Implicit Complexity over an Arbitrary
Structure: Sequential and Parallel
Polynomial Time

OLIVIER BOURNEZ, INRIA/LORIA, 615 rue du Jardin Botanique, BP 101,
54602 Villers-es-Nancy Cedex, Nancy, France.
E-mail: Olivier.Bournez@!loria.fr

FELIPE CUCKER,Department of Mathematics, City University of Hong Kong, 83
Tat Chee Avenue, Kowloon, Hong Kong.
E-mail: macucker@math.cityu.edu.hk

PAULIN JACOBE de NAUROISNancy II/LORIA, 615 rue du Jardin Botanique,
BP 101, 54602 E-mail: Paulin.De-Naurois@!loria.fr

JEAN-YVES MARION, INPL/LORIA, 615 rue du Jardin Botanique, BP 101,
54602 E-mail: Jean-Yves.Marion@loria.fr

Abstract

We provide several machine-independent characterizations of deterministic complexity classes in the model of computation
proposed by L. Blum, M. Shub and S. Smale. We provide a characterization of partial recursive functions over any arbitrary
structure. We show that polynomial time over an arbitrary structure can be characterized in terms of safe recursion. We show
that polynomial parallel time over an arbitrary structure can be characterized in terms of safe recursion with substitutions.

Keywords Blum, Shub, Smale model, implicit complexity, complexity theory.

1 Introduction

Why are we convinced by the Church Thesis? An answer is that there are many mathematical mod-
els, such as partial recursive functions, lambda-calculus, or semi-Thue systems, which are equivalent
to the Turing machine, but are also independent from any computational machinery. When comput-
ing over arbitrary structures, e.g. over the real numbers, the situation is not so clear. Seeking machine
independent characterizations of complexity classes can lend further credence to the importance of
the classes and models considered.

We consider here the BSS model of computation over the real numbers introduced by Blum, Shub
and Smale in their seminal paper [3]. The model was later on extended to a computational model
over any arbitrary logical structure [11, 26]. See the monograph [2] for a general survey about the
BSS model.

In this paper we first extend the algebraic definition of partial recursiveness to an arbitrary struc-
ture and characterize the resulting class of functions as the BSS-computable functions over this
structure. This extends to arbitrary structures a result of [3] proved for the real numbers.

Vol. 15 No. 1,© The Author, 2005. Published by Oxford University Press. All rights reserved.
For Permissions, please email: journals.permissions@oupjournals.org
doi:10.1093/logcom/exh036

42 Implicit Complexity over an Arbitrary Structure: Sequential and Parallel Polynomial Time

THEOREM 1.1
Over any structurdC = (K opy,---,opg,rely,--- ,rel;, {citicr,0,1), a function is BSS com-
putable if and only if it can be defined as a partial recursive function kver

In the last decades interest shifted from computability to complexity issues. Several complexity
classes, remarkably and NP became the object of study. These classes were first defined over
strings of bits, i.e. over structué = ({0,1},=,0,1). Then, in [3] its definition was extended to
arbitrary rings and in [26] to arbitrary structures.

In classical complexity theory, several attempts have been made to provide formalisms charac-
terizing complexity classes in a machine independent way. Such attempts include characterizations
based on lambda calculus [21], on finite model theory [10], on function algebra [5], or yet one
combining the latter two approaches [12, 28]. See [4, 9, 15] for more complete references.

Yet another direction is explored in recent works by Bellantoni and Cook [1] and Leivant [20]
which suggest a new approach by means of data tiering known as implicit computational complexity.
Purely syntactic models of complexity classes are provided which can be applied to analyse program
complexity in the study of programming languages [14, 17, 23].

In this paper, following these lines, we establish two ‘implicit’ characterizations of complexity
classes. Our characterizations work over arbitrary structures, and subsume previous ones when
restricted to Booleans or integers.

First, we characterize polynomial time computable BSS functions. This result stems on the safe
primitive recursion principle of Bellantoni and Cook [1].

THEOREM1.2

Over any structur& = (K,op1,- -, opg, rely,--- ,rel;, {c; }ier, 0,1), a function is computed in
polynomial time by a BSS machine if and only if it can be defined as a safe recursive function over
K.

Second, we capture parallel polynomial time BSS functions based on Leivant and Marion charac-
terization of polynomial space computable functions [22].

THEOREM1.3

Over any structuréC = (K opy,--- ,opg,rely,--- ,rel;, {ci}icr,0,1), a function is computed in
parallel polynomial time by a BSS machine if and only if it can be defined as a safe recursive function
with substitutions ovek.

Observe that, unlike Leivant and Marion, Theorem 1.3 characterizes parallel polynomial time and
not polynomial space: for classical complexity both classes correspond. However over arbitrary
structures, this is not true, since the notion of working space may be meaningless: as pointed out
by Michaux [25], on some structures liK&®, +, —,*, <,0,1), any computable function can be
computed in constant working space (but in this case we have an exponential increase in the running
time; note that there exist structures where there is no running time blowup [26]).

From a programming perspective, a way of understanding all these results is to see computability
over arbitrary structures like a programming language with extra data types and operators which
come from some external libraries. This observation, and its potential to build methods to automati-
cally derive computational properties of programs, in the lines of [14, 17, 23], is a main motivation
on our work.

On the other hand, we believe the BSS computational model provides new insights into under-
standing complexity theory when dealing with structures over other domains [2]. Several results
have been obtained for this model in the last decade, including separation of complexity classes over
specific structures, see for example [7, 8, 24].

Implicit Complexity over an Arbitrary Structure: Sequential and Parallel Polynomial Tidge

It is worth mentioning that this is not the first time that the implicit computational complexity
community has shown interest in computations over real numbers. Previous work includes the paper
by Cook [6] on higher order functionals as well as [16]. A related approach over finite structures
can be found in [13]. However this is the first time that implicit characterizations of this type over
arbitrary structures are given.

In Section 2, we recall the notion of BSS machine and some induced complexity classes over an
arbitrary structurdC, such a® . In Section 3 we recall the notion of algebraic circuit okeand we
use this notion to define complexity classes for parallel time. In Section 4, we define partial recursive
and primitive recursive functions ov&r and in Section 5 we do so for safe recursive functions. We
prove Theorems 1.1 and 1.2 in Section 6. Finally, we prove Theorem 1.3 in Section 7.

