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Abstract
We provide several machine-independent characterizations of deterministic complexity classes in the model of computation
proposed by L. Blum, M. Shub and S. Smale. We provide a characterization of partial recursive functions over any arbitrary
structure. We show that polynomial time over an arbitrary structure can be characterized in terms of safe recursion. We show
that polynomial parallel time over an arbitrary structure can be characterized in terms of safe recursion with substitutions.
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1 Introduction

Why are we convinced by the Church Thesis? An answer is that there are many mathematical mod-
els, such as partial recursive functions, lambda-calculus, or semi-Thue systems, which are equivalent
to the Turing machine, but are also independent from any computational machinery. When comput-
ing over arbitrary structures, e.g. over the real numbers, the situation is not so clear. Seeking machine
independent characterizations of complexity classes can lend further credence to the importance of
the classes and models considered.

We consider here the BSS model of computation over the real numbers introduced by Blum, Shub
and Smale in their seminal paper [3]. The model was later on extended to a computational model
over any arbitrary logical structure [11, 26]. See the monograph [2] for a general survey about the
BSS model.

In this paper we first extend the algebraic definition of partial recursiveness to an arbitrary struc-
ture and characterize the resulting class of functions as the BSS-computable functions over this
structure. This extends to arbitrary structures a result of [3] proved for the real numbers.
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THEOREM 1.1
Over any structure� � �� � ��� � � � � � ���� ����� � � � � ����� ������� �����, a function is BSS com-
putable if and only if it can be defined as a partial recursive function over�.

In the last decades interest shifted from computability to complexity issues. Several complexity
classes, remarkably� and�� became the object of study. These classes were first defined over
strings of bits, i.e. over structure� � ���� ���������. Then, in [3] its definition was extended to
arbitrary rings and in [26] to arbitrary structures.

In classical complexity theory, several attempts have been made to provide formalisms charac-
terizing complexity classes in a machine independent way. Such attempts include characterizations
based on lambda calculus [21], on finite model theory [10], on function algebra [5], or yet one
combining the latter two approaches [12, 28]. See [4, 9, 15] for more complete references.

Yet another direction is explored in recent works by Bellantoni and Cook [1] and Leivant [20]
which suggest a new approach by means of data tiering known as implicit computational complexity.
Purely syntactic models of complexity classes are provided which can be applied to analyse program
complexity in the study of programming languages [14, 17, 23].

In this paper, following these lines, we establish two ‘implicit’ characterizations of complexity
classes. Our characterizations work over arbitrary structures, and subsume previous ones when
restricted to Booleans or integers.

First, we characterize polynomial time computable BSS functions. This result stems on the safe
primitive recursion principle of Bellantoni and Cook [1].

THEOREM 1.2
Over any structure� � �� � ��� � � � � � ���� ����� � � � � ����� ������� �����, a function is computed in
polynomial time by a BSS machine if and only if it can be defined as a safe recursive function over
�.

Second, we capture parallel polynomial time BSS functions based on Leivant and Marion charac-
terization of polynomial space computable functions [22].

THEOREM 1.3
Over any structure� � �� � ��� � � � � � ���� ����� � � � � ����� ������� �����, a function is computed in
parallel polynomial time by a BSS machine if and only if it can be defined as a safe recursive function
with substitutions over�.

Observe that, unlike Leivant and Marion, Theorem 1.3 characterizes parallel polynomial time and
not polynomial space: for classical complexity both classes correspond. However over arbitrary
structures, this is not true, since the notion of working space may be meaningless: as pointed out
by Michaux [25], on some structures like������� ��������, any computable function can be
computed in constant working space (but in this case we have an exponential increase in the running
time; note that there exist structures where there is no running time blowup [26]).

From a programming perspective, a way of understanding all these results is to see computability
over arbitrary structures like a programming language with extra data types and operators which
come from some external libraries. This observation, and its potential to build methods to automati-
cally derive computational properties of programs, in the lines of [14, 17, 23], is a main motivation
on our work.

On the other hand, we believe the BSS computational model provides new insights into under-
standing complexity theory when dealing with structures over other domains [2]. Several results
have been obtained for this model in the last decade, including separation of complexity classes over
specific structures, see for example [7, 8, 24].
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It is worth mentioning that this is not the first time that the implicit computational complexity
community has shown interest in computations over real numbers. Previous work includes the paper
by Cook [6] on higher order functionals as well as [16]. A related approach over finite structures
can be found in [13]. However this is the first time that implicit characterizations of this type over
arbitrary structures are given.

In Section 2, we recall the notion of BSS machine and some induced complexity classes over an
arbitrary structure�, such as��. In Section 3 we recall the notion of algebraic circuit over� and we
use this notion to define complexity classes for parallel time. In Section 4, we define partial recursive
and primitive recursive functions over� and in Section 5 we do so for safe recursive functions. We
prove Theorems 1.1 and 1.2 in Section 6. Finally, we prove Theorem 1.3 in Section 7.

2 Computing over an arbitrary structure

In this section, we briefly introduce computability and complexity over an arbitrary structure. De-
tailed accounts can be found in [2] —for structures like real and complex numbers— or [26] —for
considerations about more general structures.

