
Correctness of Multiplicative (and Exponential)
Proof Structures is NL-Complete

Paulin Jacobé de Naurois? and Virgile Mogbil?

LIPN – UMR7030, CNRS – Université Paris 13,
99 av. J-B Clément, F–93430 Villetaneuse, France

denaurois@lipn.univ-paris13.fr

virgile.mogbil@lipn.univ-paris13.fr

Abstract. We provide a new correctness criterion for unit-free MLL proof
structures and MELL proof structures with units. We prove that deciding
the correctness of a MLL and of a MELL proof structure is NL-complete.
We also prove that deciding the correctness of an intuitionistic multi-
plicative essential net is NL-complete.

Introduction

The proof nets [Gir87,DR89] of Linear logic (LL) are a parallel syntax for logical
proofs without all the bureaucracy of sequent calculus. They are a non-sequential
graph-theoretic representation of proofs, where the order in which some rules are
used in a sequent calculus derivation, when irrelevant, is neglected. The unit-
free multiplicative proof nets are inductively defined from sequent calculus rules
of unit-free Multiplicative Linear Logic (MLL). A proof structure is freely built
on the same syntax as proof nets, without any reference to a sequent calculus
derivation.
In LL we are mainly interested in the following decision problems: Deciding the
provability of a given formula, which gives the expressiveness of the logic; decid-
ing if two given proofs reduce to the same normal form, i.e. the cut-elimination
problem which corresponds to program equivalence using the Curry-Howard iso-
morphism; and deciding the correctness of a given proof structure, i.e. whether
it comes from a sequent calculus derivation. For this last decision problem, one
uses a correctness criterion to distinguish proof nets among proof structures.
We recall the following main results [Kan92,Mai] and we complete (in bold) the
correctness cases:

fragment decision problem
units provability cut-elimination correctness

MLL no NP -complete P -complete
NL-completeMELL yes open (at most non-elementary)

? Work supported by project NO-CoST (ANR)

Correctness is equivalent to provability for unit only MLL because proof nets
are formulae syntactic trees. However it is not so obvious for the propositional
case as one can observe following the long story of correctness criteria:

– Long-trip [Gir87] is based on travels and was the first one.
– Acyclic-Connected [DR89] is a condition is based on switchings i.e. the choice

of one premise for each O connective. The condition is that all the associ-
ated graphs are trees. A naive implementation of Acyclic-Connected uses
exponential time.

– Contractibility [Dan90] is done in quadratic time by repeating two graph
rewriting rules until one obtains a simple node.

– Graph Parsing [Laf95] is a strategy for Contractibility which is implemented
in linear time as a sort of unification [Gue99].

– Dominator Tree [MO00,MO06] is a linear time correctness criterion for es-
sential nets, to which proof structures correctness reduces in linear time.

– Ribbon [Mel04] is a topological condition requiring homeomorphism to the
disk.

For other fragments of Linear Logic, some of these criteria apply or are extended
as for MELL1 [Dan90,GM01].
A feature of these criteria is that they successively lower the complexity of se-
quential, deterministic algorithms deciding correctness for MLL. Switching from
proof structures to paired graphs, that is undirected graphs with a distinguished
set of edges, we give a new correctness criterion for MLL and more generally
for MELL. This new correctness criterion gives us a lower bound for the cor-
rectness decision problem for both MLL and MELL. This lower bound yields an
exact characterization of the complexity of this problem, and induces naturally
efficient parallel and randomized algorithms for it.
The paper is organized as follows: we recall preliminary definitions and results
in linear logic and complexity theory in Section 1. Section 2 is devoted to the
exposition of a new correctness criterion for unit-free MLL and MELL with
units. We prove its NL-completeness in Section 3, and the NL-completeness of
the criterion for IMLL in Section 4.

1 Background

1.1 MLL and Proof Structures

Roman capitals A,B stand for MLL formulae, which are given by the following
grammar, where � and O are duals for the negation ⊥, accordingly to De Morgan
laws:

F::=A | A⊥ | F � F | FOF

1 As usual M, A and E denote respectively for Multiplicative, Additive and Exponen-
tial fragments of LL

Greek capitals Γ,∆ stand for sequents, which are multiset of formulae, so that
exchange is implicit. The MLL sequent calculus is given by the following rules:

` A,A⊥
(ax) ` Γ,C ` ∆,C⊥

` Γ,∆ (cut)
` Γ,A ` ∆,B
` Γ,∆,A�B

�
` Γ,A,B
` Γ,AOB O

Definition 1. A MLL proof structure is a finite directed acyclic graph (DAG)2

whose nodes, called links, are defined together with an arity and a coarity, i.e.
a given number of incident edges called the premises of the node and a given
number of emergent edges called the conclusions of the node. Moreover the proof
structure edges are labelled by formulae and every edge is conclusion of exactly
one link and premise of at most one link. The links of are the following:

nodes ax cut � O
arity edge labels 0 ∅ 2 A,A⊥ 2 A,B 2 A,B
coarity edge labels 2 A,A⊥ 0 ∅ 1 A�B 1 AOB

We allow edges with a source but no target (i.e pending or dandling edges), they
are called the conclusions of the proof-structure.
A MLL proof net is a MLL proof structure inductively defined as follows:

– an ax-link is a proof net with conclusions A,A⊥,
– if P is a proof net with conclusions Γ,A,B then P extended with a O-link

of premises A and B is a proof net with conclusions Γ,AOB.
– if P1 and P2 are disjoint proof nets with respective conclusions Γ,A and ∆,B

then P1 ∪P2 extended with a �-link of premises A and B is a proof net with
conclusions Γ,A�B,∆.

