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Abstract. We prove completeness results for twenty-three problems in
semilinear geometry. These results involve semilinear sets given by addi-
tive circuits as input data. If arbitrary real constants are allowed in the
circuit, the completeness results are for the Blum-Shub-Smale additive
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1. Introduction

A subset S ⊆ Rn is semilinear if it is a Boolean combination of closed half-
spaces {x ∈ Rn | a1x1 + . . . + anxn ≤ b}. That is, S is derived from closed
half-spaces by taking a finite number of unions, intersections, and complements.

The geometry of semilinear sets and its algorithmics has been a subject of
interest for a long time not the least because of its close relationship with linear
programming and its applications (see e.g., Dantzig & Eaves 1973; Ferrante
& Rackoff 1979; Schechter 1998). This relationship is at the heart of many
algorithmic results on both semilinear geometry and linear programming. It is
also a good starting point to motivate the results in this paper.

Consider the feasibility problem for linear programming. That is, the prob-
lem of deciding whether a system of linear equalities and inequalities has a
solution. A celebrated result by Khachijan (1979) states that if the coefficients
of these equalities and inequalities are integers then this problem can be solved
in polynomial time in the Turing machine model. In other words, it belongs to
the class P. If the coefficients are not integers but arbitrary real numbers, the
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Turing machine model is no longer appropriate. Instead, we analyze this ver-
sion of the problem using the machine model over the real numbers introduced
by Blum, Shub and Smale (the BSS model in the following). While it is not
difficult to show that the linear programming feasibility problem over R is in
NPR ∩ coNPR (this is merely Farkas’ Lemma), or even that it can be solved in
average polynomial time (cf. Borgwardt 1982; Cheung et al. 2003; Smale 1983),
its membership to PR (i.e., its solvability in deterministic polynomial time in
the BSS model) remains an open problem. This membership problem has even
been proposed by Smale (1998) as one of the mathematical problems for the
21st century.

A situation intermediate between the two above is the one in which the
inequalities a1x1 + . . . + anxn ≤ b have integer coefficients ai and real right
hand side b. In this case, the appropriate model of computation is the additive

model. This is a restriction of the BSS model over R where multiplications and
divisions are excluded from the capabilities of the machine. Only additions,
subtractions and comparisons may be performed. The rephrasing of a well
known result by Tardos (1986), together with a suitable variant of Gaussian
elimination (Bareiss 1968), shows that the feasibility problem for a system of
linear inequalities of the above mixed type is solvable in Padd.

1

Equalities and inequalities of the mixed type we just described are not as
rare as they may appear at a first glance. They naturally occur in the defining
equations of semilinear sets given in succinct representation. Here, a semilinear
set is given by an additive decision circuit (a more precise development follows
in Section 3): a point x ∈ Rn is in the set if and only if the circuit returns 1 with
input x. Since additive circuits are natural input data for additive machines
one may wonder about the complexity of the feasibility problem CSatadd for
semilinear sets in succinct representation. This problem consists of deciding
whether the semilinear set S given by an additive circuit is nonempty. As
it turns out, this problem is NPadd-complete (Blum et al. 1998). This is in
contrast with the result by Tardos (1986) mentioned above and is explained
by the fact that an additive circuit of size O(n) can describe a semilinear set
defined with O(2n) linear inequalities.

The completeness result for CSatadd is not an isolated fact. It was recently
shown in Bürgisser & Cucker (2003) that several other problems for semilinear
sets in succinct representation are complete in some complexity class. Notably,

1The reader may have noticed that we use the subscript “add” for complexity classes
in the additive model, the subscript “R” for those in the unrestricted BSS model, and no
subscript at all for those in the Turing model. In addition, to emphasize the latter, we use
sanserif fonts.
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to decide whether the dimension of such a set is at least a given number is also
NPadd-complete, to compute its Euler characteristic is FP

#Padd

add -complete, and
to compute any of its Betti numbers is FPARadd-complete.

One of the goals of this paper is to further expand the catalogue of complete
problems in semilinear geometry. We will show completeness for twenty-three
problems in this domain. These results, together with the previous results men-
tioned above, draw an accurate landscape of the difficulty of different problems
in semilinear geometry providing, at the same time, examples of natural com-
plete problems for many of the complexity classes defined in the additive model.

