabilities of the machine. Only additions, subtractions
and comparisons may be performed. The rephrasing of a well known result by
Tardos [18] shows that the feasibility problem for a system of linear inequalities
of the above mixed type is solvable in Padd.

1

Equalities and inequalities of the mixed type we just described are not as
rare as they may appear at a first glance. They naturally occur in the defining
equations of semilinear sets given in succinct representation. Here, a semilinear
set is given by an additive decision circuit (a more precise development follows
in Section 2): a point x ∈ R

n is in the set if and only if the circuit returns 1 with
input x. Since additive circuits are natural input data for additive machines one
may wonder about the complexity of the feasibility problem CSatadd for semi-
linear sets in succinct representation. This problem consists of deciding whether
the semilinear set S given by an additive circuit is nonempty. As it turns out,
this problem is NPadd-complete [2]. This is in contrast with the result by Tardos
mentioned above and is explained by the fact that an additive circuit of size
O(n) can describe a semilinear set defined with O(2n) linear inequalities.

The completeness result for CSatadd is not an isolated fact. It was recently
shown [3] that several other problems for semilinear sets in succinct represen-
tation are complete in some complexity class. Notably, to decide whether the
dimension of such a set is at least a given number is also NPadd-complete, to

compute its Euler characteristic is FP
#P

add

add -complete, and to compute any of its
Betti numbers is FPARadd-complete.

One of the goals of this paper is to further expand the catalogue of com-
plete problems in semilinear geometry. We will show completeness for twenty
three problems in this domain. These results, together with the previous results
mentioned above, draw an accurate landscape of the difficulty of different prob-
lems in semilinear geometry providing, at the same time, examples of natural

1 The reader may have noticed that we use the subscript “add” for complexity classes
in the additive model, the subscript “R” for those in the unrestricted BSS model,
and no subscript at all for those in the Turing model. In addition, to emphasize the
latter, we use sanserif fonts.



complete problems for many of the complexity classes defined in the additive
model.

A final remark is relevant. If an additive circuit has no constant gates (other
than those with associated constant 0 or 1) it is said to be constant-free. Such a
circuit can be described by means of a binary string and thus be taken as input
by ordinary Turing machines. In this way, all problems considered in this paper
have a discrete version fitting the classical complexity setting.

By checking our proofs one can see that all our completeness results hold
for these discrete versions with respect to the corresponding discrete complexity
classes.

We next briefly describe our main results. The precise definition of some
concepts (e.g., Zariski topology) will be given later on this paper. The following
list should give, however, an idea of the results we obtain. We consider the
following problems related to topological properties of semilinear sets:

EAdhadd (Euclidean Adherence) Given a decision circuit C with n input gates and a
point x ∈ R

n, decide whether x belongs to the Euclidean closure of the semilinear
set SC ⊆ R

n described by C .
EClosedadd(Euclidean Closed) Given a decision circuit C , decide whether SC is

closed under the Euclidean topology.
EDenseadd(Euclidean Denseness) Given a decision circuit C with n input gates,

decide whether SC is dense in R
n.

Unboundedadd (Unboundedness) Given a decision circuit C with n input gates,
decide whether SC is unbounded in R

n.
Compactadd (Compactness) Given a decision circuit C , decide whether SC is com-

pact.
Isolatedadd (Isolatedness) Given a decision circuit C with n input gates and a point

x ∈ R
n, decide whether x is isolated in SC .

ExistIsoadd (Existence of Isolated Points) Given a decision circuit C with n input
gates, decide whether there exists x ∈ R

n isolated in SC .
#Isoadd (Counting Isolated Points) Given a decision circuit C , count the number

of isolated points in SC .
LocDimadd (Local Dimension) Given a decision circuit C , a point x ∈ SC and an

integer d ∈ N, decide whether dimx SC ≥ d.
LocContadd (Local Continuity) Given an additive circuit C with n input gates and

a point x ∈ R
n, decide whether the function FC computed by C is continuous at x

(for the Euclidean topology).
Contadd (Continuity) Given an additive circuit C , decide whether FC is continuous

(for the Euclidean topology).
Surjadd (Surjectivity) Given an additive circuit C , decide whether FC is surjective.
#Discadd (Counting Discontinuities) Given an additive circuit C , count the number

of points in R
n where FC is not continuous for the Euclidean topology.