DEFINITION 2.1
A structure� � �� � ��� � � � � � ���� ����� � � � � ����� ������� ����� is given by some underlying set
� , a finite number of operators���� � � � � ��� of arity greater than�, some constants������� , and
a finite number of relations����� � � � � ����. Constants correspond to operators of arity 0. While the
index set� may be infinite, the number of operators with arity greater than 1 needs to be finite; that
is, only symbols for constants may be infinitely many. We will not distinguish between operator and
relation symbols and their corresponding interpretations as functions and relations respectively over
the underlying set� . We assume that the equality relation� is a relation of the structure, and that
there are at least two constant symbols, with different interpretations (denoted by� and� in our
work) in the structure.

An example of structure is� � ������� ������ �� � ���. Another example, corresponding to
classical complexity and computability theory is� � ���� ���������.

REMARK 2.2
For any structure� as above,���� ��������� � �.

We denote by� � �
�
��� �

� the set of words over the alphabet� . The space� � is the analogue
to �� the set of all finite sequences of zeros and ones. It provides the inputs for machines over�.
For technical reasons we shall also consider the bi-infinite direct sum� � . Elements of this space
have the form

�� � � � 	��� 	��� 	�� 	�� 	�� � � ���

where	� � � for all 
 � � and	� � � for � sufficiently large in absolute value. The space� � has
natural shift operations, shift left�� 	 � � 	 � � and shift right�� 	 � � 	 � � where

���	�� � 	��� 
�� ���	�� � 	����

In what follows, words of elements in� will be represented with overlined letters, while elements
in � will be represented by letters. For instance,
�	 stands for the word in� � whose first letter is

and which ends with the word	. We denote by� the empty word. The length of a word� � �

� is
denoted by
�
.

We now define machines over� following the lines of [2].
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DEFINITION 2.3
A machine over� consists of an input space� � �

� , an output space� � �
� , and a register space1


 � � � , together with a connected directed graph whose nodes labelled�� � � � � � correspond to the
set of differentinstructionsof the machine. These nodes are of one of the five following types: input,
output, computation, branching and shift nodes.

1. Input nodes. There is only one input node, labelled with 0. Associated with this node there is a
next node����, and the input map�� 	 � 	 
.

2. Output nodes. There is only one output node which is labelled�. It has no next nodes, once
it is reached the computation halts, and the output map�� 	 
 	 � places the result of the
computation in the output space.

3. Computation nodes. Associated with a node� of this type there are a next node���� and a
map�� 	 
 	 
. The function�� replaces the component indexed by 1 of
 by the value
������ � � � � ��� where��� ��� � � � � �� are components 1 to� of 
 and�� is some operation of
the structure� of arity �. The other components of
 are left unchanged. When the arity� is
zero,� is a constant node. A given machine uses only a finite number of constants, however,
in order to compare different machines and to denote the notion of reduction between them and
completeness, we need to include all possible constants in the underlying structure�. Thus the
possibly infinite index set� .

4. Branch nodes. There are two nodes associated with a node� of this type:� ���� and�����.
The next node is����� if ������� � � � � ��� is true and����� otherwise. Here��� ��� � � � � ��

are components 1 to� of 
 and��� is some relation of the structure� of arity �.

5. Shift nodes. Associated with a node� of this type there is a next node���� and a map� 	 
 	

. The� is either a left or a right shift.

Several conventions for the contents of the register space at the beginning of the computation have
been used in the literature [2, 3, 26]. We will not dwell on these details but focus on the essential
ideas in the proofs to come in the sequel.

REMARK 2.4
A machine over� is essentially a Turing Machine, which is able to perform the basic operations
����� and the basic tests����� � � � � ���� at unit cost, and whose tape cells can hold arbitrary elements
of the underlying set� [26, 2]. Note that the register space
 above has the function of the tape and
that its component with index 1 plays the role of the scanned cell. In what follows we will freely use
the common expressions ‘tape’, ‘scanning head’, etc., the translation between these concepts and a
shifting register space with a designated 1st position being obvious.

DEFINITION 2.5
For a given machine� , the function�	 associating its output to a given input	 � �

� is called
the input–output function. We shall say that a function� 	 � � 	 �

� is computablewhen there is a
machine� such that� � �	 .

Also, a set� � �
� is decidedby a machine� if its characteristic function�
 	 � � 	 �����

coincides with�	 .
A configurationof a machine� over� is given by an instruction� of � along with the position

of the head of the machine and two words� �� �� � �
� that give the contents of the tape at left and

right of the head.

1In the original paper by Blum, Shub and Smale, this is called thestatespace. We rename itregister space to avoid
confusions with the notion of ‘state’ in a Turing machine.
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We can now define some central complexity classes.

DEFINITION 2.6
A set� � �

� is in class�� (respectively a function� 	 � � 	 �
� is in class
��), if there exist a

polynomial� and a machine� , so that for all� � �
� , � stops in time��
�
� and� accepts iff

� � � (respectively,� computes function����).

This notion of computability corresponds to the classical one for structures over the Booleans or
the integers, and corresponds to that of Blum, Shub and Smale in [3] over the real numbers.

PROPOSITION2.7
(i) The class�� is the classical� when� � ���� ���������.

(ii) The class�� is the class�� of [3] when� � ������� ������ �� � ���.

3 Computing with circuits

In this section we introduce the notion of circuit over�, and recall some links of this computational
device with the BSS model of computation.

3.1 Circuits
DEFINITION 3.1
A circuit over the structure� is an acyclic directed graph whose nodes, calledgates, are labelled
either asinput gates of in-degree�, outputgates of out-degree�, selectiongates of in-degree�, or
by a relation or an operation of the structure, of in-degree equal to its arity.