It follows from the definition that MLL proof structures and proof nets have a
non-empty set of conclusions, which corresponds to a MLL sequent. The induc-
tive definition of MLL proof nets corresponds to a graph theoretic abstraction
of the derivation rules of MLL; any proof net is sequentializable, i.e. corresponds
to a MLL derivation: given a proof net P of conclusion Γ , there exists a sequent
calculus proof of ` Γ which infers P .

Definition 2. A paired graph is an undirected graph G = (V,E) with a set
of pairs C(G) ⊆ E × E which are pairwise disjoint couples of edges with the
same target, called a pair-node, and two (possibly distinct) sources called the
premise-nodes.
A switching S of G is the choice of an edge for every pair of C(G). With each
switching S is associated a subgraph S(G) of G: for every pair of C(G), erase
the edges which are not selected by S. When S selects the (abusively speaking)
left edge of each pair, S(G) is denoted as G[∀ 7→∵\]. Also, G[∀ 7→∵] stands for
G \ {e, e′| (e, e′) ∈ C(G)}.

2 For convenience the edges are oriented up-down, so we do not mention the orientation

Let R = (V,E) be a MLL proof structure. To R, we naturally associate the
paired graph GR = (V,E′) where E′ is the set of non-pending edges of E and
C(GR) contains the premises of each O-link of R (Figure 1). For a pair of edges
(v, x), (w, x), we adopt the representation of Figure 1, where the two edges of
the pair are joined by an arc.

t t �� ��t. . . t t
A
At�� t
�� ��t. . . t t

A
At�� t
�� ��t. . . t

Fig. 1. Paired graph constructors associated to MLL proof nets: ax-link, O-link and
�-link.

We define the following graph rewriting rules �c of Figure 2 on paired graphs
where all the nodes are distinct and rule �R2 applies only for a non-pair edge:

t
t

−→R1 t
t

−→R2 t
Fig. 2. Contraction rules →c

We denote by G→c • the fact that G contracts to a single vertex with no edge.

Definition 3. A MLL proof structure R is DR-correct if for all switching S of
GR, the graph S(GR) is acyclic and connected.
A MLL proof structure R is contractile if GR �∗c •.
Theorem 1. [DR89,Dan90] A MLL proof structure R is a MLL proof net iff R
is DR-correct iff R is contractile3.

We define the following decision problem MLL-corr:
Given: A MLL proof structure R
Problem: Is R a MLL proof net?

1.2 MELL and Proof Structures

The definition of MELL formulae follows that of MLL formulae in Section 1.1,
with ! and ? duals for the negation ⊥, as well as the neutral elements 1 and ⊥:

MELL: F::= A | A⊥ | F � F | FOF | !F | ?F | 1 | ⊥

The MELL sequent calculus contains the rules of the MLL sequent calculus, as
well as the following rules:

` Γ
` Γ,⊥ ⊥ ` 1 1 ` Γ

` Γ, ?A ?W
` Γ, ?A, ?A
` Γ, ?A ?C

` Γ,A
` Γ, ?A ?D

`?Γ,A
`?Γ, !A !P

3 The criteria in [DR89,Dan90] are expressed for switchings and contraction rules for
proof structures only. The equivalence with Definition 3 is left to the reader.

Definition 4. MELL structures are defined similarly to MLL proof structures
(Definition 1), with the additional links, where the ?W -link subsumes both ?W
and ⊥rules:

nodes 1 ?W ?C ?D !P
arity edge labels 0 ∅ 0 ∅ 2 ?A, ?A 1 A 1 A
coarity edge labels 1 1 1 ⊥ or ?A 1 ?A 1 ?A 1 !A

Definition 5. An exponential box is a MELL structure whose conclusions are
all ?-formulae but one, its principal door, which is conclusion of a !P -link. Sim-
ilarly, a weakening box is a MELL structure with a distinguished conclusion, its
principal door, which is conclusion of a ?W -link. A box is either an exponential
or a weakening box.

Definition 6. A MELL proof structure (R,B) is given by a MELL structure R
and a box mapping B, which associates to any link l of R a box bl or R. More-
over, boxes may nest but may not partially overlap, and a unique exponential
(respectively weakening) box is associated to each !P -(resp. ?W -)link. By con-
vention, when a link belongs to several boxes, the mapping returns the innermost
box to which it belongs, otherwise it returns R.