A final remark is relevant. Constant-free additive circuits can be described
over {0, 1}, i.e., as binary strings. Therefore, they can be given as input to
Turing machines. In this way, all problems considered in this paper have a
constant-free version fitting the classical complexity setting. We will also show
that our completeness results in the additive model smoothly translate into
completeness results in the usual Turing model when constant-free circuits are
considered.

2. Main Results

We next briefly describe our main results. The precise definition of some con-
cepts (e.g., Zariski irreducibility) will be given later on in this paper. The
following list should give, however, an idea of the results we obtain. We con-
sider the following problems:

EAdhadd (Euclidean Adherence) Given a decision circuit C with n input gates
and a point x ∈ Rn, decide whether x belongs to the Euclidean closure of the
semilinear set SC ⊆ Rn described by C .

EClosedadd(Euclidean Closed) Given a decision circuit C , decide whether SC is
closed under the Euclidean topology.

EDenseadd(Euclidean Denseness) Given a decision circuit C with n input gates,
decide whether SC is dense in Rn.

Unboundedadd (Unboundedness) Given a decision circuit C with n input gates,
decide whether SC is unbounded in Rn.

Compactadd (Compactness) Given a decision circuit C , decide whether SC is
compact.

Isolatedadd (Isolatedness) Given a decision circuit C with n input gates and a
point x ∈ Rn, decide whether x is isolated in SC .
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ExistIsoadd (Existence of Isolated Points) Given a decision circuit C with n input
gates, decide whether there exists x ∈ Rn isolated in SC .

#Isoadd (Counting Isolated Points) Given a decision circuit C , count the number
of isolated points in SC .

LocDimadd (Local Dimension) Given a decision circuit C , a point x ∈ SC and an
integer d ∈ N, decide whether dimx SC ≥ d.

LocContadd (Local Continuity) Given an additive circuit C with n input gates
and a point x ∈ Rn, decide whether the function FC computed by C is con-
tinuous at x (for the Euclidean topology).

Contadd (Continuity) Given an additive circuit C , decide whether FC is contin-
uous (for the Euclidean topology).

Surjadd (Surjectivity) Given an additive circuit C , decide whether FC is surjec-
tive.

#Discadd (Counting Discontinuities) Given an additive circuit C , count the num-
ber of points in Rn where FC is not continuous (for the Euclidean topology).

Reachadd (Reachability) Given a decision circuit C with n input gates, and two
points s and t in Rn, decide whether s and t belong to the same connected
component of SC .

Connectedadd (Connectedness) Given a decision circuit C , decide whether SC

is connected.

Torsionadd (Torsion ) Given a decision circuit C , decide whether the homology
of SC is torsion free.

ZAdhadd (Zariski Adherence) Given a decision circuit C with n input gates and
a point x ∈ Rn, decide whether x belongs to the Zariski closure of SC .

ZClosedadd(Zariski Closed) Given a decision circuit C , decide whether SC is
closed under the Zariski topology.

ZDenseadd(Zariski Denseness) Given a decision circuit C with n input gates,
decide whether SC is Zariski dense in Rn.

Irradd(Zariski Irreducibility) Given a decision circuit C , decide whether the Zariski
closure of SC is affine.

#Irradd (Counting Irreducible Components) Given a decision circuit C , count the
number of irreducible components of SC .
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#Irr
(d)
add (Counting Irreducible Components of Fixed Dimension) Given a decision
circuit C , count the number of irreducible components of SC of dimension d.

#Irr
[c]
add (Counting Irreducible Components of Fixed Codimension) Given a deci-
sion circuit C , count the number of irreducible components of SC of codimen-
sion c.

#Irr
{N}
add (Counting Irreducible Components in Fixed Ambient Space) Given a de-
cision circuit C with a fixed number N of input gates, count the number of
irreducible components of SC .

Our main results can be summarized in the following table. Here (T) means
that the hardness is for Turing reductions. In what follows, unless specified
otherwise, completeness will always mean completeness with respect to many-
one reductions.