2 Computing over an arbitrary structure

In this section, we briefly introduce computability and complexity over an arbitrary structure. De-
tailed accounts can be found in [2] —for structures like real and complex numbers— or [26] —for
considerations about more general structures.

DEFINITION 2.1

A structureX = (K opy,--- ,opk,rely,--- ,rel;, {ci}icr,0,1) is given by some underlying set

K, a finite number of operatoesp,, - - - , op;, Of arity greater thari, some constantsc; };¢r, and

a finite number of relationsel, . .., rel;. Constants correspond to operators of arity 0. While the
index setl may be infinite, the number of operators with arity greater than 1 needs to be finite; that
is, only symbols for constants may be infinitely many. We will not distinguish between operator and
relation symbols and their corresponding interpretations as functions and relations respectively over
the underlying seK. We assume that the equality relatienis a relation of the structure, and that
there are at least two constant symbols, with different interpretations (deno@éug1 in our

work) in the structure.

An example of structure i& = (R, +, —, x,=, <, {c € R}). Another example, corresponding to
classical complexity and computability theoryiis= ({0,1},=,0,1).

REMARK 2.2
For any structuré’ as above({0,1},=,0,1) C K.

We denote byK* = J;cy K the set of words over the alphali&t The spacé&* is the analogue
to X* the set of all finite sequences of zeros and ones. It provides the inputs for machin&s over
For technical reasons we shall also consider the bi-infinite directiSumElements of this space
have the form
()T 2,7 1,20,T1,T2,...),

wherez; € K forall i € Z andxzj, = 0 for k sufficiently large in absolute value. The spé&te has
natural shift operations, shift left, : K, — K, and shift rights,. : K, — K, where

o¢(1); = Ti—1 and or(X); = Tiy1-

In what follows, words of elements IK will be represented with overlined letters, while elements
in K will be represented by letters. For instane&; stands for the word ilK* whose first letter i
and which ends with the word. We denote by the empty word. The length of a wofag € K* is
denoted byw|.

We now define machines ovErfollowing the lines of [2].

44 Implicit Complexity over an Arbitrary Structure: Sequential and Parallel Polynomial Time

DEFINITION 2.3

A machine ovek consists of an input spade= K*, an output spac® = K*, and a register spate

S = K., together with a connected directed graph whose nodes laltelled N correspond to the
set of differentnstructionsof the machine. These nodes are of one of the five following types: input,
output, computation, branching and shift nodes.

1. Input nodesThere is only one input node, labelled with 0. Associated with this node there is a
next nodes3(0), and the inputmap; : Z — S.

2. Output nodes There is only one output node which is labelledIt has no next nodes, once
it is reached the computation halts, and the output map S — O places the result of the
computation in the output space.

3. Computation nodesAssociated with a node: of this type there are a next nodém) and a
mapg,, : S — S. The functiong,,, replaces the component indexed by 1Sby the value
op(wy, ..., w,) wherewy,ws, . .., w, are components 1 te of S andop is some operation of
the structureC of arity n. The other components ¢f are left unchanged. When the arityis
zero,m is a constant node. A given machine uses only a finite number of constants, however,
in order to compare different machines and to denote the notion of reduction between them and
completeness, we need to include all possible constants in the underlying stilcilines the
possibly infinite index sef.

4. Branch nodesThere are two nodes associated with a nedef this type: 3+ (m) and3~(m).
The next node ig™ (m) if rel(wy, ..., w,) is true and3~ (m) otherwise. Herev,, ws, ..., wy,
are components 1 to of S andrel is some relation of the structuie of arity n.

5. Shift nodes Associated with a node of this type there is a next noggm) andamap : S —
S. Theo is either a left or a right shift.

Several conventions for the contents of the register space at the beginning of the computation have
been used in the literature [2, 3, 26]. We will not dwell on these details but focus on the essential
ideas in the proofs to come in the sequel.

REMARK 2.4
A machine ovelC is essentially a Turing Machine, which is able to perform the basic operations
{op;} and the basic test=ly, . . ., rel; at unit cost, and whose tape cells can hold arbitrary elements

of the underlying seK [26, 2]. Note that the register spaSeabove has the function of the tape and

that its component with index 1 plays the role of the scanned cell. In what follows we will freely use
the common expressions ‘tape’, ‘scanning head’, etc., the translation between these concepts and a
shifting register space with a designated 1st position being obvious.

DEFINITION 2.5
For a given machind/, the functiony , associating its output to a given inpute K* is called
theinput—output functionWe shall say that a functiofi: K* — K* is computablevhen there is a
machineM such thatf = .

Also, a setd C K* is decidedby a machinel/ if its characteristic functiory 4 : K* — {0,1}
coincides withp .

A configurationof a machinel/ overK is given by an instruction of M along with the position
of the head of the machine and two words w, € K* that give the contents of the tape at left and
right of the head.

1In the original paper by Blum, Shub and Smale, this is calledstia¢éespace. We rename igister space to avoid
confusions with the notion of ‘state’ in a Turing machine.

Implicit Complexity over an Arbitrary Structure: Sequential and Parallel Polynomial Tidte

We can now define some central complexity classes.

DEFINITION 2.6

AsetS C K* isin classPi (respectively a functiorf : K* — K* is in classFP k), if there exist a
polynomialp and a machiné/, so that for allw € K*, M stops in timep(|w|) and M accepts iff
w € S (respectivelyM computes functiorf (w)).

This notion of computability corresponds to the classical one for structures over the Booleans or
the integers, and corresponds to that of Blum, Shub and Smale in [3] over the real numbers.

PROPOSITION2.7
(i) The clas®Pk is the classicaP whenk = ({0,1},=,0,1).
(ii) The clas®k is the clas®Py of [3] whenkK = (R, +, —, %, =, <, {c € R}).

3 Computing with circuits

In this section we introduce the notion of circuit ovérand recall some links of this computational
device with the BSS model of computation.

3.1 Circuits

DEFINITION 3.1

A circuit over the structuréC is an acyclic directed graph whose nodes, cafjates are labelled
either agnput gates of in-degre@, outputgates of out-degre@ selectiongates of in-degred, or
by a relation or an operation of the structure, of in-degree equal to its arity.