It follows from the definition that, for any !P (respectively ?W)-link, the box
mapping associates the exponential (resp. weakening) box to which it naturally
corresponds. The whole proof structure R is treated as a particular box, and is
associated to all links that do not belong to any exponential or weakening box.
Let (R,B) be a MELL proof structure, with boxes b1, . . . , bn. Let b0 = R. We
define as follows the family G(R,B) = {Gi

(R,B)}i=0...n of paired-graphs:

– Gi
(R,B) contains a node l for every link l of R \ {?W -links} with B(l) = bi,

and an edge (l, l′) for all links l, l′ of R \ {?W -links} with B(l) = B(l′) = bi.
C(Gi

(R,B)) contains the premises of each O-link and ?C-link l of R with
B(l) = bi.

– Assume bj is an outermost box included in bi. A node bj ∈ Gi
(R,B) is associ-

ated to bj , and an edge (bj , l) ∈ Gi
(R,B) for all link l conclusion of a link in

bj and such that B(l) = bi.

Essentially, Gi
(R,B) is the paired graph corresponding to the box bi, where all

inner boxes are considered contracted to a single node. Moreover, for the sake
of connectivity, the ?W -link (if there is any) corresponding to bi is removed.
Definition 7. A MELL proof structure (R,B) with boxes b1, . . . , bn is contrac-
tile if ∀i ∈ {0, . . . , n}, Gi

(R,B) �
∗
c •.

As for MLL, one may inductively define particular MELL proof structures, called
MELL proof nets, which exactly correspond to derivations in MELL sequent cal-
culus. Theorem 2 allows to distinguish MELL proof nets among proof structures:

Theorem 2. [GM01] A MELL proof structure (R,B) is a MELL proof net iff
(R,B) is contractile4.
4 The criterion in [GM01] uses contraction rules for MELL proof structures only. As

for Theorem 1, the proof of the equivalence with Definition 7 is left to the reader.

We define the following decision problem MELL-corr:
Given: A MELL proof structure (R,B)
Problem: Is (R,B) a MELL proof net?

1.3 Intuitionistic Multiplicative Linear Logic and Essential Nets

The intuitionistic fragment of MLL (IMLL) is the (�, ()-fragment of Linear
logic, where linear implication is no more defined by A(B = A⊥OB but is a
connective. The sequent calculus corresponds to the MLL sequent calculus but
with two-sided sequents (using linear negation) and at most one (distinguished)
formula on the right.
For this sub-logic, Lamarche has proposed a version of proof structures called
essential nets. They are built on the links given in Figure 3 where, to each O+-
labelled node, one associates a negatively-labelled node (left premise) called the
sink of p. They also have a distinguished link called the root.

−

O+

+

���

6
+

−

O−

−
@@R ��	

?
−

+

�+

+

@@I ���

6
+

+

�−

−
@@I ��	

?
−

− +

��
?

Fig. 3. Essential net links: O+, O−, �+, �− and Axiom

Definition 8. An essential net of a linearly balanced5 IMLL sequent is L-correct
if it is acyclic, every node is reachable from the root, and every O+-node p
satisfies the L-condition: every path from the root that reaches the sink of p
passes through p.

Lamarche has shown that the essential net of an IMLL sequent denotes a IMLL se-
quent derivation if and only if it is L-correct. For additional information on
essential net correction, including translation to proof structures, we refer the
reader to [MO06].
We define the following decision problem IMLL-corr:
Given: A multiplicative essential net N of a linearly balanced IMLL sequent
Problem: Is N correct?

1.4 Complexity Classes and Related Problems

We will mention several major complexity classes below P , some of which having
natural complete problems that we will use in this paper. Let us briefly recall
some basic definitions and results.

Definition 9. Complexity classes:

5 I.e. every atom that occurs in the sequent does so exactly twice, once positively and
once negatively

– AC0 (respectively AC1) is the class of problems solvable by a uniform family
of circuits of constant (resp. logarithmic) depth and polynomial size, with
NOT gates and AND, OR gates of unbounded fan-in.

– L is the class of problems solvable by a deterministic Turing machine which
only uses a logarithmic working space.

– NL (respectively coNL) is the class of problems solvable by a non-deterministic
Turing machine which only uses a logarithmic working space, such that:
1. If the answer is ”yes,” at least one (resp. all) computation path accepts.
2. If the answer is ”no,” all (resp. at least one) computation paths reject.

Theorem 3. [Imm88,Sze87] NL = coNL.

The following inclusion results are also well known:

AC0 ⊂ L ⊂ NL ⊂ AC1 ⊂ P, (1)

where it remains unknown whether any of these inclusions is strict.
It is important to note that Theorems 6 and 7 give NL-completeness results
under constant-depth (actually AC0) reductions. From (1) above, it should be
clear to the reader that the reductions lie indeed in a class small enough for being
relevant. For a good exposition of constant-depth reducibility, see [CSV84].
In the sequel, we will often use the notion of a path in a directed -or undirected-
graph. A path is a sequence of vertices such that there is an edge between any
two consecutive vertices in the path. A path will be called elementary when any
node occurs at most once in the path.
Let us now list some graph-theoretic problems that will be used in this paper.

Is Tree (IT): Given an undirected graph G = (V,E), is it a tree?
IT is L-complete under constant-depth reductions [JLM97].