Reachadd (Reachability) Given a decision circuit C with n input gates, and two
points s and t in R

n, decide whether s and t belong to the same connected com-
ponent of SC .

Connectedadd (Connectedness) Given a decision circuit C , decide whether SC is
connected.

Torsionadd (Torsion ) Given a decision circuit C , decide whether the homology of
SC is torsion free.



ZAdhadd (Zariski Adherence) Given a decision circuit C with n input gates and a
point x ∈ R

n, decide whether x belongs to the Zariski closure of SC .
ZClosedadd(Zariski Closed) Given a decision circuit C , decide whether SC is closed

under the Zariski topology.
ZDenseadd(Zariski Denseness) Given a decision circuit C with n input gates, decide

whether SC is Zariski dense in R
n.

Irradd(Zariski Irreducibility) Given a decision circuit C , decide whether the Zariski
closure of SC is affine.

#Irradd (Counting Irreducible Components) Given a decision circuit C , count the
number of irreducible components of SC .

#Irr
(d)
add (Counting Irreducible Components of Fixed Dimension) Given a decision

circuit C , count the number of irreducible components of SC of dimension d.
#Irr

[c]
add (Counting Irreducible Components of Fixed Codimension) Given a decision

circuit C , count the number of irreducible components of SC of codimension c.
#Irr

{N}
add (Counting Irreducible Components in Fixed Ambient Space) Given a deci-

sion circuit C with a fixed number N of input gates, count the number of irreducible
components of SC .

Our main results can be summarized in the following table. Here (T) means
that the hardness is for Turing reductions. In what follows, unless specified
otherwise, completeness will always mean completeness with respect to many-
one reductions.

Problems Complete in Discrete version

complete in

EAdhadd, ZAdhadd NPadd NP

EClosedadd, ZClosedadd coNPadd coNP

EDenseadd coNPadd coNP

ZDenseadd NPadd NP

Unboundedadd NPadd NP

Compactadd coNPadd coNP

Isolatedadd coNPadd coNP

LocDimadd NPadd NP

LocContadd , Contadd coNPadd coNP

Irradd P
NPadd[log]
add PNP[log]

ExistIsoadd Σ2
add Σ2P

Surjadd Π2
add Π2P

#Isoadd, #Discadd FP
#Padd

add (T) FP#P
(T)

#Irradd, #Irr
(d)
add, #Irr

[c]
add, #Irr

{N}
add FP

#Padd

add (T) FP#P
(T)

Reachadd, Connectedadd PARadd (T) PSPACE

We remark that the Zariski topology and irreducible components are natu-
ral concepts studied in algebraic geometry [16]. In particular, we show that the
problem to test irreducibility of a semilinear set given by a constant-free deci-
sion circuit is complete for the class PNP[log]. The latter class was first studied by
Papadimitriou and Zachos [14] and consists of the decision problems that can
be solved in polynomial time by O(log n) queries to some NP language. Equiv-
alently, PNP[log] can also be characterized as the set of languages in PNP whose



queries are non adaptive, cf. [13, Th. 17.7]. This means that the input to any
query does not depend on the oracle answer to previous queries, but only on the
input of the machine. Several natural complete problems for PNP[log] are known,
see for instance [10, 7].

For the problem Torsionadd we prove PARadd-hardness (with respect to
Turing reductions) and membership in EXPadd (PSPACE-hardness and mem-
bership in EXP for its discrete version). This advances towards determining the
complexity of Torsionadd, a question left open in [3, §7]. Also, the PARadd-
completeness of Connectedadd closes a question left open therein.

2 Preliminaries

We next review the notions which will be central in this paper, fixing notations
at the same time. A basic reference (since this paper is an extension of it) is [3].

(1) The Euclidean norm in R
n induces a topology, called Euclidean, in R

n.
We will denote the closure of a subset S ⊆ R

n with respect to the Euclidean
topology by S. Following [16], we define another, coarser, topology in R

n, hereby
restricting us to semilinear sets.

Definition 1. We call a semilinear set S ⊆ R
n Zariski closed if it is a finite

union of affine subspaces of R
n. The Zariski closure of a semilinear set V ⊆ R

n,

denoted by V
Z
, is the smallest Zariski-closed semilinear subset of R

n contain-
ing V .