The evaluation of a circuit on a given assignment of valueg ¢ its input gates is defined in a
straightforward way, all gates behaving as one would expect. We just note that any selection gate
tests whether its first parent is labelled withand returns the label of its second parent if this is true
or the label of its third parent if not. This evaluation defines a function fikomto K™ wheren is
the number of input gates amd that of output gates. See [26, 2] for formal details.

We say that a family{%,, | n € N} of circuits computes a functiofi : K* — K* when the
function computed by thath circuit of the family is the restriction of to K™. We say that this
family is P-uniformwhen there exist constanis, . . ., a,, € K and a deterministic Turing machine
M satisfying the following. For every € N, the constant gates &f,, have associated constants
in the set{ay,...,a,,} and M computes a description of thi¢h gate of thenth circuit in time
polynomial inn (if the ith gate is a constant gate with associated constanthen M returnsk
instead ofyy).

REMARK 3.2

Itis usually assumed that gates are numbered consecutively with the first gates being the input gates
and the last ones being the output gates. In addition, if gh#es parentg, ..., j, then one must
havej, ..., jr < i. Unless otherwise stated we will assume this enumeration applies.

Computations by BSS machines can be done by uniform families of circuits. In [26] the following
result is proved.

PROPOSITION3.3

AssumeM is a BSS machine ove computing a functionf,,;. Denote bya;,...,a,; € K
the constants used by/. Assume moreover that, for all inputs of size the computation
time of M is bounded byt(n) > n, and that the length of an output depends only on the

46 Implicit Complexity over an Arbitrary Structure: Sequential and Parallel Polynomial Time

size of its input. Then, there exists a fami{g,, | n € N} of circuits such thaté, has
n + m inputs (z1,...,Zn,Y1,---,Ym), has size polynomial im(n), and, for allz = 4. ...xz,,
Cn(x1,...,Tn,01,-..,qn) equals the output ofyr on inputz. Moreover, there exists a determin-
istic Turing machine computing a description of e gate of theath circuit in time polynomial in

t(n).

The requirements of a homogeneous computation time bound and output size are not too strong:
clocking an arbitrary BSS machine, and adding extra iddle characters to its output allows one to
build a BSS machine which complies with these requirements.

3.2 A parallel model of computation

The reader can find in [2] the definition of parallel machine over a strudturgve will not give
formal definitions here, since we will actually use the alternative characterization given by Proposi-
tion 3.5 below?

DEFINITION 3.4
FPAR is the class of functiong computable in polynomial time by a parallel machine using an
exponentially bounded number of processors and suchthay = |z ©() for all z € K*.

PrROPOSITION3.5 ([2])
Afunction f : K* — K* is in FPAR if and only if f(T) is computed by a P-uniform family of
circuits {€, (1, . .., x,)| n € N} of polynomial depth.

4 Partial recursive and primitive recursive functions
4.1 Definitions

As in the classical setting, computable functions over an arbitrary stru€tasn be characterized
algebraically, in terms of the smallest set of functions containing some initial functions and closed
by composition, primitive recursion and minimization. In the rest of this section we present such a
characterization.

We consider functiongK*)" — K*, taking as inputs arrays of words of elementskinand
returning as output a word of elementddn When the output of a function is undefined, we use the
symbol_ L.

DEFINITION 4.1
We callbasic functionghe following four kinds of functions:

(i) Functions making elementary manipulations of words @ueFor anya € K, 7, 71,73 € K*

hd(a.Z) = a theZT) = T cons(a.T1,T3) = a3
hd(e) = ¢ tl(e) cons(e,T3) = Ta.

(ii) Projections. Forany € N, i < n

Pri(Z1,...,Tiy .- Tn) = T5.

2The exposition on parallelism in [2, Chapter 18] is forthe real numbers but the definition of parallel machine as well
as the proof of Proposition 3.5 carry on to arbitrary structures.

Implicit Complexity over an Arbitrary Structure: Sequential and Parallel Polynomial Tidve

(iii) Functions of structure. For any operator (including the constants treated as operators of arity 0)
op; or relationrel; of arity n; we have the following initial functions:

Op;(a1.Z1,-..,Gn; Tn;) = (opi(a1,...,0n;)).Tn,
Rel;(a1.71, ..., an, Tn,) = { :(I)ft;gk/\(lflsle’ o2 n)
(iv) Selection function _
Selection(Z,7,%) = { g gtr\(eigv)isz.l

The set ofpartial recursive functionsver K is the smallest set of functions : (K*)* — K*
containing the basic functions and closed under the following operations:

(1) Composition.Assumeg : (K*)" — K*, hy,...,h, : K* — K* are given partial functions.
Then the compositiori : K* — K* is defined by

@) = g(hi(T), - .., hn(T))-

(2) Primitive recursion.Assumeh : K* — K* andg : (K*)* — K* are given partial functions.
Then we defing : (K*)* — K*

fleT) = h@)
. @, f(y,7),7) if f(y,7) #L
flag.m) = { i]_y ! othefwise.

(3) Minimization. Assumeg : (K*)> — K* is given. Functionf : K* — K* is defined by
minimization on the first argument gf written by f(7) = pz (9(Z, 7)), if:

R if Vt € N : hd(g(0%,7)) #1
e 9(@.9)) = { 1% : k = min{t | hd(g(0!,7)) =1} otherwise.

Partial recursive functions defined without using the minimization operator are gaiteilive re-
cursive

REMARK 4.2

(i) The formal definition of functionl is actually a primitive recursive definition with no recurrence
argument. However, when we introduce the notion of safe recursion in Section 5, this function
tl needs to be given aspriori functions in order to be applied to safe arguments, and not only
to normal arguments. For the sake of coherence, we give it hereaapraori function as well.

(ii) Note that primitive recursive functions are total functions whereas partial recursive functions
may be partial functions.

(iii) The operation of minimization on the first argumentgofeturns the smallest word ifi1} *
satisfying a given property. The reason why it does not return a smallest word maidetter
in K is to ensure determinism, and therefore computability. On a structure \i&iis not
decidable, such a non-deterministic minimization may not be computable by a BSS machine,
which is in essence deterministic.

48 Implicit Complexity over an Arbitrary Structure: Sequential and Parallel Polynomial Time

(iv) In the definition of composition, primitive recursion, and minimization above we have taken
argumentst,y € K*. This is to simplify notations. To be fully formal, we should allow for
arguments i K*)? with p > 1. We will adopt these simplification all throughout this paper
since the proofs for the fully formal case would not be different: just notationally more involved.