Problems Complete in Discrete version

complete in

EAdhadd, ZAdhadd NPadd NP

EClosedadd, ZClosedadd coNPadd coNP

EDenseadd coNPadd coNP

ZDenseadd NPadd NP

Unboundedadd NPadd NP

Compactadd coNPadd coNP

Isolatedadd coNPadd coNP

LocDimadd NPadd NP

LocContadd , Contadd coNPadd coNP

Irradd P
NPadd[log]
add PNP[log]

ExistIsoadd Σ2
add Σ2P

Surjadd Π2
add Π2P

#Isoadd, #Discadd FP
#Padd

add (T) FP#P
(T)

#Irradd, #Irr
(d)
add, #Irr

[c]
add, #Irr

{N}
add FP

#Padd

add (T) FP#P
(T)

Reachadd, Connectedadd PARadd (T) PSPACE

We remark that the Zariski topology and irreducible components are natural
concepts studied in algebraic geometry (Shafarevich 1974). In particular, we
show that the problem to test irreducibility of a semilinear set given by a
constant-free decision circuit is complete for the class PNP[log]. The latter class
was first studied by Papadimitriou & Zachos (1983) and consists of the decision
problems that can be solved in polynomial time by O(log n) queries to some NP
language. It is known (Buss & Hay 1991; Hemachandra 1989) that equivalently,
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PNP[log] can also be characterized as the set of languages in PNP whose queries
are non adaptive. Several natural complete problems for PNP[log] are known, see
for instance Krentel (1986) and Hemaspaandra et al. (1997).

For the problem Torsionadd we prove PARadd-hardness (with respect to
Turing reductions) and membership in EXPadd (PSPACE-hardness and mem-
bership in EXP for its discrete version). This advances towards determining the
complexity of Torsionadd, a question left open in Bürgisser & Cucker (2003,
§7). Also, the PARadd-completeness of Connectedadd closes a question left
open therein.

3. Preliminaries

In this section we briefly review the notions which will be central in this paper,
fixing notations at the same time. A basic reference (since this paper is an
extension of it) is Bürgisser & Cucker (2003).

(1) The Euclidean norm in Rn induces a topology, called Euclidean, in Rn.
The same topology is induced by the maximum norm defined by ‖x‖∞ :=
maxi |xi| for x = (x1, . . . , xn) ∈ Rn. We will denote the closure of a subset
S ⊆ Rn with respect to the Euclidean topology by S.

We already defined a subset S ⊆ Rn to be semilinear if it is a Boolean
combination of closed half-spaces. Following Shafarevich (1974), we define
another, coarser, topology in Rn, hereby restricting us to semilinear sets.

Definition 3.1. We call a semilinear set S ⊆ Rn Zariski closed if it is a
finite union of affine subspaces of Rn. The Zariski closure of a semilinear set

V ⊆ Rn, denoted by V
Z
, is the smallest Zariski-closed semilinear subset of Rn

containing V .

We remark that the use of the words “closed” or “closure” is appropriate:
the semilinear Zariski-closed sets satisfy the axioms of the closed sets of a
topology on Rn.

We will use the sign functions sg : R → {−1, 0, 1} and pos : R → {0, 1}
defined by

sg(x) =











1 if x > 0

0 if x = 0,

−1 if x < 0

pos(x) =

{

1 if x ≥ 0

0 if x < 0.

We extend these functions to Rn componentwise. By a quadrant of Rn we
understand an open subset of Rn of the form {x ∈ Rn | sg(x) = σ} for some
σ ∈ {−1, 1}n.
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(2) We next fix some conventions concerning additive circuits. Such circuits
are defined in many places, cf. Blum et al. (1998); Bürgisser & Cucker (2003);
Koiran (1994). In order to simplify our proofs we will use a slightly different
definition. An additive circuit is a directed acyclic graph whose nodes are of
one of the following types: input, output, constant, addition, subtraction, and
selection. While the first five types are as in the references above, we will
consider the selection nodes of the circuits to have indegree 4 and compute,
with input (v, a, b, c),

if v < 0 then a, elsif v = 0 then b, else c.

This is without loss of generality since one can pass from this form of circuit to
the usual one (in which selection nodes have indegree 3 and compute “if v < 0
then a else b”) in polynomial time and vice versa.

An additive circuit C with n input nodes and m output nodes computes a
function FC : Rn → Rm. A decision circuit C is an additive circuit with exactly
one output node that is preceded by a selection node connected to the constants
a, b, c ∈ {0, 1}. Such a circuit computes a function FC : Rn → {0, 1} and decides
the semilinear set SC := {x ∈ Rn | FC (x1, . . . , xn) = 1}. A semilinear set SC

represented this way will be said to be given in succinct representation.