Source-Target Connectivity (STCONN): Given a directed graph G =
(V,E) and two vertices s and t, is there a path from s to t in G ?
STCONN is NL-complete under constant-depth reductions [JLL76].

Undirected Source-Target Connectivity (USTCONN):
Given an undirected graph G = (V,E) and two vertices s and t, do s and t
belong to the same connected component of G ?
USTCONN is L-complete under constant-depth reductions [Rei05].

Universal Source DAG (SDAG):
Given a directed graph G = (V,E), is it acyclic and does there exist a source
node s such that there is a path from s to each vertex ?

Proposition 1. SDAG ∈ NL.
Proof. Given G = (V,E) a directed graph, its acyclicity can be expressed as
follows:

∀(x, y) ∈ V 2 : ¬STCONN(G, x, y) ∨ ¬STCONN(G, y, x).

Since NL = coNL (Theorem 3) and STCONN ∈ NL, acyclicity is clearly in NL.
Checking whether each vertex can be reached from a vertex s can also be done
with STCONN subroutines, therefore SDAG is in NL. �

Proposition 2. SDAG is coNL-hard under constant-depth reductions.
Proof. Let L be any language in coNL. L is then decided by a non-deterministic
Turing machine M in space less than k log(n) on inputs of size n, for some k ≥ 0.
Let Cn be the set of configurations of M of size less or equal to k log(n), and define
T = |Cn|. Clearly, T ≤ nk is an upper bound for the computation time of M on
inputs of size n. Without loss of generality, we assume that every configuration
of M has at least one outgoing transition, possibly towards itself, and that the
result of the computation is given by the state reached by M after exactly T
computation steps. A configuration is thus either accepting or rejecting.
Let us consider the following directed graph Gn = (Vn, En), where:

Vn =
⋃

c∈Cn,t∈[0,T]{(c, t)} ∪ {cA} ∪ {cR} ∪ {s}.
For (c, t), (c′, t + 1) ∈ Vn, ((c′, t + 1) � (c, t)) ∈ En if and only if c � c′ is a

transition of M.
For c ∈ Cn, (cA � (c, T)) ∈ En iff c is an accepting configuration of M.
For c ∈ Cn, (cR � (c, T)) ∈ En iff c is a rejecting configuration of M.
(s � cA) ∈ En, (s � cR) ∈ En.

A path (c1, t1) � ·· � (ck, tk) in Gn follows by construction a sequence t1, . . . , tk
that is strictly decreasing. Since there is no edge (c, t) � cA, (c, t) � cR nor
(c, t) � s, it is then clear that Gn is acyclic.
Moreover, since every configuration of M has at least one outgoing transition,
every vertex (c, t), t < T in Gn has at least one parent node (c′, t + 1). By
induction on t, it follows that every vertex in Gn is reachable from s. Therefore
Gn satisfies SDAG.
Let x be an input of size n to M. An initial configuration cx ∈ Cn of M is
naturally associated to this input x. Consider now the directed graph Hx

n =
Gn ∪ {(cx, 0) � cR}.
Then, Hx

n satisfies SDAG if and only if x ∈ L. Indeed, by Definition 9, x ∈ L
if and only if there exists no computation path cx � ·· � cr of length T in
M , where cr is a rejecting configuration. By construction of Gn, such a path
corresponds to a path (cr, T) � ·· � (cx, 0) in Gn. Then x ∈ L if and only if
there exists no path cR � ·· � (cx, 0) in Gn, if and only if Hx

n is acyclic. Since
Gn satisfies SDAG, it follows that Hx

n satisfies SDAG if and only if x ∈ L.
Moreover, it is well known that the configuration graph of a Turing machine can
be computed with constant-depth circuits. ComputingHx

n from the configuration
graph of M requires only purely local rewriting rules, that can all be performed
in parallel. Therefore, Hx

n can also be computed with constant-depth circuits.�
Propositions 1 and 2, and Theorem 3 yield the following result:

Theorem 4. SDAG is NL-complete under constant-depth reductions.

2 New Correctness Criteria for MLL and MELL

For a given proof net, the following notion of dependency graph provides a par-
tial order among its O-nodes corresponding to some valid contraction sequences
accordingly to rule R1.

Definition 10. Let G be a paired graph. The dependency graph D(G) of G is
the directed graph (VG, EG) defined as follows:
– VG = {v | v is a pair-node in G} ∪ {s}.
– Let x be a pair-node in G, with premise-nodes xl and xr. The edge (s � x)

is in EG if and only if:
1. There exists an elementary path px = xl, . . . , xr in G[∀ 7→∵\],
2. x 6∈ px, and for all pair-node y in G, y 6∈ px.

– Let x be a pair-node in G, with premise-nodes xl and xr, and let y 6= x be
another pair-node in G. The edge (y � x) is in EG if and only if:
1. There exists an elementary path px = xl, . . . , xr in G[∀ 7→∵\],
2. x 6∈ px, and for every elementary path px = xl, . . . , xr in G[∀ 7→∵\] with

x 6∈ px, y ∈ px.t t
A
At1 ��
t t

A
At

�
�
�
�

7→
tst1

t t
A
At1 ��
t
7→
tst1?