(v) Inthe definition of primitive recursion, the variakién front of the recurrence argumeng does
not appear as argument of the functignThe first reason for this is the need for consistency
among argument types: is a single element itk whereas all arguments need to be words in
K*. The second reason is thamay still depend on the value of the first elemengof

(vi) Our definition of primitive recursion and of minimization is slightly different from the one found
in [3]. There, the authors introduce a special integer argument for every function, which is used
to control recursion and minimization, and consider the other arguments as simple elements in
K. Their functions are of typg : N x K¥ — K!. Therefore, they only capture finite dimen-
sional functions. Itis known that over the real numbers with-, x operators finite dimensional
functions are equivalent to non-finite dimensional functions (see [25]). But this is not true over
other structures, for instan&e/2Z. Our choice is to consider arguments as words of elements in
K, and to use the length of the arguments to control recursion and minimization. This allows us
to capture non-finite dimensional functions over arbitrary structures.

The following result is immediate.

PROPOSITION4.3
The set of partial recursive (resp. primitive recursive) functions {@r1}, =, 0, 1} coincides with
the classical partial recursive (resp. primitive recursive) functions.

5 Saferecursive functions

In this section we extend to an arbitrary structir¢he notion of safe recursive function over the
natural numbers defined by Bellantoni and Cook [1].

ExAMPLE 5.1
Consider the following function

exp(T) = 127

which computes in unary the exponential. It can be easily defined with primitive recursion by

Cons(e,y)]
Cons(a.T,y) = cons(a,Cons(T,7))
exp(e) = 1
exp(a.) = Cons(exp(Z),exp(T)).

On the other hand, note thatp ¢ FP x since the computed value is exponentially large in the size
of its argument. The goal of this section is to introduce a restricted version of recursion not allowing
for this exponential growth.

Safe recursive functions are defined in a similar manner to primitive recursive functions. How-
ever, following [1], safe recursive functions have two different types of arguments, each of them
having different properties and purposes. The first type of argument, cadladal is similar to
the arguments of the previously defined partial recursive and primitive recursive functions, since it
can be used to make basic computation steps or to control recursion. The second type of argument,

Implicit Complexity over an Arbitrary Structure: Sequential and Parallel Polynomial Tidse

calledsafe cannot be used to control recursion. In a recursion, the recurrence argument can only be
in safe position. We will see that this distinction between safe and normal arguments ensures that
safe recursive functions can be computed in polynomial time.

To emphasize the distinction between normal and safe variables we will fvrith x S — R
whereN indicates the domain of the normal arguments &rttiat of the safe arguments. If all the
arguments of are of one kind, say safe, we will wrifein the place ofV. Also, if z andg are these
arguments, we will writef (Z; 7) separating them by a semicolon “;”. Normal arguments are placed
at the left of the semicolon and safe arguments at its right.

We define now safe recursive functions. To do so, we consider the $etsaf safe functions
which are the basic functions of Definition 4.1 with the feature that their arguments are all safe.

DEFINITION 5.2
The set ofsafe recursive functiorsver K is the smallest set of functiorfs: (K*)? x (K*)?¢ — K*
containing the basic safe functions, and closed under the following operations:

(1) Safe compositionAssumeg : (K*)™ x (K*)" — K*, hy,...,hyn : K* x) — K* and
Bma1y -« hmyn : K x K* — K* are given safe recursive functions. Then their safe composi-
tion is the functionf : K* x K* — K* defined by

f@y) =g (m(@;), o ()5 hint 1 (T37), - - - hann (T3 7)) -

(2) Safe recursionAssumeh : K* x K* — K* andg : (K*)® x (K*)> — K* are given functions.
Functionf : (K*)® x K* — K* can then be defined by safe recursion:

) = h(@7)
9,7 f(Z,7:9),9)-

~

REMARK 5.3

(i) Using safe composition it is possible to ‘move’ an argument from a normal position to a safe
position, whereas the reverse is forbidden. For example, asguiiié x (]K*)2 — K* isagiven
function. One can then define with safe composition a functigiven by f (z, 7; 2) = ¢(&; 7, 2)
but a definition likef (7; 7, z) = g(T,7; Z) is not valid.

(ii) Note that it is impossible to turn the definition efp in Example 5.1 into a safe recursion
schemeCons(z;y) andCons(z, y;) can be defined as follows:

Cons(e;y) = ¥
Cons(a.7;7) = cons(;a,Cons(Z; 7))
Cons(e,y;) = ¥
Cons(a.Z,7;) = cons(;a,Cons(T,T7;)).

However, exp cannot be defined, since this would need the use of the recurrence argument
exp(Z) as a normal argument of functidons, which is forbidden. This obstruction is at the
basis of the equivalence between safe recursion and polynomial time computability.

The following result is immediate.

PROPOSITIONS.4
The set of safe recursive functions o0, 1},=,0, 1} coincides with the classical set of safe
recursive functions defined by Bellantoni and Cook.

50 Implicit Complexity over an Arbitrary Structure: Sequential and Parallel Polynomial Time

6 BSS computability and recursion

This section is devoted to prove Theorems 1.1 and 1.2. To do so, we use Proposition 3.3 to reduce
BSS machine computations to circuit evaluation. Recall, the output of this reduction, on an input of
sizen is a description of a circuit performing the same computation the machine does when restricted
to inputs of sizen. Since in this proposition we replaced the machine constants by variables, the
resulting circuit can be encoded ovd, 1} and, as it turns out, the whole reduction can be carried
out by a Turing machine. Therefore we can invoke classical results to show that the reduction can be
simulated by classical partial recursive or safe recursive functionsadodjori, by such functions
over an arbitrary structur€. Next, we give a simulation of the circuit given by this reduction by
partial recursive or safe recursive functions over an arbitrary strugtuie contrast, when dealing
with an arbitrary BSS machine computation, we do not necessarily obtain a P-uniform family of
circuits. This is not an issue since the reduction does not need to be polynomial time computable.
The reduction as well as the simulation of the family of circuits is done by partial recursive functions.
When dealing with a polynomial time BSS machine, the reduction is polynomial in the classical
meaning, and we obtain a P-uniform family of circuits. The reduction and the simulation of the
family of circuits is done by safe recursive functions. The two cases of simulation of the family of
circuits are dealt with in a single result, Lemma 6.1 below.