The evaluation of a circuit on a given assignment of values of� to its input gates is defined in a
straightforward way, all gates behaving as one would expect. We just note that any selection gate
tests whether its first parent is labelled with�, and returns the label of its second parent if this is true
or the label of its third parent if not. This evaluation defines a function from�

� to �� where� is
the number of input gates and� that of output gates. See [26, 2] for formal details.

We say that a family��� 
 � � �� of circuits computes a function� 	 � � 	 �
� when the

function computed by the�th circuit of the family is the restriction of� to � � . We say that this
family is P-uniformwhen there exist constants��� � � � � �� � � and a deterministic Turing machine
� satisfying the following. For every� � �, the constant gates of�� have associated constants
in the set���� � � � � ��� and� computes a description of the
th gate of the�th circuit in time
polynomial in� (if the 
th gate is a constant gate with associated constant�� then� returns�
instead of��).

REMARK 3.2
It is usually assumed that gates are numbered consecutively with the first gates being the input gates
and the last ones being the output gates. In addition, if gate
 has parents� �� � � � � �� then one must
have��� � � � � �� � 
. Unless otherwise stated we will assume this enumeration applies.

Computations by BSS machines can be done by uniform families of circuits. In [26] the following
result is proved.

PROPOSITION3.3
Assume� is a BSS machine over� computing a function�	 . Denote by��� � � � � �� � �

the constants used by� . Assume moreover that, for all inputs of size�, the computation
time of � is bounded by���� � �, and that the length of an output depends only on the
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size of its input. Then, there exists a family��� 
 � � �� of circuits such that�� has
� � � inputs�	�� � � � � 	��  �� � � � �  ��, has size polynomial in����, and, for all	 � 	�� � � � 	�,
���	�� � � � � 	�� ��� � � � � ��� equals the output of�	 on input	. Moreover, there exists a determin-
istic Turing machine computing a description of the
th gate of the�th circuit in time polynomial in
����.

The requirements of a homogeneous computation time bound and output size are not too strong:
clocking an arbitrary BSS machine, and adding extra iddle characters to its output allows one to
build a BSS machine which complies with these requirements.

3.2 A parallel model of computation

The reader can find in [2] the definition of parallel machine over a structure�. We will not give
formal definitions here, since we will actually use the alternative characterization given by Proposi-
tion 3.5 below.2

DEFINITION 3.4
FPAR� is the class of functions� computable in polynomial time by a parallel machine using an
exponentially bounded number of processors and such that
��	�
 � 
	
���� for all 	 � � � .

PROPOSITION3.5 ([2])
A function � 	 �

� 	 �
� is in FPAR� if and only if ��	� is computed by a P-uniform family of

circuits����	�� � � � � 	��
 � � �� of polynomial depth.

4 Partial recursive and primitive recursive functions

4.1 Definitions

As in the classical setting, computable functions over an arbitrary structure� can be characterized
algebraically, in terms of the smallest set of functions containing some initial functions and closed
by composition, primitive recursion and minimization. In the rest of this section we present such a
characterization.

We consider functions�� � �� 	 �
� , taking as inputs arrays of words of elements in� , and

returning as output a word of elements in� . When the output of a function is undefined, we use the
symbol�.

DEFINITION 4.1
We callbasic functionsthe following four kinds of functions:

(i) Functions making elementary manipulations of words over� . For any
 � � � 	� 	 �� 	� � � �

���
�	� � 
 ���
�	� � 	 �����
�	�� 	�� � 
�	�
����� � � ����� � � ������� 	�� � 	��

(ii) Projections. For any� � �, 
 � �

�	�� �	�� � � � � 	�� � � � � 	�� � 	��

2The exposition on parallelism in [2, Chapter 18] is for� the real numbers but the definition of parallel machine as well
as the proof of Proposition 3.5 carry on to arbitrary structures.
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(iii) Functions of structure. For any operator (including the constants treated as operators of arity 0)
��� or relation���� of arity �� we have the following initial functions:


���
��	�� � � � � 
�� �	��� � �����
�� � � � � 
�����	��

�
���
��	�� � � � � 
�� �	��� �

�
� if �����
�� � � � � 
���
� otherwise.

(iv) Selection function

�
�
������	�  � !� �

�
 if ���	� � �

! otherwise.

The set ofpartial recursive functionsover� is the smallest set of functions� 	 �� � �� 	 �
�

containing the basic functions and closed under the following operations:

(1) Composition.Assume� 	 �� � �
� 	 �

� , "�� � � � � "� 	 � � 	 �
� are given partial functions.

Then the composition� 	 � � 	 �
� is defined by

��	� � ��"��	�� � � � � "��	���

(2) Primitive recursion.Assume" 	 � � 	 �
� and� 	 �� � �� 	 �

� are given partial functions.
Then we define� 	 �� � �

� 	 �
�

���� 	� � "�	�

��
� � 	� �

�
�� � �� � 	�� 	� �� �� � 	� ���
� ����������

(3) Minimization. Assume� 	 �� � �
� 	 �

� is given. Function� 	 � � 	 �
� is defined by

minimization on the first argument of�, written by�� � � #	 ���	�  ��, if:

#	 ���	�  �� �

�
� �� �� � � 	 ��������  �� �� �

�
� 	 � � ����� 
 ��������  �� � �� ����������

Partial recursive functions defined without using the minimization operator are calledprimitive re-
cursive.