Fig. 4. Dependency graph examples: source is needed!

Remark 1. Other definitions of dependency graph are possible:
- One may choose to consider not only elementary paths, but any path, which
yields a stronger contraction order. Surprisingly enough, Theorem 6 holds also
for this relaxed version of dependency.
- One may also consider the dependency graph only for a paired graph G where
G[∀ 7→∵\] is a tree. In that case, if there exists an elementary path px = xl, . . . , xr

which does not contain x, this elementary path is unique. The results of Section 3
hold also for this version of dependecy, yet Lemma 4 does not rely on [Rei05], but
rather on the fact that checking reachability in a forest is L-complete [CM87].

Lemma 1. Let G and H be paired graphs, with G →c H. Then, G[∀ 7→∵\] →∗c
H[∀ 7→∵\], and G[∀ 7→∵\] is a tree if and only if H[∀ 7→∵\] is a tree.
Proof. If G→R1 H denote by v the redex pair-node in G, with premise w. The
reduced pattern in H is the non-pair edge (v, w), therefore G[∀ 7→∵\] = H[∀ 7→∵\].
If G→R2 H, it is clear that G[∀ 7→∵\]→R2 H[∀ 7→∵\] with the same redex. It is
also clear that rule →R2 preserves connectivity and acyclicity. �

Lemma 2. If G �∗c • then D(G) satisfies SDAG.
Proof. Since •[∀ 7→∵\] is a tree, by Lemma 1 so is G[∀ 7→∵\]. Therefore, for any
pair-node x with premise-nodes xl and xr in G, there exists a unique elementary
path px = xl−· ·−xr in G[∀ 7→∵\]. It follows by construction of D(G) that x has
at least one parent node in D(G). Moreover, a path x � ·· � y in D(G) induces
by construction an elementary path xl − · · −y in G[∀ 7→∵\]. Therefore a cycle
x � ·· � y, y � ·· � x in D(G) induces a cycle xl − · · −y, yl − · · −x in G[∀ 7→∵\].
Since G[∀ 7→∵\] is a tree, D(G) is acyclic. Since every vertex of D(G) but s has
at least one parent node and D(G) is acyclic, D(G) satisfies SDAG. �

Lemma 3. Let G be a paired graph such that G[∀ 7→∵\] is a tree. If the depen-
dency graph D(G) of G satisfies SDAG then G �∗c •.
Proof. let d(v), the depth of a pair-node v ∈ G, be the length of the longest
path from the source s of D(G) to the vertex v ∈ D(G). Assume that D(G)
satisfies SDAG, and let Xd = {x pair-node in G|d(x) = d} and Y d = ∪d′6dX

d′
.

By induction on the depth we prove that there exists a sequence of contractions
Cd such that G→Cd Gd satisfies:

Each pair-node y ∈ G s.t. d(y) 6 d is contracted in Gd. (2)

The proof by induction is as follows:

– For d = 1, let x ∈ X1, with premise-nodes xl and xr. By definition of X1,
there exists an elementary path px = xl − · · −xr in G[∀ 7→∵\] such that
x 6∈ px and for any pair-node y in G[∀ 7→∵\], y 6∈ px. The same holds for the
path px = xl − · · −xr in G, with respect to any pair-node y ∈ G.
Let E1

x = {e edge of px | x ∈ X1}. The set of contractions R1
x = {e →c

• | e ∈ E1
x} contracts the edges of px, and let R1 = ∪x∈X1R1

x. Clearly,
xl = xr 6= x in the contracted paired graph obtained from G by R1

x. Since
x 6∈ py for any y ∈ X1, the same holds for the paired graph obtained from
G by R1.
Let C1 be the sequence R1, followed by the set of contraction rules of the
pair-nodes x ∈ X1. Define G1 such that G →C1 G1. It is clear that G1

satisfies (2).
– Assume by induction that there exists a sequence of contractions Cd such

that G→Cd Gd satisfies (2).
Let x ∈ Xd+1, with premise-nodes xl and xr.
Since G→Cd Gd and G[∀ 7→∵\] is a tree, Lemma 1 applies:

G[∀ 7→∵\]→C
′
d Gd[∀ 7→∵\], and Gd[∀ 7→∵\] is a tree. (3)

By definition of Xd+1, there exists an elementary path px = xl − · · −xr in
G[∀ 7→∵\] such that x 6∈ px and, for every pair-node y ∈ G of depth d(y) > d,
y 6∈ px.
Define pd

x such that px →C
′
d pd

x. By (3), pd
x is an elementary path in Gd[∀ 7→∵\]

such that x 6∈ pd
x and, for every pair-node y ∈ Gd[∀ 7→∵\] of depth d(y) > d,

y 6∈ pd
x. The same holds for pd

x in Gd, with respect to any pair-node y ∈ Gd,
since, by induction, for any pair-node y ∈ Gd, d(y) > d.
Let Ed+1

x = {e edge of px | x ∈ Xd+1}. The set of contractionsRd+1
x = {e→c

• | e ∈ Ed+1
x } contracts the edges of pd

x, and let Rd+1 = ∪x∈Xd+1Rd+1
x .