Combining these results we obtain proofs for our two theorems.

6.1 Evaluation of uniform circuit families with recursion
In this section, we make the simulation of a uniform family of circuits by recursive functions explicit.

LEMMA 6.1
Assume{%,, | n € N} is a family of circuits oveiC such that:

e %, hasn + m inputgatez1, ..., Tn, Y1, - ->Ym),
o there exists a function: N — N such that, for alh € N, |%,,| < t(n) andt(n) > n,
« there exists a safe recursive (resp. partial recursive) fungtisach thafl'(z:) = 17D,

o there exist safe recursive (resp. partial recursive) funciens, F'q, ... F,. (herer is the maxi-

mum arity of the symbols of) such thatGate(T'(z;),1¢,T;) describes thé" node of¢/z| as

follows

0 if 4 is an input gate
0.0 if 7 is an output gate

N 1= 17 if 7 is a gate labelled with op

. i = —)

Gate(T'(#;),15%;) =\ 1k+i if is a gate labelled with rgl

1k+i+L if ¢ is aselectiomode

€ otherwise

andF;(T'(z;),1%,7;) identifies thejth parent node of thith node of#’ 3 as follows

F;(T(%;),1%,7;) = 1*¥ wherek < i is the jth parent node of.

Then, given a set of constante = a1,...,a,, € K™, there exists a safe recursive (resp.
partial recursive) functionCz over K such that, for anyz = zi..... zn, Ci(T;) equals
an(xl,"',xnyal,"',am)'

Implicit Complexity over an Arbitrary Structure: Sequential and Parallel Polynomial Tible

PROOF It is easy to define a safe recursive functRink such that, for any, ¢,z € K* satisfying
7l < Izl < [,]

Pick(z;t,T) = Tpg1- (7|
wherez = z;..... z,. Note thatz does not occur in the right-hand side of the equality above. Itis
used to control the recursion and ensures thedn be placed in a safe position. The contents of its
components is irrelevant. We only requji@ < |z].

We next want to define a safe recursive functitg which, on an input(z,z;), com-
putes the evaluation of all gates numbered frorto |z] of €z on input (Z,@) and concate-
nates the results in one word. For the sake of readability, we denot& bthe expression
Pick(T'(z;); Fp(T'(z;),1.2,T;), Va(Z,T)). This expression gives the evaluation of fite parent
gate of the current gate (which is the one numbereftby 1). It is obtained by ‘Picking’ it at the
right position in the recurrence argument. Denoté by the arity of op, and byl (i) the arity of re}.

We may defind’z as follows (we use definition by cases which can be easily described by combin-
ing Selection operators and simple safe recursive functions) witere Gate(T'(7;), 1.2, T;) is the
type of the current gate,

Vale,m;) = €

(cons(;z;, Va(Z,7;)) if G=0andz| +1 =i < |7

cons(; iz, Va(Z,7;)) ifG=0

and|z| + 1 =i € [|z] + 1, [z] + m]

T (T T _ Cons(;opj(;]:l,"'7fk(j))7va(zaf;)) ifG =1
ValeZ,%) = 0 cons(; reli; Fi, -, Figj))» Va2, T3) if G = 15+
cons(; Selection(; Fy, Fa, F3), Va(Z,T;)) if G = 1k+i+1

cons(; F1, Vz(Z,T;)) if G=0.0
V=(Z,%;) otherwise.

Note that the first six cases in the definition above correspond to the current node being input,
constant, operator, relation, selection and output, respectively. The seventh case is to deal with un-
expected values &, e.g. a too large gate number. We define now a fundiignwhich concatenates

the values returned by the outputs gateg’gf,,

Raem) = «
S cons(; Va(Z,7;), Ra(Z,7;)) if Gate(T'(75),%,7;) = 0.0
Ry(cz, ;) = { Rx(z,7;) otherwise.

The result of the evaluation @fjz on input(z, @) is given byR5(T'(%;),T;).
The result for partial recursive functions is obtained by replacing all semicolon ‘;’ by commas *,
in the proof, and all mentions of ‘safe recursive’ by ‘partial recursive’. [|

6.2 Proof of Theorem 1.1

Assume M is a BSS machine ovek computing a functionfy; : K* — K*. Denote by
ai,...,q, € Kthe constants used hy/. A description of the configuration reached by on
inputT aftert iterations can be given by the values of the following four functions:

¢ Node(7, 0'), which gives a encoding for the nodelf reached aftet steps. We assume without
loss of generality that the encoding of all output nodes beginsnéthd that the encoding of all
other nodes begins with.

52 Implicit Complexity over an Arbitrary Structure: Sequential and Parallel Polynomial Time

e Length(Z, 0t) = 1*.0t+17I=* which gives the actual lengthof the non-empty part of the tape
of M aftert steps (thds are for padding the output so that its length only depends on the length
of the input)

e Tape(7, 0) = 7.0t117I=% which gives the content of the tape ofM/ aftert steps (theds are
for padding as above)

e Head(z, 0%) which describes the position of the head\dfaftert steps.

By construction, the length of the output of these four functions depends only on the size of their
input. The existence of a universal BSS machine ensures that these functions are BSS computable
and, by appropriately clocking the machines computing them, we may assume that the computation
time of these machines depends only on the size of their input. Therefore, we can apply Propo-
sition 3.3 to deduce the existence of four familie¥',, ¢, Ln, +, Tnt, Hn | n,t € N} of circuits,
each of them describable in tinf1§n, ¢), polynomial inn + ¢, by a deterministic Turing machine.
Using a classical result [18] these machines can be simulated by classical partial recursive functions,
which are also partial recursive functions o¥eby Remark 2.2 and Proposition 4.3. Without loss of
generality, one can assume that the descriptions of the circuits above have the form given in the hy-
potheses of Lemma 6.1. We can then apply this lemma to conclude that the fuhiidndength,

Tape andHead are partial recursive ovet. ¢FromlLength andTape, it is trivial to build a partial
recursive functiorResult such thaResult(Z, 1t) gives exactly the non-empty part of the tapeldf
on inputz aftert steps. The computation time &f on inputz is then given by

Time(Z) = ub(Node(Z, b))
and the result of this computation by
fa (%) = Result(Z, Time(T)).

The computation ofi/ can therefore be simulated by a partial recursive function kver
The simulation of a partial recursive function by a BSS machine is straightforward.