The use of the words “closed” or “closure” is appropriate: the semilinear
Zariski-closed sets satisfy the axioms of the closed sets of a topology on R

n.
We will use the sign functions sg : R → {−1, 0, 1}, pos : R → {0, 1} defined by

sg(x) = pos(x) = 1 if x > 0, sg(0) = 0, pos(0) = 1, and sg(x) = −1, pos(x) = 0
if x < 0. We extend these functions to R

n componentwise. A quadrant of R
n is

an open subset of R
n of the form {x ∈ R

n | sg(x) = σ} for some σ ∈ {−1, 1}n.

(2) We next recall a few facts concerning additive circuits. Such circuits are
defined in many places [2, 3, 9]. An additive circuit is a directed acyclic graph
whose nodes are of one of the following types: input, output, constant, addition,
substraction, and selection. The first four types of node have an obvious seman-
tics; selection nodes have four inputs v, a, b, c and return a if v > 0, b if v = 0
and c otherwise.

An additive circuit C with n input nodes and m output nodes computes a
function FC : R

n → R
m. A decision circuit C is an additive circuit with exactly

one output node that is preceded by a selection node with a, b, c ∈ {0, 1}. Such
a circuit computes a function FC : R

n → {0, 1} and decides the semilinear set
SC := {x ∈ R

n | FC (x1, . . . , xn) = 1}. We say that SC is given in succinct
representation.

Definition 2. Let C be a decision circuit with r selection gates and n input
gates. A path γ of C is an element in {−1, 0, 1}r. We say that x ∈ R

n follows



a path γ of C if, on input x and for all j, the result of the test performed at the
j-th selection gate is γj (i.e., γj = −1 if the tested value v satisfies v < 0, γj = 0
if v = 0, and γj = 1 if v > 0). The leaf set of a path γ is defined as

Dγ = {x ∈ R
n | input x follows the path γ of C }.

A path γ is accepting if and only if we have FC (x) = 1 for one (and hence for
all) x ∈ Dγ. We denote by AC the set of accepting paths of the circuit C .

(3) We finally recall some notions of computation and complexity. In this
paper we use additive machines (i.e., BSS machines over R which do not multiply
or divide) as described in [2, Ch. 18] or in [9]. For these machines, versions of
the usual complexity classes are defined yielding the classes Padd, NPadd, #Padd,
PARadd, EXPadd, and FPadd (note that the additive version of polynomial space
requires instead polynomial parallel time). An overview of these classes and their
properties can be found in [2, Ch. 18] and [3].

We already defined the problem CSatadd and observed that it is NPadd-
complete. The following two problems are also NPadd-complete:

CBSadd (Circuit Boolean Satisfiability) Given a decision circuit C with n input gates,
decide whether there exists x ∈ {0, 1}n such that C (x) = 1.

Dimadd (Dimension) Given a decision circuit C with n input gates and k ∈ N, decide
whether the dimension of SC is greater than or equal to k.

For Dimadd this follows easily from [3, Theorem 5.1] (there k is assumed to
be fixed, but the proof carries over easily). Note that CBSadd deals with a digital
form of nondeterminism since it requires the circuit to be satisfied by a point in
{0, 1}n.

The NPadd-completeness of CBSadd allows us to use a problem with a discrete
flavor to prove completeness results in the additive setting. More generally, a
series of results starting in [6], continued in [3], and relying on Meyer auf der
Heide [11], allow us to use standard discrete problems as basis for reductions
yielding Turing-hardness results in the additive setting.

We finish these preliminaries with a lemma gathering several facts which will
be used later on in many proofs.

Lemma 1. Given a decision circuit C , two paths γ, γ ′ of C , and a point x ∈ R
n,

the following tasks can be performed by an additive machine in time polynomial
in the size of C :

(i) Decide whether Dγ is nonempty.

(ii) Decide whether x ∈ Dγ, or decide whether x ∈ Dγ
Z
.

(iii) Compute dim Dγ.

(iv) Decide whether Dγ
Z
⊆ Dγ′

Z
.

3 Some Proofs

In this section we give some proofs to convey an idea of our techniques.



3.1 Basic Topology

Proposition 1. The problem ZDenseadd is NPadd-complete.