Clearly, xl = xr 6= x in the contracted paired graph obtained from G by
Rd+1

x . Since x 6∈ py for any y ∈ Xd+1, the same holds for the contracted
paired graph obtained from G by Rd+1.
Let Cd+1 be the sequence Cd, followed by Rd+1, and followed by the set
of contraction rules of the pair-nodes x ∈ Xd+1. Define Gd+1 such that
G→Cd+1 Gd+1. Gd+1 satisfies (2).

Since D(G) satisfies SDAG, the maximal depth m = max{d(x)|x ∈ D(G)} is
well-defined and every pair-node x of G belongs to Xm. Therefore, G→Cm Gm

and Gm satisfies (2). Since G[∀ 7→∵\] is a tree, by Lemma 1 so is Gm[∀ 7→∵\] = Gm.
It follows that G �∗c •. �

Lemmas 2 and 3 and Theorems 1 and 2 imply the Theorem:

Theorem 5 (Correctness Criteria).
A MLL proof structure R is a MLL proof net if and only if:

1. D(GR) satisfies SDAG, and
2. GR[∀ 7→∵\] is a tree.

A MELL proof structure (R,B) with boxes b1, . . . , bn is a MELL proof net if and
only if:

1. ∀i ∈ {0, . . . , n}, D(Gi
(R,B)) satisfies SDAG, and

2. ∀i ∈ {0, . . . , n}, Gi
(R,B)[∀ 7→∵\] is a tree.

3 NL-Completeness of the Criteria for MLL and MELL

Let DepGRAPH be the function: G 7→ D(G), which associates its dependency
graph to a paired graph G.

Lemma 4. DepGRAPH ∈ FL.
Proof. The following functions can easily be computed in FL:

– G, x ∈ G 7→ (G[∀ 7→∵\]) \ {x}
– G, x ∈ G 7→ (G[∀ 7→∵]) \ {x}
– G, x ∈ G, y ∈ G 7→ (G[∀ 7→∵\]) \ {x, y}

Consider now the following algorithm for DepGRAPH:

INPUT (G)
FOR ALL x pair-node in G, with premise-nodes xl and xr DO

IF USTCONN((G[∀ 7→∵]) \ {x}, xl, xr) THEN OUTPUT (s � x) ∈ D(G)
FOR ALL (x pair-node in G, with premise-nodes xl and xr, y pair-node in G) DO

IF ¬USTCONN((G[∀ 7→∵\]) \ {x, y}, xl, xr)
AND USTCONN((G[∀ 7→∵\]) \ {x}, xl, xr) THEN

OUTPUT (y � {x}) ∈ D(G).

– USTCONN((G[∀ 7→∵]) \ {x}, xl, xr) tests whether there exists an elemen-
tary path px = xl − · · −xr such that x 6∈ px and, for all pair-node y in G,
y 6∈ px.

– ¬ USTCONN((G[∀ 7→∵\]) \ {x, y}, xl, xr) tests whether any elementary
path px = xl − · · −xr such that x 6∈ px contains y.

– USTCONN((G[∀ 7→∵\]) \ {x}, xl, xr) tests whether there exists a path
px = xl − · · −xr in G′ such that x 6∈ px. From the previous point, if such a
path px exists, y ∈ px.

It follows that this algorithm computes DepGRAPH. Since USTCONN ∈ L,
this algorithm belongs to FLL (the class of functions computable in logarithmic
space, with oracles in L). Since FLL = FL, DepGRAPH ∈ FL. �

Proposition 3. MELL− corr ∈ NL.

Proof. Let (R,B) be a MELL-proof structure with boxes b1, . . . , bn. Each
function (R,B), i ∈ {0, . . . , n} 7→ Gi

(R,B) can be easily be computed in FL.
Checking that Gi

(R,B)[∀ 7→∵\] is a tree is doable in L since IT ∈ L. Checking
that D(Gi

(R,B)) satisfies SDAG can be done in NL, by composing the function
DepGRAPH in FL (Lemma 4) with an NL algorithm for SDAG (Theorem 4).
Since the number of paired graphs Gi

(R,B) is linearly bounded, it suffices to
sequentially perform these tasks for i = 0, . . . , n, with a counter i of logarithmic
size. �

Note that the previous best algorithms [Laf95,Gue99] are not likely to be im-
plemented in logarithmic space, since they require on-line modification of the
structure they manipulate. The purpose of our criterion of Theorem 5 is pre-
cisely that it allows a space-efficient implementation.

Proposition 4. MLL-corr is NL-hard under constant-depth reductions.

Proof. We actually reduce SDAG to MLL-corr. Let G be a directed graph,
and consider the proof structure SG defined as follows (see Figure 5), and let
GSG

be its associated paired graph:

1. To any vertex v of G, we associate a �-link v with parent links vin and vout.
2. If there are i > 0 in-going edges to v, vin is a O-link of arity i, with parent

links v1
in, . . . , v

i
in. If v has no in-going edge, vin is one conclusion of an axiom-

link Axv
in, the other conclusion of Axv

in being a conclusion of Sx
n.