REMARK 4.2
(i) The formal definition of function�� is actually a primitive recursive definition with no recurrence

argument. However, when we introduce the notion of safe recursion in Section 5, this function
�� needs to be given asa priori functions in order to be applied to safe arguments, and not only
to normal arguments. For the sake of coherence, we give it here as ana priori function as well.

(ii) Note that primitive recursive functions are total functions whereas partial recursive functions
may be partial functions.

(iii) The operation of minimization on the first argument of� returns the smallest word in��� �

satisfying a given property. The reason why it does not return a smallest word made ofanyletter
in � is to ensure determinism, and therefore computability. On a structure where�� is not
decidable, such a non-deterministic minimization may not be computable by a BSS machine,
which is in essence deterministic.
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(iv) In the definition of composition, primitive recursion, and minimization above we have taken
arguments	�  � �

� . This is to simplify notations. To be fully formal, we should allow for
arguments in�� � �
 with � � �. We will adopt these simplification all throughout this paper
since the proofs for the fully formal case would not be different: just notationally more involved.

(v) In the definition of primitive recursion, the variable
 in front of the recurrence argument
� does
not appear as argument of the function�. The first reason for this is the need for consistency
among argument types:
 is a single element in� whereas all arguments need to be words in
�
� . The second reason is that� may still depend on the value of the first element of .

(vi) Our definition of primitive recursion and of minimization is slightly different from the one found
in [3]. There, the authors introduce a special integer argument for every function, which is used
to control recursion and minimization, and consider the other arguments as simple elements in
� . Their functions are of type� 	 � � �

� 	 �
� . Therefore, they only capture finite dimen-

sional functions. It is known that over the real numbers with���� � operators finite dimensional
functions are equivalent to non-finite dimensional functions (see [25]). But this is not true over
other structures, for instance�$��. Our choice is to consider arguments as words of elements in
� , and to use the length of the arguments to control recursion and minimization. This allows us
to capture non-finite dimensional functions over arbitrary structures.

The following result is immediate.

PROPOSITION4.3
The set of partial recursive (resp. primitive recursive) functions over���� ��������� coincides with
the classical partial recursive (resp. primitive recursive) functions.

5 Safe recursive functions

In this section we extend to an arbitrary structure� the notion of safe recursive function over the
natural numbers defined by Bellantoni and Cook [1].

EXAMPLE 5.1
Consider the following function

����	� � �
����

which computes in unary the exponential. It can be easily defined with primitive recursion by

�������  � �  

�����
�	�  � � �����
������	�  ��

������ � �

����
�	� � ���������	�� ����	���

On the other hand, note that��� �� 
�� since the computed value is exponentially large in the size
of its argument. The goal of this section is to introduce a restricted version of recursion not allowing
for this exponential growth.

Safe recursive functions are defined in a similar manner to primitive recursive functions. How-
ever, following [1], safe recursive functions have two different types of arguments, each of them
having different properties and purposes. The first type of argument, callednormal, is similar to
the arguments of the previously defined partial recursive and primitive recursive functions, since it
can be used to make basic computation steps or to control recursion. The second type of argument,
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calledsafe, cannot be used to control recursion. In a recursion, the recurrence argument can only be
in safe position. We will see that this distinction between safe and normal arguments ensures that
safe recursive functions can be computed in polynomial time.

To emphasize the distinction between normal and safe variables we will write� 	 � � � 	 %
where� indicates the domain of the normal arguments and� that of the safe arguments. If all the
arguments of� are of one kind, say safe, we will write� in the place of� . Also, if 	 and are these
arguments, we will write��	�  � separating them by a semicolon “;”. Normal arguments are placed
at the left of the semicolon and safe arguments at its right.

We define now safe recursive functions. To do so, we consider the set ofbasic safe functions
which are the basic functions of Definition 4.1 with the feature that their arguments are all safe.

DEFINITION 5.2
The set ofsafe recursive functionsover� is the smallest set of functions� 	 �� � �
 � �� � �� 	 �

�

containing the basic safe functions, and closed under the following operations:

(1) Safe composition.Assume� 	 �� � �
� � �� � �

� 	 �
� , "�� � � � � "� 	 � � � � 	 �

� and
"���� � � � � "��� 	 � � � �

� 	 �
� are given safe recursive functions. Then their safe composi-

tion is the function� 	 � � � �
� 	 �

� defined by

��	�  � � � �"��	� �� � � � � "��	� ��"����	�  �� � � � � "����	�  �� �

(2) Safe recursion.Assume" : � � � �
� 	 �

� and� : �� � �
� � �� � �

� 	 �
� are given functions.

Function� : �� � �
� � �

� 	 �
� can then be defined by safe recursion:

���� 	�  � � "�	�  �

��
�!� 	�  � � ��!� 	� ��!� 	�  ��  ��

REMARK 5.3
(i) Using safe composition it is possible to ‘move’ an argument from a normal position to a safe

position, whereas the reverse is forbidden. For example, assume� 	 � ���� � �
� 	 �

� is a given
function. One can then define with safe composition a function� given by��	�  � !� � ��	�  � !�
but a definition like��	�  � !� � ��	�  � !� is not valid.