Proof. Note that SC

Z
=

⋃

γ∈AC
Dγ

Z
. Therefore, S

Z

C = R
n if and only if

there exists γ ∈ AC such that Dγ is Zariski dense in R
n. Since Dγ

Z
is the affine

hull of Dγ (if Dγ 6= ∅), we see that Dγ is Zariski dense in R
n if and only if

dim Dγ = n. Hence, S is Zariski dense in R
n if and only if dim S = n. The

membership to NPadd now follows from the fact that Dimadd is in NPadd.
For proving the hardness, we reduce CBSadd to ZDenseadd. Assume C is a

decision circuit with n input gates. Consider a circuit C ′ computing the function

GC : R
n → {0, 1}, x 7→ FC (pos(x)). (1)

The mapping C 7→ (C ′, 0) reduces CBSadd to ZDenseadd. Indeed, if SC ∩
{0, 1}n = ∅ then SC ′ = ∅ as well and hence 0 6∈ SC ′ . On the other hand, if
SC ∩ {0, 1}n 6= ∅ then SC ′ contains at least one quadrant and hence 0 ∈ SC ′ .

ut

The following result is proved with similar arguments.

Proposition 2. The problem ExistIsoadd is Σ2
add-complete.

3.2 Zariski Irreducibility

Irreducibility is a natural concept in algebraic geometry [16]. For semilinear sets
this notion can be defined as follows.

Definition 3. A semilinear set S ⊆ R
n is Zariski-irreducible if its Zariski clo-

sure is an affine space. The Zariski closure of a semilinear set S ⊆ R
n is a non-

redundant finite union of affine subspaces A1, . . . , As of R
n. We call A1, . . . , As

the irreducible components of S
Z

and call the sets S ∩ Ai the irreducible com-
ponents of S.

We extend the definition of PNP[log] to the additive setting in the obvious

way thus obtaining the class P
NPadd[log]
add . Again, it is not difficult to show that

this class can also be characterized as the set of decision problems solvable in
additive polynomial time with non adaptive queries to NPadd.

The main result of this section is the following.

Theorem 1. The problem Irradd is P
NPadd[log]
add -complete.

We first prove the upper bound.

Lemma 2. The problem Irradd is in P
NPadd[log]
add .

Proof. Consider the following algorithm:



input C with n input gates
for k = −1, . . . , n (independently) do

(i) check whether dim SC ≥ k

(ii) check whether ∀γ, γ′ ∈ AC (dimDγ′ = k ⇒ Dγ
Z
⊆ Dγ′

Z
)

let d = max{k : (i) holds }
if (ii) holds for k = d then ACCEPT else REJECT

This algorithm decides whether SC is Zariski irreducible. Indeed, the dimen-
sion d of SC is computed, and the query (ii) for k = d checks whether for all

leaf sets Dγ′ of dimension d we have SC

Z
= Dγ′

Z
. This holds if and only if SC

is Zariski irreducible.
Since Dimadd is known to be in NPadd [3], (i) is a query to a problem in

NPadd. By Lemma 1, (ii) is a query to a problem in coNPadd. Since the queries
are nonadaptive and the algorithm runs in polynomial time, the set Irradd is in

P
NPadd[log]
add . ut

Lemma 3. (i) Let S1 ⊆ R
n and S2 ⊆ R

m be two non-empty semilinear sets.
Then, S1 × S2 ⊆ R

n+m is irreducible if and only if both S1 and S2 are
irreducible.

(ii) A nonempty union of reducible semilinear sets is reducible. ut

We turn now to the proof of the lower bound in Theorem 1.

Lemma 4. The problem Irradd is P
NPadd[log]
add -hard under many-one reductions.