3. If there are j > 0 outgoing edges from v, vout is a �-link of arity j, with
parent links v1

out, . . . , v
j
out. If v has no outgoing edge, vout is one conclusion

of an axiom-link Axv
out, the other conclusion of Axv

out being a conclusion of
Sx

n.
4. To an edge v � w of G, we associate an axiom-link Ax(v�w) with conclusions
Ax

(v�w)
in and Ax

(v�w)
out . Moreover, if v � w is the kth outgoing edge from v,

Ax
(v�w)
in is vk

out. If v � w is the lth in-going edge to w, Ax(v�w)
out is wl

in.

@@ ��

@
@

@@

�
�

��

� v

O vin � vout

HHHHj
A
AU�
��
��

��* -
v

v1
in . . .v

i
in v1

out . . .v
j
out vi

inv1
in . . . v1

out . . .v
j
out

-
@
@
�
�

@
@@

@
@
�
�

�
��vs

vins voutsvi
inv1

in . . . v1
out . . .v

j
out

Fig. 5. Construction of SG and GSG

It is quite clear that this reduction can be computed by constant-depth circuits.
We now claim that SG is correct if and only if G satisfies SDAG.
Assume G contains a cycle. There exists then an elementary path p = x1 �
·· � xl, with xl � x1 ∈ G. Then, for any edge xt � xt+1 ∈ p, there exists a
switching of the pair-node xt+1in in GSG

, which connects xt and xt+1. Similarly

for the edge xl � x1 ∈ G. Since p is elementary, these pair-nodes are all different;
therefore there exists cyclic switching of GSG

and SG is not correct.
It is clear that if G is acyclic, it has at least one node of arity 0. Moreover, if G
is acyclic and has only one node of arity 0, a proof by induction shows that G
satisfies SDAG.
Assume therefore that G is acyclic and has at least two nodes, r and s, of arity
0. Let S′ be any switching of GSG

, and assume that there exists an elementary
path p from r to s in S′. Let p′ = r, x1, . . . , xk, s be the sequence of non pair-
nodes of p corresponding to vertices of G. p′ follows by construction edges of G,
accordingly to their orientation or not. Since r and s have arity 0, there exist
three nodes xt, xt+1, xt+2 in p′ such that (xt � xt+1) and (xt+2 � xt+1) are edges
of G. By construction of GSG

, xt and xt+2 are then premise-nodes of the same
pair-node xt+1in in GSG

, which contradicts that p is a path in S′. Therefore, S′

is not connected, and SG is not correct.
Assume now that G satisfies SDAG and let d(v), the depth of a vertex v of G,
be the length of the longest path from the source s of G to v. Denote by Gd the
subgraph of G consisting only in the vertices of depth less than d, and by GSd

G

the corresponding paired graph. It is easy to see that the rules of Figure 1 can
be turned in a n-ary version, and that GSd+1

G
can be obtained from GSd

G
by these

n-ary rules. By induction on d, it follows that SG is correct. �

Since MLL is a subsystem of MELL, Propositions 3 and 4 immediately yield the
following result:

Theorem 6. MLL-corr and MELL-corr are NL-complete under constant-
depth reductions.

4 NL-Completeness of the Criterion for IMLL

Proposition 5. IMLL− corr ∈ NL.
Proof. For a given essential net N , denote by r(N) its root. For a given O+-
link x in N , denote by s(x) its sink. Consider now the following algorithm for
IMLL-corr:

INPUT (N)
IF ¬SDAG(N, r(N)) THEN REJECT
FOR ALL x O+-link in N DO

IF STCONN(N \ {x}, r(N), s(x)) THEN REJECT
ELSE ACCEPT.

This algorithm checks that N satisfies SDAG, and that the L-condition applies.
Since SDAG ∈ NL and STCONN ∈ NL, and NL = coNL (Theorem 3), this
algorithm belongs clearly to NL. �

Proposition 6. IMLL-corr is NL-hard under constant-depth reductions.

Proof. We actually reduce SDAG to IMLL-corr. Let G be a directed graph,
and consider the essential net NG defined as follows (see Figure 6):

1. To any vertex v of G of arity i > 0, we associate a �−-node v, with parent
node (right premise) vin of polarity − and child node (left premise) vout of
polarity +. To v of arity 0 we associate a node v = vout of polarity +.

2. If there are i > 0 in-going edges to v , vin is a O−-node of arity i, with
parent nodes v1

in, . . . , v
i
in of polarity −.

3. If there are j > 0 outgoing edges from v, vout is a �+-node of arity j, with
child nodes v1

out, . . . , v
j
out of polarity +.

4. If there is no outgoing edge from v, vout is a O+-node with child node (right
premise) v1

out of polarity +, and sink node (left premise) vsink
out , of polarity

−. There is moreover an axiom-edge v1
out � vsink

out .
5. Let v � w be an edge of G. Assume v � w is the kth outgoing edge from v,

and the lth in-going edge to w. To v � w, we associate an axiom-edge from
vk

out of polarity + to wl
in of polarity −.