6.3 Proof of Theorem 1.2

The first part of the proof is devoted to the simulation of polynomial time BSS machines.

AssumeM is a polynomial time BSS machine ov€rcomputingf ;. Denote byay, ..., a;, €
K the constants used hy/. Assume that the computation time is bounded by some polynomial
P(n) = cn?. There exist polynomial time BSS maching&' and M ", with the same constants,
such that, on input, M returns1!/v @ oP(ZD)—1/a @) and M returnsfy, (z).0F (D~ 1fu @),

The strings of0s ensure that the output length depends only on the length of the input. Denote by
far andfy, the corresponding functions.

By Proposition 3.3 there exist two P-uniform families of circuits compufing and fy;.

By Lemma 6.1, these two families of circuits are simulated by safe recursive funétiphsind
Fy over K respectively. Therefordyy,, and Fy; coincide with £y, and fy, respectively. We
next define a safe recursive functibhl such that, forz of lengthn andy of length at leash,
Hd(z;7) returns the first: characters ofj. In order to do so we introducél such thatTI(z; 7)
iteratesn timestl ony, andRevHd wich gives the same result Bl in the reversed order. We define
also a safe recursive functianpad for eliminating all padding@s from the output of’,,. These

Implicit Complexity over an Arbitrary Structure: Sequential and Parallel Polynomial Tibg&

functions are formally defined by

Tiey) = ¥
Tazy) = GTIED)
RevHd(e;7) = ¢
RevHd(a.Z;5) = cons(; TI(Z;7), RevHd(Z;7))
Hd(z;y) = RevHd(z;RevHd(Z;7))
fle) = e
e -
unpad(z;) = cons(;1, f(Z;)).

Thenf,, can be defined by
v (@;) = Hd(unpad(Fur (T;);); v (T)).

Let us now focus on the time needed to evaluate, with a BSS machine, a safe recursive ffinction

We give the proof forf : K* x K* — K*. The proof is the same for higher arities (if.:
(K*)P x (K*)? — K*).

Let f : K* x K* — K* be a safe recursive function ovkr We denote by'[f(Z;)] the time
necessary to compuf&z;y) with a BSS machine oveet.

PROPOSITIONG.2
Let f : K* x K* —+ K" be a safe recursive functions. There exists a polynopjiauch that, for all
(Z,y) € K* x K,

T[f(@:y)] < ps([z))-

PrROOF By induction on the depth of the definition tree fof

If fis a basic safe function then it can be evaluated in constant time. Therefore, the statement is
true for basic safe functions.

Assume nowf is defined by safe composition from safe recursive functigrs,, . . ., A4, be
as in Definition 5.2. Then, there exists polynomigls p1, . . ., pm+n Satisfying the statement for
these functions respectively. Without loss of generality, we may assume these polynomials to be
nondecreasing. Therefore,

T(f(@7)] < [hl(f D]+ + Tlhinsn(T37)]
[((j y) hm(j;y);hm+l(f y) . hm+n(f;y))]
p (7)) + -+pm+n(lfl)+pg(p1()+-~-+pm(lfl)),

IN

T

which shows we may take

Pr =Pt D+ 0g 0 (1).

Finally, assumef is defined by safe recursion and fetg be as in Definition 5.2. Then, there
exist polynomialgp,,, p, satisfying the statement for these functions respectively. In addition, we
may also assume tha} andp;, are nondecreasing. Therefore,

T1f(e,z;y)] = pa([Z])

54 Implicit Complexity over an Arbitrary Structure: Sequential and Parallel Polynomial Time

and, when unfolding the recurrence,

Tlf(az,z;y)] < T[fEzY]+T9E7T;f(Z7:7),9)]
< TfEzY]+py(17,7))
: (6.1)
< [Zlpy (17, Z]) + pu(|Z),
which shows we may take
ps =1d pg + pa-
[|

REMARK 6.3

(i) Note that in (6.1) above the evaluation tirfigy(z, 7; f(z, Z; 7), y)], because of the induction
hypothesis, does not depend 6E, z;). This independence in the inductive argument in the
proof is what keeps the evaluation time polynomially bounded.

(ii) A similar result could be obtained by using the notion of ‘tier’ introduced in [19].

7 A characterization of the parallel class FPAR

In this section we prove Theorem 1.3. We first introduce the notion of safe recursion with substitu-
tions.

7.1 Safe recursion with substitutions

DEFINITION 7.1

The set of functions defined witbafe recursion with substitutiormver K is the smallest set of
functionsf : (K*)? x (K*)? — K*, containing the basic safe functions, and closed under safe
composition and the following operation:

Safe recursion with substitutions. Let b : K* x (K*)? — K*, g : (K*)? x (K*)"™' - K*, and
o;j -) x K* = K* for 0 < j <1 be safe recursive functions.

Functionf : (K)* x (K*)* — K* is defined by safe recursion with substitutions as follows:

fle7w,y), = h7a,7)
97 f(Z,7;01G0),7), -, f(Z,T;00(7),7),7)
it V) f(z,750;(0),y) #L
1 otherwise.

The functionsy; are calledsubstitution functions

7.2 Proof of Theorem 1.3 (‘only if’ part)

By hypothesis, the family of circuits we want to simulate here is P-uniform. This means that there
exists a machine ove€ which, given a paifn,), computes the description of tlith gate of the
circuit %, in time polynomial inn. Let L(n) be the polynomial bounding the number of output
gates ofg,, and, forl < j < L(n) let %,; be the circuit induced by, with only one output node
(corresponding to thgth output node o%’,,).

Implicit Complexity over an Arbitrary Structure: Sequential and Parallel Polynomial Tibte

The idea for writing a function evaluating the circ@t,; at an inputz € K" is simple. The
function is defined recursively, the evaluation of every node depending on the evaluation of its parent
nodes. However, in order to do this with the mechanism of safe recursion with substitutions, we need
a way to describe these parents nodes in constant time (actually with a substitution function) and this
is not provided by the P-uniformity hypothesis. A way to do so is by describing a parent node simply
by its relative position among the possible parent nodes of the node at hand. The iteration of this
procedure naturally leads to the notion of path.