Proof. Assume L is a problem in P
NPadd[log]
add . Then we may assume that L is

decided by a polynomial time additive machine asking non adaptively a poly-
nomial number of queries to the NPadd-complete problem ZDenseadd. Hence,
there exists a polynomial p and, for all n ∈ N, a polynomial size circuit C n with
n + p(n) input gates and a family of polynomial size circuits C n

1 , . . . , C n
p(n) with

n input gates, such that, for x ∈ R
n, x is in L if and only if FC n(x, s) = 1, where

s = (s1, . . . , sp(n)) denotes the sequence of oracle answers for the input x, that
is si = 1 if the output of C n

i on input x is in ZDenseadd and si = 0 otherwise.
Thus the circuits C n

i compute the inputs to the oracle queries and C n performs
the final computation deciding the membership of x to L, given the sequence s

of oracle answers.
The output En

i of C n
i on input x is an input to ZDenseadd. Thus En

i is a
(description of a) decision circuit defining a semilinear set, which we denote by
Si ⊆ R

r(n). (Without loss of generality, we may assume that all these sets lie in
a Euclidean space of the same dimension r(n) > 1 and that all the circuits En

i

use the same number of selection gates q(n) > 1.) We denote by Ai the set
of accepting paths of En

i . Moreover, for γ ∈ Ai, we denote by Dγi ⊆ Si the
corresponding leaf set, and write ∂Dγi for its Euclidean boundary.

The reduction (1) from the proof of Proposition 1 that reduces CBSadd to
ZDenseadd produces either a Zariski dense or an empty set. Moreover, the leaf
sets produced by this reduction are, up to boundary points, quadrants of R

r(n).



Taking this into account, we may therefore assume without loss of generality that
Si is either empty or Zariski dense in R

r(n), for all x ∈ R
n and all i. Moreover,

we may assume that (recall r(n) > 1)

Si 6= ∅ =⇒
⋃

γ∈Ai
∂Dγi is reducible. (2)

Our goal is to reduce L to Irradd. Thus we have to compute from x ∈ R
n, in

polynomial time, a decision circuit defining a semilinear set Ω such that x ∈ L iff
Ω is irreducible. We will consider x ∈ R

n as fixed and suppress it notationally. To
simplify notation, we will write p := p(n), q := q(n), r := r(n) for fixed x ∈ R

n.
The set Ω will be a set of tuples (u, y, a) in the Euclidean space Π := R

q ×
(Rr)p ×R

p. To convey an idea of the intended meaning, we call u ∈ R
q selection

gate vector, y = (y1, . . . , yp) ∈ (Rr)p oracle vector, and a ∈ R
p oracle answer vec-

tor. A selection gate vector u induces a discrete vector γ := sg(u) ∈ {−1, 0, 1}q,
which describes a possible path of one of the circuits En

i . An oracle answer vector
a induces a bit vector α := pos(a) ∈ {0, 1}p, which describes a possible sequence
of oracle answers. The set Ω will be a finite union of product sets of the form
U × Y1 × · · · × Yp ×A ⊆ Π , where U ⊆ R

q, Yi ⊆ R
r, and A ⊆ R

p are semilinear
sets. Note that, by Lemma 3, a nonempty product set is irreducible iff all U, Yi, A

are irreducible and nonempty.
Let z be a fixed point in R

r (for instance the origin). Recall that s ∈ {0, 1}p

denotes the sequence of oracle answers for the fixed input x. We define the subsets
Ti := Si ∪ {z} ⊆ R

r, for which we make the following important observation:

si = 1 ⇐⇒ Si
Z

= R
r ⇐⇒ Ti

Z
= R

r,

si = 0 ⇐⇒ Si = ∅ ⇐⇒ Ti
Z

= {z}.
(3)

We define the set Ω ⊆ Π as the one accepted by the following algorithm:

input (u, y, a) ∈ R
q × (Rr)p × R

p

compute γ := sg(u) ∈ {−1, 0, 1}q , α := pos(a) ∈ {0, 1}p

(I) case (∀i yi ∈ Ti) ∧ (∃i ai = 0) ACCEPT
(II) case (FCn(x,α) = 1) ∧ (∀i yi ∈ Ti) ∧ ∃j

`

αj = 0 ∧ γ ∈ Aj ∧ yj ∈ ∂Dγj

´

ACCEPT
(III) case (FCn(x,α) = 1) ∧ ∀i

`

(αi = 0 =⇒ yi = z) ∧ (αi = 1 =⇒ yi ∈ Si)
´

ACCEPT
else REJECT.

It is easy to see that an additive circuit formalizing the above algorithm can
be computed from the given x ∈ R

n in polynomial time by an additive machine.
(Use that a description of the circuits C n, C n

i can be computed from n by an
additive machine in polynomial time.)