A
AK
H

HH
HY �

��
��

���
- @@I ��� @@R ��	

@
@I �

�	

?
�−v

�+
vout

O−vinv

v1
out . . .v

j
outv

1
in . . .v

i
in vj +

outv1 +
out . . . v1 −

in . . . vi −
in

Fig. 6. Construction of NG

It is clear that the reduction is constant-depth. Since the only O+-links of NG

correspond to leaves of G, NG satisfies the L-condition by construction. There-
fore, it is L-correct if and only if G satisfies SDAG. �

Propositions 5 and 6 immediately yield the following result:

Theorem 7. IMLL-corr is NL-complete under constant-depth reductions.

Note that [MO06] provides a linear-time reduction from MLL-corr to IMLL-
corr, which yields a linear-time algorithm for MLL-corr. This reduction ac-
tually occurs to be linear-space, and cannot be used for directly proving Propo-
sition 6.

Conclusion and Acknowledgments

Deciding the correctness of unit-free MLL proof structures, MELL proof struc-
tures, and unit-free IMLL essential nets where problems known to be decidable
in deterministic, sequential linear time. We have shown their NL-completeness,
thus establishing that it would be most unlikely to find better sequential de-
terministic algorithms. As a byproduct, we obtain efficient parallel algorithms
for both problems, namely AC1 algorithms. Moreover, since NL = RL = ZPL,
we also naturally obtain Monte-Carlo and Las-Vegas logarithmic space random
algorithms, by simply using random walks for our graph reachability procedures.
It remains to be checked whether our approach can be extended to MALL.
We are grateful to Harry Mairson for raising the question of the exact complexity
of the correctness problems, and to the members of the No-Cost project for

useful discussions and comments. We also thank the anonymous referees for
their comments.

References

[CM87] Stephen A. Cook and Pierre McKenzie. Problems complete for deterministic
logarithmic space. J. Algorithms, 8(3):385–394, 1987.

[CSV84] Ashok K. Chandra, Larry J. Stockmeyer, and Uzi Vishkin. Constant depth
reducibility. SIAM J. Comput., 13(2):423–439, 1984.

[Dan90] Vincent Danos. Une application de la logique linéaire à l’étude des processus
de normalisation (principalement de λ-calcul). PhD thesis, Université Denis
Diderot, Paris 7, 1990.

[DR89] Vincent Danos and Laurent Regnier. The structure of multiplicatives. Archive
for Mathematical Logic, 28(3):181–203, 1989.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–102,
1987.

[GM01] Stefano Guerrini and Andrea Masini. Parsing MELL proof nets. Theoretical
Computer Science, 254(1–2):317–335, 2001.

[Gue99] Stefano Guerrini. Correctness of multiplicative proof nets is linear. In Proc.
of the annual Symp. on Logic in Computer Science (LICS’99), pages 454–463.
IEEE Computer Society Press, 1999.

[Imm88] Neil Immerman. Nondeterministic space is closed under complementation.
SIAM J. Comput., 17(5):935–938, 1988.

[JLL76] Neil D. Jones, Y. Edmund Lien, and William T. Laaser. New problems com-
plete for nondeterministic logspace. Mathematical Syst. Theory, 10:1–17, 1976.

[JLM97] B. Jenner, K.-J. Lange, and P. McKenzie. Tree isomorphism and some other
complete problems for deterministic logspace. DIRO 1059, Univ. de Montréal,
1997.

[Kan92] Max I. Kanovich. Horn programming in linear logic is NP-complete. In Proc.
of the annual Symp. on Logic in Computer Science (LICS’92), pages 200–210.
IEEE Computer Society Press, 1992.

[Laf95] Yves Lafont. From proof-nets to interaction nets. In J.-Y. Girard, Y. Lafont,
and L. Regnier, editors, Advances in Linear Logic, volume 222, pages 225–247.
Cambridge University Press, 1995.

[Mai] Harry G. Mairson. Normalization bounds for multiplicative linear logic
are axiom-sensitive. Presentation at GEOCAL’06 Workshop of Im-
plicit Computational Complexity. Slides available at http://www-lipn.univ-
paris13.fr/∼baillot/GEOCAL06/SLIDES/Mairson.pdf.

[Mel04] Paul-André Melliès. A topological correctness criterion for non-commutative
logic, volume 316 of London Mathematical Society Lecture Notes Series. Cam-
bridge University Press, 2004.

[MO00] Andrzej Murawski and Luke Ong. Dominator trees and fast verification of
proof nets. In Proc. of the annual Symp. on Logic in Computer Science
(LICS’00), pages 181–191. IEEE Computer Society Press, 2000.

[MO06] Andrzej Murawski and Luke Ong. Fast verification of MLL proof nets via
IMLL. ACM Trans. Comput. Logic, 7(3):473–498, 2006.

[Rei05] Omer Reingold. Undirected st-connectivity in log-space. In Harold N. Gabow
and Ronald Fagin, editors, STOC, pages 376–385. ACM, 2005.

[Sze87] Róbert Szelepcsényi. The method of forcing for nondeterministic automata.
Bulletin of the EATCS, 33:96–99, 1987.