A pathfrom the output node to a nodew is a sequence of nodes= vy, ...,v; = w such that
v; iIsa parentob;_; fori = 1,...,¢. The nodew is thetop of the path. We describe a path by an
elementjy € K* as follows

¢ The path consisting of the single output nads represented by € K*.

e Let r be the maximal arity of a relation or a function of the structure. Then=
[log,(max{r,3})] is the size necessary to write the binary encoding of any parent for a given
node. Assume that,, ...,v, 1 is represented by. If v, is theith parent node of,_; then the
pathvy, ..., v is represented by;.7, wherea; € {0,1}* represents the binary encodingiof
We add as man@s as needed in front such thigthave lengths.

LEMMA 7.2
There exists a safe recursive functiGate such that, for an elememt € K", a naturalj < L(n),
and a patly in €,,;,

0 if top(y) is theith input gate
0.0 if top(y) is the output gate
L 1 if top(¥) is a gate labelled with gp
J - _)
Gate(1',7;) = 1%+ if top(7) is a gate labelled with rel
R if top(%) is aselectiomode
€ otherwise

wheretop(7) denotes the top df.

PrROOF Since the length of is polynomial inn, the functionGate can be computed in polynomial
time. Therefore, it is safe recursive by Theorem 1.2.

Assumep(n) = en? is a polynomial bounding the depth of the circdit,. The goal now is to
describe a functiofival, definable via safe recursion with substitutions, suchkak(17,%, 7; €) is
the output of¢’,; on inputz whenevelz| = n and|t| = p(n).

To do so we will use the substitution functioss defined bys; (;7) = @;.y wherea; € {0,1}*
is the binary encoding af Note thatr; is safe recursive far=1, ..., r. Also, note that a patf of
length/ is easily described by composidgimes some of these functions.

Denote byk(i) the arity ofop;, andi(i) the arity ofrel;. Also, denote byF, the expression
Eval(17,%,7; 0, (;¥)) which gives the evaluation of theth parent gate of the current gate and by
G = Gate(17,7;7) the type of the current gate. The functibwal is then defined as follows,

Eval(1’,¢,7;y) = ¢
T ifG=0
Eval(1/,a.t,7;y) = rel;(; Fi,- .., Fiay) if G = 1h+i

Selection(; Fy, Fo, F3) if G = 1k++1
F1 if G =0.0.

56 Implicit Complexity over an Arbitrary Structure: Sequential and Parallel Polynomial Time

All equality and inequality tests are once again easily obtained by comtSalagtion operators
and simple safe recursive functions.

Note that we use above an enumeration for the gates,gfdifferent to the one described in
Remark 3.2. The expressioff$ evaluating theth parent of a gate are, consequently, different here
and in the proof of Lemma 6.1.

Theorem 1.2 ensures the existence of a safe recursive fun@ignsuch thai P.;(Z;)| = cn?.

We useP,; to define with safe recursion ovgrthe following function

concat(e,Z;) = Eval(l, P.4(T;),Z.Z;¢€)
concat(a.y,T;) = cons(;Eval(y, P.q(T;),%.Z; €), concat(y,T;))
such thatoncat(7, 7;)) concatenates the outputs@f; forj =1,...,|7].

Theorem 1.2 also ensures the existence of a safe recursive funBtiaisch thatPy (z) = 1%,
The function computed by the P-uniform family of circu{t&’,, | n € N} is then defined with safe
recursion with substitutions b¥ircuit(z;) = concat(Py,(7;),T;).

7.3 Proof of Theorem 1.3 (‘if’ part)

Again, we give the proof fof : K* x K* — K*.

Let f be a function defined with safe recursion with substitutions, and dengtg bye restriction
of f to the set of inputs of size. We need to prove thgt can be computed by a P-uniform family
of circuits{%,, | n € N} of polynomial depth.

As in Section 6.3, for a functiofi : K* x K* — K* defined with safe recursion with substitutions,
we denote byD[f(Z; y)] the depth of the shortest circdt computingf (Z; 7).

PROPOSITION7.3
Let f : K* x K* — K* be defined by safe recursion with substitutions. There exists a polynomial
py such that, for al(Z, 7) € K* x K*,

D[f(@;9)] < ps([7])

and
|£(@;9)] < pr([Z])-

PROOF It is done by induction on the depth of the definition treefpgs in the proof of Proposi-
tion 6.2 (to which this proof is actually similar).

If fis a basic safe function then it can be evaluated in constant time. Therefore, the statement is
true for basic safe functions.

Assume nowf is defined by safe composition from safe recursive functigms, , ..., hyin
as in Definition 5.2. Then, there exists polynomiplspi, . .., pm+n satisfying the statement for
these functions respectively. Without loss of generality, we may assume these polynomials to be
nondecreasing. Therefore,

D[f(j; y)] S maX{D[hl (f; y)], s ,D[hm+n(f; y)]}
+D[g(h1(f; y), R hm(f; y)a hm+1(f; y): te hern(f; y))]
max{p1([Z]), . ., Pmn ([T} + Do (1 ([Z]) + - - - + pm([Z])),

which shows we may take

IN

pr =max{pi,...,Pmin} +DPg0 (P1+ -+ Dm)

Implicit Complexity over an Arbitrary Structure: Sequential and Parallel Polynomial Tibwe

wheremax{py, ..., pm+n} denotes any polynomial bounding abgwvg . . ., pitn-

Finally, assumef is defined by safe recursion with substitutions andhlet. . ., hg, g1, -- -, gk
ando;; (@ = 1,...,kandj = 1,...,) as in Definition 7.1. Then, there exist polynomials
Dgr»+ -+ Pgi>Phys- - -»Dh, Satisfying the statement fax, ..., gx, b1, ..., hy respectively. Again,
without loss of generality, we may assupyg = p, fori =1,...,kandp,, =pnfori=1,...,k.

In addition, we also may assume tipgtandp,, are nondecreasing. Therefore, fot 1,...,k,

D[fi(e,z;u,y)] = pn(|z|)

]
=
~—~~

8
N
8l
=l
S
=

A

max{D[fi(z,7;0i;(; 7).)]}

+D I:gi(g,f; fl(E,j; 011(;u),y), R fl(E,j; Ull(;ﬂ),y),
G T o0 (0),9), -, fi(Z T 0 (), 7). 7)]
max{ DL, (2,735 (), DI} + 14 12,7

IN

Applying the same reasoning fgk(z, ; 04 (;),) and denoting’ = tl(z) we obtain
D[fz (27 f; Oij (7 E)v y)]
Dloi;(;@)]} + T;F}%?({D[fi' (z,75005 (50i;(;7)),)]}
+D [gi(z,j; fl(z,j; 5 011(; Uz]()ﬂ)),y)a teey fl(z,j; Ull(; Uz]()ﬂ))ay),

o Je(Z T 011 (03 (1), 9), - fr(Z, T 0 (03 0)), 7). 7)]
< Dloy; Gu)l} + max{D{fu (2,700 (03 (7)),)]} + py (2", 7).