(ii) Note that it is impossible to turn the definition of��� in Example 5.1 into a safe recursion
scheme.�����	�  � and�����	�  � � can be defined as follows:

�������  � �  

�����
�	�  � � ������ 
������	�  ��

�������  � � �  

�����
�	�  � � � ������ 
������	�  � ���

However,��� cannot be defined, since this would need the use of the recurrence argument
����	� as a normal argument of function����, which is forbidden. This obstruction is at the
basis of the equivalence between safe recursion and polynomial time computability.

The following result is immediate.

PROPOSITION5.4
The set of safe recursive functions over���� ��������� coincides with the classical set of safe
recursive functions defined by Bellantoni and Cook.
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6 BSS computability and recursion

This section is devoted to prove Theorems 1.1 and 1.2. To do so, we use Proposition 3.3 to reduce
BSS machine computations to circuit evaluation. Recall, the output of this reduction, on an input of
size� is a description of a circuit performing the same computation the machine does when restricted
to inputs of size�. Since in this proposition we replaced the machine constants by variables, the
resulting circuit can be encoded over����� and, as it turns out, the whole reduction can be carried
out by a Turing machine. Therefore we can invoke classical results to show that the reduction can be
simulated by classical partial recursive or safe recursive functions and,a fortiori, by such functions
over an arbitrary structure�. Next, we give a simulation of the circuit given by this reduction by
partial recursive or safe recursive functions over an arbitrary structure�. In contrast, when dealing
with an arbitrary BSS machine computation, we do not necessarily obtain a P-uniform family of
circuits. This is not an issue since the reduction does not need to be polynomial time computable.
The reduction as well as the simulation of the family of circuits is done by partial recursive functions.
When dealing with a polynomial time BSS machine, the reduction is polynomial in the classical
meaning, and we obtain a P-uniform family of circuits. The reduction and the simulation of the
family of circuits is done by safe recursive functions. The two cases of simulation of the family of
circuits are dealt with in a single result, Lemma 6.1 below.

Combining these results we obtain proofs for our two theorems.

6.1 Evaluation of uniform circuit families with recursion

In this section, we make the simulation of a uniform family of circuits by recursive functions explicit.

LEMMA 6.1
Assume��� 
 � � �� is a family of circuits over� such that:

� �� has� � � input gates�	�� � � � � 	��  �� � � � �  ��,

� there exists a function� 	 � 	 � such that, for all� � �, 
��
 � ���� and���� � �,

� there exists a safe recursive (resp. partial recursive) function& such that& �	� � � �
������,

� there exist safe recursive (resp. partial recursive) functions���
� '�� � � � '� (here� is the maxi-
mum arity of the symbols of�) such that���
�& �	� ��� �� 	� � describes the
�� node of���� as
follows

���
�& �	� ����� 	� � �

��������
�������

� if 
 is an input gate
��� if 
 is an output gate
�
� if 
 is a gate labelled with op�
�
��� if 
 is a gate labelled with rel�
�
����� if 
 is aselectionnode

� otherwise

and'��& �	� ����� 	� � identifies the�th parent node of the
th node of� ��� as follows

'��& �	� ����� 	� � � �
� where� � 
 is the�th parent node of
�

Then, given a set of constants� � ��� � � � � �� � �
� , there exists a safe recursive (resp.

partial recursive) function( �
� over � such that, for any	 � 	�� � � � �	�, (�

��	� � equals
���	�� � � � � 	�� ��� � � � � ���.
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PROOF. It is easy to define a safe recursive function���� such that, for any!� �� 	 � �
� satisfying


�
 � 
	
 � 
!
,
�����!� �� 	� � 	�������

where	 � 	�� � � � �	�. Note that! does not occur in the right-hand side of the equality above. It is
used to control the recursion and ensures that	 can be placed in a safe position. The contents of its
components is irrelevant. We only require
	
 � 
!
.

We next want to define a safe recursive function)� which, on an input�!� 	� �, com-
putes the evaluation of all gates numbered from� to 
!
 of � ��� on input �	� �� and concate-
nates the results in one word. For the sake of readability, we denote by� 
 the expression
�����& �	� ��'
�& �	� �� ��!� 	� �� )��!� 	��. This expression gives the evaluation of the�th parent
gate of the current gate (which is the one numbered by
!
 � �). It is obtained by ‘Picking’ it at the
right position in the recurrence argument. Denote by��
� the arity of op� and by��
� the arity of rel�.
We may define)� as follows (we use definition by cases which can be easily described by combin-
ing �
�
����� operators and simple safe recursive functions) where* � ���
�& �	� ����!� 	� � is the
type of the current gate,

)���� 	� � � �

)����!� 	� � �

������������
�����������

������	�� )��!� 	� �� if * � � and
!
� � � 
 � 
	

������������� )��!� 	� �� if * � �

and
!
� � � 
 � �
	
 � �� 
	
� ��
������ op������ � � � �������� )��!� 	� �� if * � �

�

������ rel������ � � � �������� )��!� 	� �� if * � �
���

������ �
�
����������������� )��!� 	� �� if * � �
�����

��������� )��!� 	� �� if * � ���
)��!� 	� � otherwise.

Note that the first six cases in the definition above correspond to the current node being input,
constant, operator, relation, selection and output, respectively. The seventh case is to deal with un-
expected values of!, e.g. a too large gate number. We define now a function%� which concatenates
the values returned by the outputs gates of� ���,

%���� 	� � � �

%����!� 	� � �

�
������)��!� 	� �� %��!� 	� �� if ���
�& �	� �� !� 	� � � ���
%��!� 	� � otherwise.