To prove the lemma, it is sufficient to show the following assertion:

x ∈ L ⇐⇒ Ω is irreducible. (4)

In order to show this we are going to analyze the set Ω. We define

ΩI = {(u, y, a) ∈ Π | (u, y, a) satisfies Case (I)}



and similarly ΩII and ΩIII. Note that ΩII is not the set of (u, y, a) accepted by
the step (II) of the algorithm. We have Ω = ΩI ∪ ΩII ∪ ΩIII, but this union is
not necessarily disjoint. It is obvious that ΩI is reducible.

We introduce some more notation needed for analyzing the above algorithm.
Consider the following subset

Y := {α ∈ {0, 1}p | FC n(x, α) = 1}

of possible oracle answer sequences leading to acceptance. Note that s ∈ Y iff
x ∈ L. Moreover, define for α ∈ Y the following set of indices

J(α) := {j | αj = 0 ∧ sj = 1}

and for j ∈ J(α) let Ω
j
II(α) denote the set of (u, y, a) ∈ Π that satisfy the

condition of Case (II) with the α and j specified. Similarly, we define ΩIII(α).
We have

Ω = ΩI ∪
⋃

α∈Y,j∈J(α)

(

Ω
j
II(α) ∪ ΩIII(α)

)

. (5)

The following claim settles one direction of (4).

Claim A. If x ∈ L, then Ω is irreducible.

In order to prove this claim, note that ΩIII(s) = R
q×F1×· · ·×Fp×pos−1(s),

where we have put Fi := Si if si = 1 and Fi := {z} otherwise. This implies that

ΩIII(s)
Z

= R
q × T1

Z
× · · · × Tp

Z
× R

p =: Θ,

since pos−1(s)
Z

= R
p. The product set Θ is irreducible by Lemma 3(i) and (3).

It is clear that ΩI∪ΩII ⊆ Θ. Moreover, we claim that ΩIII(α) ⊆ Θ for all α ∈ Y .
Indeed, assume (u, y, a) ∈ ΩIII(α). If we had si = 0 and αi = 1 for some i, then
we would have yi ∈ Si, which contradicts the fact that Si = ∅ due to si = 0.
This shows that (u, y, a) ∈ Θ.

Altogether, using (5), we have shown that Ω ⊆ Θ. Hence Ω
Z

= Θ, which
finishes the proof of Claim A.

Claim B. For α ∈ Y \ {s}, j ∈ J(α), the set Ω
j
II(α) ∪ ΩIII(α) is reducible.

Claim B implies the other direction of the assertion (4). Indeed, assume
x 6∈ L. Then s 6∈ Y and according to (5), Ω is a union of reducible sets and thus
reducible.

It remains to prove Claim B. Let πj : Π → R
r, (u, y, a) → yj be the projection

onto the jth factor. In order to show that a subset Ω ′ ⊆ Π is reducible, it is
sufficient to prove that πj(Ω

′) is reducible, since irreducibility is preserved by

linear maps. Hence it is enough to show that πj

(

Ω
j
II(α) ∪ ΩIII(α)

)

is reducible.
Taking into account (2) and the fact that j ∈ J(α) implies Sj 6= ∅, it suffices to
prove that

⋃

γ∈Aj

∂Dγj ⊆ πj

(

Ω
j
II(α) ∪ ΩIII(α)

)

⊆ {z} ∪
⋃

γ∈Aj

∂Dγj.



The second inclusion is clear since j ∈ J(α) and thus αj = 0.
For the first inclusion, assume yj ∈ ∂Dγj for some γ ∈ Aj . Choose a ∈ R

p and
u ∈ R

q such that pos(a) = α and sg(u) = γ. Then (u, z, . . . , z, yj , z, . . . , z, a) ∈

Ω
j
II(α), where the yj is at the jth position. Hence yj ∈ πj

(

Ω
j
II(α) ∪ ΩIII(α)

)

.
This finishes the proof of Claim B and completes the proof of the lemma. ut

3.3 Problems of Connectivity

The proof of the following result is inspired by a similar result for graphs in [4].

Theorem 2. The problem Connectedadd is PARadd-complete under Turing
reductions. The same holds when restricted to problems in R

3.