IN

Continuing in this way and denoting 13y the result of applyind timestl to zZ we obtain

|a.Z|
Dliezmnm] < Y (| max {Dlon(ouateou i) DI} + 0G0
13 \ieieS
Jiseessdes<l

£ max {D[hﬁ(f; aimcomz(;...oimcu)...>>,y)]}
1,1,...,1,[§k
J1se-Je <l

< aZ|(O([Z]) + py(1Z, 7)) + pu((Z])

the O(|z|) since eacla;; can be computed in constant time by Proposition 6.2, and that we compute
them sequentially. This yields again a polynomial bound for the depth.

The polynomial bound for the output size is obvious and we can pakéo be a polynomial
bounding both depth and output size.

Proposition 7.3 shows that every circ#i}, of the family computingf has depth polynomial in.
The P-uniformity of this family is implicit in the proof of the proposition.

In the classical setting (see [22]), safe recursion with substitution characterizes the class
FPSPACE. However, in the general setting, this notion of working space is meaningless, as pointed
out in [25]: on some structures liKR, 0,1, <, +, —,), any computation can be done in constant
working space. However, since in the classical setting we have FPAR = FPSPACE, our result extends
the classical one from [22].

58 Implicit Complexity over an Arbitrary Structure: Sequential and Parallel Polynomial Time

Acknowledgements
Felipé Cucker has been supported by City University of Hong Kong SRG grant 7001290.

References

[1] S. Bellantoni and S. Cook. A new recursion-theoretic characterization of the poly-time functosputational
Complexity 2, 97-110, 1992.

[2] L. Blum, F. Cucker, M. Shub, and S. Smaléomplexity and Real ComputatioBpringer-Verlag, 1998.

[3] L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over the real numbers: NP-completeness,
recursive functions and universal machinBsiletin of the American Mathematical Socieht, 1-46, 1989.

[4] P. Clote. Computational models and function algebratolgic From Computer Science’9®. Leivant, ed., pp. 98-130.
Volume 960 of Lecture Notes in Computer Science, Springer-Verlag, 1995.

[5] A. Cobham. The intrinsic computational difficulty of functions. Bmoceedings of the International Conference on
Logic, Methodology, and Philosophy of SciengeBar-Hillel, ed., pp. 24-30. North-Holland, Amsterdam, 1962.

[6] S. A. Cook. Computability and complexity of higher-type functionsLagic from Computer Scienc¥. Moschovakis,
ed., pp. 51-72. Springer-Verlag, New York, 1992.

[7] F. Cucker. R # NCg. Journal of Complexity8, 230-238, 1992.

[8] F. Cucker, M. Shub, and S. Smale. Separation of complexity classes in Koiran's weak riibeéeketical Computer
Science133, 3-14, 1994.

[9] H.-D. Ebbinghaus and J. FlumFinite Model Theory Perspectives in Mathematical Logic. Springer-Verlag, Berlin,
1995.

[10] R. Fagin. Generalized first order spectra and polynomial time recognizable seétempiexity of Computatioik. Karp,
ed., pp. 43-73. SIAM-AMS, 1974,

[11] J. B. Goode. Accessible telephone directorigsurnal for Symbolic Logic59, 92—-105, 1994.

[12] Y. Gurevich. Algebras of feasible functions. Twenty Fourth Symposium on Foundations of Computer Scigmce
210-214. IEEE Computer Society Press, 1983.

[13] Y. Gurevich and E. Gadel. Tailoring recursion for complexityournal for Symbolic Logicg0, 952-969, 1995.

[14] M. Hofmann. Type systems for polynomial-time computation, 1999. Habilitation.

[15] N. Immerman.Descriptive ComplexitySpringer-Verlag, 1999.

[16] R. Irwin, B. Kapron, and J. Royer. On characterizations of the basic feasible functidleaisal of Functional Pro-
gramming 11, 117-153, 2001.

[17] N. Jones. The expressive power of higher order typearnal of Functional Programmind.1, 55-94, 2001.

[18] S.C. Kleene. General Recursive functions of natural numibéashematische Annalet12, 727-742, 1936.

[19] D. Leivant. Predicative recurrence and computational complexity |: Word recurrence and poly-tifeasible Math-
ematics || P. Clote and J. Remmel, eds, pp. 320-343. Bitlder, 1994.

[20] D. Leivant. Intrinsic theories and computational complexity. Lbgic From Computer Science’94olume 960 of
Lecture Notes in Computer Science, pp. 177-194. Springer-Verlag, 1995.

[21] D. Leivant and J.-Y. Marion. Lambda calculus characterizations of poly-tffoedamenta Informaticad9, 167-184,
1993.

[22] D. Leivant and J.-Y. Marion. Ramified recurrence and computational complexity |l: substitution and poly-space. In
Computer Science Logic, 8th Workshop, CSL194Pacholski and J. Tiuryn, eds, pp. 369—-380. Volume 93Beature
Notes in Computer Scienc8pringer-Verlag, 1999.

[23] J.-Y. Marion and J.-Y. Moyen. Efficient first order functional program interpreter with time bound certifications. In
7th International Conference on Logic for Programming and Automated Reasorthgne 1955 of_ecture Notes in
Computer Sciencep. 25-42. Springer-Verlag, 2000.

[24] K. Meer. A note on & # N P result for a restricted class of real machindsurnal of Complexity8, 451-453, 1992.

[25] C. Michaux. Une remarqua propos des machines sirrintroduites par Blum, Shub et Smal€ompres-Rendus de
I’Academie des Sciences de Pa8g89, Série 1:435-437, 1989.

[26] B. Poizat.Les Petits CaillouxAleas, 1995.

[27] H.E. Rose.Subrecursion Oxford University Press, 1984.

[28] V. Sazonov. Polynomial computability and recursivity in finite domaiB&ktronische Informationsverarbeitung und
Kybernetik 7, 319-323, 1980.

Received 4 April 2003