The result of the evaluation of���� on input�	� �� is given by%��& �	� �� 	� �.
The result for partial recursive functions is obtained by replacing all semicolon ‘;’ by commas ‘,’

in the proof, and all mentions of ‘safe recursive’ by ‘partial recursive’.

6.2 Proof of Theorem 1.1

Assume� is a BSS machine over� computing a function�	 	 �
� 	 �

� . Denote by
��� � � � � �� � � the constants used by� . A description of the configuration reached by� on
input	 after� iterations can be given by the values of the following four functions:

� ���
�	����, which gives a encoding for the node of� reached after� steps. We assume without
loss of generality that the encoding of all output nodes begins with� and that the encoding of all
other nodes begins with�.
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� �
�����	���� � �
����������, which gives the actual length� of the non-empty part of the tape

of � after� steps (the�s are for padding the output so that its length only depends on the length
of the input)

� ���
�	���� �  ���������, which gives the content of the tape of� after� steps (the�s are
for padding as above)

� �
���	���� which describes the position of the head of� after� steps.

By construction, the length of the output of these four functions depends only on the size of their
input. The existence of a universal BSS machine ensures that these functions are BSS computable
and, by appropriately clocking the machines computing them, we may assume that the computation
time of these machines depends only on the size of their input. Therefore, we can apply Propo-
sition 3.3 to deduce the existence of four families����������� ��������� 
 �� � � �� of circuits,
each of them describable in time& ��� ��, polynomial in� � �, by a deterministic Turing machine.
Using a classical result [18] these machines can be simulated by classical partial recursive functions,
which are also partial recursive functions over� by Remark 2.2 and Proposition 4.3. Without loss of
generality, one can assume that the descriptions of the circuits above have the form given in the hy-
potheses of Lemma 6.1. We can then apply this lemma to conclude that the functions���
, �
����,
���
 and�
�� are partial recursive over�. ¿From�
���� and���
, it is trivial to build a partial
recursive function�
���� such that�
�����	���� gives exactly the non-empty part of the tape of�
on input	 after� steps. The computation time of� on input	 is then given by

���
�	� � #+����
�	� +��

and the result of this computation by

�	 �	� � �
�����	����
�	���

The computation of� can therefore be simulated by a partial recursive function over�.
The simulation of a partial recursive function by a BSS machine is straightforward.

6.3 Proof of Theorem 1.2

The first part of the proof is devoted to the simulation of polynomial time BSS machines.
Assume� is a polynomial time BSS machine over� computing�	 . Denote by��� � � � � �� �

� the constants used by� . Assume that the computation time is bounded by some polynomial
, ��� � ���. There exist polynomial time BSS machines� � and� ��, with the same constants,
such that, on input	, � � returns���� ������� ��������� ����, and� �� returns�	 �	���� ��������� ����.
The strings of�s ensure that the output length depends only on the length of the input. Denote by
�	 � and�	 �� the corresponding functions.

By Proposition 3.3 there exist two P-uniform families of circuits computing�	 � and�	 �� .
By Lemma 6.1, these two families of circuits are simulated by safe recursive functions'	 � and

'	 �� over� respectively. Therefore,'	 � and'	 �� coincide with�	 � and�	 �� respectively. We
next define a safe recursive function�� such that, for! of length� and of length at least�,
���!�  � returns the first� characters of . In order to do so we introduce�� such that���!�  �
iterates� times�� on , and�
��� wich gives the same result as�� in the reversed order. We define
also a safe recursive function����� for eliminating all padding�s from the output of'	 � . These
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functions are formally defined by

�����  � �  

���
�!�  � � �������!�  ��

�
������  � � �

�
����
�!�  � � ���������!�  ���
����!�  ��

���!�  � � �
����!��
����!�  ��

���� � � �

��
�!� � �

�
�������� ��!� �� if ���� !� � �

� otherwise

������!� � � �������� ��!� ���

Then�	 can be defined by

�	 �	� � � ���������'	 � �	� �� ��'	 �� �	���

Let us now focus on the time needed to evaluate, with a BSS machine, a safe recursive function� .
We give the proof for� 	 � � � �

� 	 �
� . The proof is the same for higher arities (i.e.� 	

�� � �
 � �� � �� 	 �
� ).

Let � 	 � � � �
� 	 �

� be a safe recursive function over�. We denote by& ���	�  �� the time
necessary to compute��	�  � with a BSS machine over�.

PROPOSITION6.2
Let � 	 � � � �

� 	 �
� be a safe recursive functions. There exists a polynomial�� such that, for all

�	�  � � � � � �
� ,

& ���	�  �� � �� �
	
��

PROOF. By induction on the depth of the definition tree of� .
If � is a basic safe function then it can be evaluated in constant time. Therefore, the statement is

true for basic safe functions.
Assume now� is defined by safe composition from safe recursive functions�� " �� � � � � "��� be

as in Definition 5.2. Then, there exists polynomials��� ��� � � � � ���� satisfying the statement for
these functions respectively. Without loss of generality, we may assume these polynomials to be
nondecreasing. Therefore,