In [3] it was shown that, for all k ∈ N, the problem to compute the kth Betti
number of the semilinear set given by an additive circuit is FPARadd-complete
and the question was raised whether this holds also for the problem of computing
the torsion subgroup of the homology group Hk(X ; Z). We give a partial answer
to this question by showing that this problem is in fact FPARadd-hard. Hereby
we focus on the problem Torsionadd of deciding whether the torsion subgroups
Tk(SC ) of a semilinear set SC given by a circuit vanish for all k, that is, whether
all the homology groups Hk(SC ; Z) are free abelian groups. The question of the
corresponding upper bound remains open, but at least we show that the problem
is in EXPadd.

Theorem 3. The problem Torsionadd is PARadd-hard under Turing reduc-
tions and belongs to EXPadd.

For the lower bound proof, we start with the reduction in the proof of Theo-
rem 2, which reduces any language L in PSPACE to Connectedadd by mapping
a bit string x to a decision circuit describing a semilinear set S ′

n ⊆ R
3 such

that S′
n is connected iff x ∈ L. Then we extend this construction by modifying

the space S′
n × [0, 1] roughly by building in a Moebius strip and identifying the

boundary lines of the resulting space.

4 Open Problems

Let the semilinear set SC be given by a constant-free decision circuit C . We
remark that the problem to test simple connectivity of SC is undecidable. This
follows by reducing to it the group triviality problem, which is known to be
undecidable [1, 15].

We propose as open problems to determine the complexity of the following
topological properties: Is SC is a topological manifold? Is SC contractible?

Acknowledgements

We thank the anonymous referees for clarifying an issue regarding the subtle
difference between PNP[log] and the corresponding function class, as well pointing
out to us some references to natural problems for PNP[log].



References

1. S.I. Adian. Unsolvability of certain algorithmic problems in the theory of groups
(in Russian). Trudy Moskov. Math. Obshch., 6:231–298, 1957.

2. L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation.
Springer-Verlag, 1998.

3. P. Bürgisser and F. Cucker. Counting complexity classes for numeric computations
I: Semilinear sets. SIAM J. Comp., 33:227–260, 2004.

4. A. Chandra, L. Stockmeyer, and U. Vishkin. Constant depth reducibility. SIAM

J. Comp., 13:423–439, 1984.
5. F. Cucker and P. Koiran. Computing over the reals with addition and order: Higher

complexity classes. Journal of Complexity, 11:358–376, 1995.
6. H. Fournier and P. Koiran. Are lower bounds easier over the reals?, In Proc. 30th

ACM STOC, pages 507–513, 1998.
7. E. Hemaspaandra and L.A. Hemaspaandra and J. Rothe. Exact Analysis of Dodg-

son Elections: Lewis Carroll’s 1876 Voting System is Complete for Parallel Access
to NP. Journal of the ACM, pages 806–825, 1997.

8. L.G. Khachijan. A polynomial algorithm in linear programming. Dokl. Akad. Nauk

SSSR, 244:1093–1096, 1979. (In Russian, English translation in Soviet Math. Dokl.,
20:191–194, 1979.)

9. P. Koiran. Computing over the reals with addition and order. Theoretical Computer

Science, 133:35–47, 1994.
10. M. W. Krentel. The complexity of optimization problems. In Proc. 18th ACM

Symp. on the Theory of Computing, pages 79–86, 1986.
11. F. Meyer auf der Heide. A polynomial linear search algorithm for the n-dimensional

knapsack problem. J. ACM, 31:668–676, 1984.
12. C.H. Papadimitriou. On the complexity of unique solutions. J. ACM, 31:392–400,

1984.
13. C.H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
14. C.H. Papadimitriou and S. Zachos. Two remarks on the power of counting. Proc.

6th GI conference in Theoretical Computer Science, Lecture Notes in Computer
Science 145, Springer Verlag, pages 269–276, 1983.

15. M. Rabin. Recursive unsolvability of group theoretic problems. Ann. of Math.,
67(2):172–194, 1958.

16. I.R. Shafarevich. Basic Algebraic Geometry. Springer Verlag, 1974.
17. S. Smale. Mathematical problems for the next century. Mathematical Intelligencer,

20:7–15, 1998.
18. E. Tardos. A strongly polynomial algorithm to solve combinatorial linear programs.

Oper. Res., 34:250–256, 1986.