& ���	�  �� � & �"��	�  �� � � � �� & �"����	�  ��

�& ���"��	�  �� � � � � "��	�  ��"����	�  �� � � � � "����	�  ���

� ���
	
� � � � � � �����
	
� � ������
	
� � � � � � ���
	
���

which shows we may take

�� � �� � � � �� ���� � �� Æ ��� � � � �� ����

Finally, assume� is defined by safe recursion and let"� � be as in Definition 5.2. Then, there
exist polynomials��� �� satisfying the statement for these functions respectively. In addition, we
may also assume that�� and�� are nondecreasing. Therefore,

& ����� 	�  �� � ���
	
�
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and, when unfolding the recurrence,

& ���
�!� 	�  �� � & ���!� 	�  �� � & ���!� 	� ��!� 	�  ��  ��

� & ���!� 	�  �� � ���
!� 	
�

... (6.1)

� 
!
���
!� 	
� � ���
	
��

which shows we may take
�� � �� �� � ���

REMARK 6.3
(i) Note that in (6.1) above the evaluation time& ���!� 	� ��!� 	�  ��  ��, because of the induction

hypothesis, does not depend on��!� 	�  �. This independence in the inductive argument in the
proof is what keeps the evaluation time polynomially bounded.

(ii) A similar result could be obtained by using the notion of ‘tier’ introduced in [19].

7 A characterization of the parallel class FPAR�
In this section we prove Theorem 1.3. We first introduce the notion of safe recursion with substitu-
tions.

7.1 Safe recursion with substitutions
DEFINITION 7.1
The set of functions defined withsafe recursion with substitutionsover� is the smallest set of
functions� 	 �� � �
 � �� � �� 	 �

� , containing the basic safe functions, and closed under safe
composition and the following operation:

Safe recursion with substitutions. Let " 	 � � � �� � �� 	 �
� , � 	 �� � �� � �� � ���� 	 �

� , and
�� 	 � � �

� 	 �
� for � � � � � be safe recursive functions.

Function� 	 �� �
� � �� � �

� 	 �
� is defined by safe recursion with substitutions as follows:

���� 	�-�  �� � "�	�-�  �

��
�!� 	�-�  � �

��
�

� �!� 	� ��!� 	�����-��  �� � � � � ��!� 	�����-��  ��  �
�� �� ��!� 	�����-��  � ���

� ����������

The functions�� are calledsubstitution functions.

7.2 Proof of Theorem 1.3 (‘only if ’ part)

By hypothesis, the family of circuits we want to simulate here is P-uniform. This means that there
exists a machine over� which, given a pair��� 
�, computes the description of the
th gate of the
circuit �� in time polynomial in�. Let .��� be the polynomial bounding the number of output
gates of�� and, for� � � � .��� let ��� be the circuit induced by�� with only one output node
(corresponding to the�th output node of��).
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The idea for writing a function evaluating the circuit��� at an input	 � �
� is simple. The

function is defined recursively, the evaluation of every node depending on the evaluation of its parent
nodes. However, in order to do this with the mechanism of safe recursion with substitutions, we need
a way to describe these parents nodes in constant time (actually with a substitution function) and this
is not provided by the P-uniformity hypothesis. A way to do so is by describing a parent node simply
by its relative position among the possible parent nodes of the node at hand. The iteration of this
procedure naturally leads to the notion of path.

A path from the output node� to a node� is a sequence of nodes� � / �� � � � � /� � � such that
/� is a parent of/��� for 
 � �� � � � � 0. The node� is thetop of the path. We describe a path by an
element � � � as follows

� The path consisting of the single output node� is represented by� � � � .

� Let � be the maximal arity of a relation or a function of the structure. Then1 �
� �!���
���� ���� is the size necessary to write the binary encoding of any parent for a given
node. Assume that/�� � � � � /��� is represented by . If /� is the
th parent node of/��� then the
path/�� � � � � /� is represented by
�� , where
� � ������ represents the binary encoding of
.
We add as many�s as needed in front such that
 � have length1.

LEMMA 7.2
There exists a safe recursive function���
 such that, for an element	 � �

� , a natural� � .���,
and a path in ��� ,

���
��� � 	�  � �

��������
�������

� if ���� � is the
th input gate
��� if ���� � is the output gate
�
� if ���� � is a gate labelled with op�

�
��� if ���� � is a gate labelled with rel�

�
����� if ���� � is aselectionnode

� otherwise

where���� � denotes the top of .

PROOF. Since the length of is polynomial in�, the function���
 can be computed in polynomial
time. Therefore, it is safe recursive by Theorem 1.2.

Assume���� � ��� is a polynomial bounding the depth of the circuit��. The goal now is to
describe a function����, definable via safe recursion with substitutions, such that������ � � �� 	� �� is
the output of��� on input	 whenever
	
 � � and
�
 � ����.

To do so we will use the substitution functions�� defined by����  � � 
�� where
� � ������

is the binary encoding of
. Note that�� is safe recursive for
 � �� � � � � �. Also, note that a path of
length0 is easily described by composing0 times some of these functions.

Denote by��
� the arity of���, and ��
� the arity of����. Also, denote by�
 the expression
������� � �� 	��
��  �� which gives the evaluation of the�th parent gate of the current gate and by
* � ���
��� � 	�  � the type of the current gate. The function���� is then defined as follows,

������� � �� 	�  � � �

������� � 
��� 	�  � �

������
�����

	� if * � �

op������ � � � ������� if * � �
�

rel������ � � � ������� if * � �
���

�
�
���������������� if * � �
�����

�� if * � ����
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All equality and inequality tests are once again easily obtained by combining�
�
����� operators
and simple safe recursive functions.

Note that we use above an enumeration for the gates of��� different to the one described in
Remark 3.2. The expressions�
 evaluating the�th parent of a gate are, consequently, different here
and in the proof of Lemma 6.1.

Theorem 1.2 ensures the existence of a safe recursive functions, �� such that
,���	� �
 � ���.
We use,�� to define with safe recursion over� the following function

��������� 	� � � ������� ,���	� �� 	�!� ��

�������
� � 	� � � ����������� � ,���	� �� 	�!� ��� ������� � 	� ��

such that������� � 	� �� concatenates the outputs of��� for � � �� � � � � 
 
.
Theorem 1.2 also ensures the existence of a safe recursive functions,� such that,��	� � �

����.
The function computed by the P-uniform family of circuits�� � 
 � � �� is then defined with safe
recursion with substitutions by��	�����	� � � �������,��	� �� 	� �.

7.3 Proof of Theorem 1.3 (‘if ’ part)

Again, we give the proof for� 	 � � � �
� 	 �

� .
Let � be a function defined with safe recursion with substitutions, and denote by� � the restriction

of � to the set of inputs of size�. We need to prove that� can be computed by a P-uniform family
of circuits��� 
 � � �� of polynomial depth.

As in Section 6.3, for a function� 	 � ��� � 	 �
� defined with safe recursion with substitutions,

we denote by2���	�  �� the depth of the shortest circuit� computing��	�  �.

PROPOSITION7.3
Let � 	 � � � �

� 	 �
� be defined by safe recursion with substitutions. There exists a polynomial

�� such that, for all�	�  � � � � � �
� ,

2���	�  �� � �� �
	
�

and

��	�  �
 � �� �
	
��

PROOF. It is done by induction on the depth of the definition tree of� , as in the proof of Proposi-
tion 6.2 (to which this proof is actually similar).

If � is a basic safe function then it can be evaluated in constant time. Therefore, the statement is
true for basic safe functions.

Assume now� is defined by safe composition from safe recursive functions�� " �� � � � � "���

as in Definition 5.2. Then, there exists polynomials��� ��� � � � � ���� satisfying the statement for
these functions respectively. Without loss of generality, we may assume these polynomials to be
nondecreasing. Therefore,

2���	�  �� � �
��2�"��	�  ��� � � � � 2�"����	�  ���

�2���"��	�  �� � � � � "��	�  ��"����	�  �� � � � � "����	�  ���

� �
�����
	
�� � � � � �����
	
��� ������
	
� � � � � � ���
	
���

which shows we may take

�� � �
����� � � � � ������ �� Æ ��� � � � �� ���
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where�
����� � � � � ����� denotes any polynomial bounding above� �� � � � � ����.
Finally, assume� is defined by safe recursion with substitutions and let"�� � � � � "�� ��� � � � � ��

and ��� (
 � �� � � � � � and � � �� � � � � �) as in Definition 7.1. Then, there exist polynomials
��� � � � � � ��� � ��� � � � � � ��� satisfying the statement for��� � � � � ��� "�� � � � � "� respectively. Again,
without loss of generality, we may assume��� � �� for 
 � �� � � � � � and��� � �� for 
 � �� � � � � �.
In addition, we also may assume that�� and�� are nondecreasing. Therefore, for
 � �� � � � � �,

2������ 	�-�  �� � ���
	
�

and

2����
�!� 	�-�  �� � �
�
���

�2����!� 	������-��  ���

�2
�
��
�
!� 	� ���!� 	������-��  �� � � � � ���!� 	������-��  ��

� � � � ���!� 	������-��  �� � � � � ���!� 	������-��  ��  
�	

� �
�
���

�2����!� 	������-��  ���� ���
!� 	
��

Applying the same reasoning for���!� 	������-��  � and denoting! � � ���!� we obtain

2����!� 	������-��  ��

� 2������-��� � �
�
�����

�2�����!� 	�������������-���  ���

�2
�
��
�
!� 	� ���!� 	� �����������-���  �� � � � � ���!� 	��������� ��-���  ��

� � � � ���!� 	�����������-���  �� � � � � ���!� 	�����������-���  ��  
�	

� 2������-��� � �
�
�����

�2�����!� 	�������������-���  ��� � ���
!�� 	
��

Continuing in this way and denoting by!� the result of applying0 times�� to ! we obtain

2����
�!� 	�-�  �� �

�����

���

�
�
�

�����������
�����������

�
2��������������� � � � ���������

��-� � � ����

�
� ���!�� 	�




� �
�
�����������
�����������

�
2�"���	��������������� � � � �������-� � � ����  ��

�

� 

�!

�
��
!
� � ���
!� 	
�

�
� ���
	
�

the��
!
� since each��� can be computed in constant time by Proposition 6.2, and that we compute
them sequentially. This yields again a polynomial bound for the depth.

The polynomial bound for the output size is obvious and we can take� � to be a polynomial
bounding both depth and output size.

Proposition 7.3 shows that every circuit�� of the family computing� has depth polynomial in�.
The P-uniformity of this family is implicit in the proof of the proposition.

In the classical setting (see [22]), safe recursion with substitution characterizes the class
FPSPACE. However, in the general setting, this notion of working space is meaningless, as pointed
out in [25]: on some structures like��� �� �������� ��, any computation can be done in constant
working space. However, since in the classical setting we have FPAR = FPSPACE, our result extends
the classical one from [22].
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