Definition 3.2. Let C be a decision circuit with r selection gates and n input
gates. A path γ of C is an element in {−1, 0, 1}r. We say that x ∈ Rn follows
a path γ of C if, on input x and for all j, the result of the test performed at
the j-th selection gate is γj . (That is, γj = −1 if the tested value v satisfies
v < 0, γj = 0 if v = 0, and γj = 1 if v > 0.) The leaf set of a path γ is defined
as

Dγ = {x ∈ Rn | input x follows the path γ of C }.

A path γ is accepting if and only if we have FC (x) = 1 for one (and hence for
all) x ∈ Dγ. We denote by AC the set of accepting paths of the circuit C .

(3) We finally recall some notions of computation and complexity. In this
paper we will use Turing machines and the complexity theory built upon them,
cf. Papadimitriou (1994). In particular, we will deal with the complexity classes
of decision problems P, NP, PSPACE, and EXP as well as with the class #P of
counting problems or the class of functions FP computable in polynomial time.

We will also use additive machines (i.e., BSS machines over R which do not
multiply or divide) as described in Blum et al. (1998, Chapter 18) or in Koiran
(1994). For these machines, versions of the complexity classes mentioned above
are also defined yielding the classes Padd, NPadd, PARadd, EXPadd, #Padd and
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FPadd (note that the additive version of polynomial space requires instead poly-
nomial parallel time). An overview of these classes and their properties can be
found in Blum et al. (1998, Chapter 18) and Bürgisser & Cucker (2003).

We already defined the problem CSatadd and observed that it is NPadd-
complete. Consider now the problems:

CBSadd (Circuit Boolean Satisfiability) Given a decision circuit C with n input
gates, decide whether there exists x ∈ {0, 1}n such that C (x) = 1.

Dimadd (Dimension) Given a decision circuit C with n input gates and k ∈ N,
decide whether the dimension of SC is greater than or equal to k.

The problem CBSadd is NPadd-complete (Cucker & Matamala 1996; Koiran
1994). The same is true for Dimadd (Bürgisser & Cucker 2003, Theorem 5.1,
there k is assumed to be fixed, but the proof carries over easily).

We will use the completeness of both CBSadd and Dimadd in our develop-
ment. Note that CBSadd deals with a digital form of nondeterminism since
it requires the circuit to be satisfied by a point in {0, 1}n. This digital form
of nondeterminism extends to the levels of the additive polynomial hierarchy
and we will also use natural extensions of CSatadd and CBSadd, which are
complete in the lower levels of this hierarchy (again, see Blum et al. (1998, Ch.
18), Bürgisser & Cucker (2003) or Cucker & Koiran (1995)).

The NPadd-completeness of CBSadd allows us to use a problem with a dis-
crete flavor to prove completeness results in the additive setting. A series of
results starting in Fournier & Koiran (1998, 2000), continued in Bürgisser &
Cucker (2003), and relying on Meyer auf der Heide (1984), allow us to use
standard discrete problems as basis for reductions yielding Turing-hardness re-
sults in the additive setting. More specifically, these results show the following
(cf. Bürgisser & Cucker 2003, Theorem 4.1)

(3.3) Σk
add ⊆ PΣk

add and PARadd = PPSPACE
add .

We finish these preliminaries with a lemma gathering several facts which
will be used later on in many proofs.

Lemma 3.4. Given a decision circuit C , two paths γ, γ′ of C , and a point
x ∈ Rn, the following tasks can be performed by an additive machine in time
polynomial in the size of C :

(i) Decide whether Dγ is nonempty.

(ii) Decide whether x ∈ Dγ, or decide whether x ∈ Dγ
Z
.
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(iii) Compute dim Dγ .

(iv) Decide whether Dγ
Z
⊆ Dγ′

Z
.

Proof. (i) This part is just a rephrasing of a well-known and important
result due to Tardos (1986), based on polynomial time algorithms for linear
programming over Q, together with a polynomial time variant of Gaussian
elimination over Q (Bareiss 1968).

(ii) Let C be an additive circuit with r selection gates and γ be a path of
C . Let Fi(x) =

∑n

k=1 aikxk +bi denote the affine polynomial computed by C at
the ith selection node. The coefficients aik are integers of bit-size polynomially
bounded in the size of C and bi is a real number (which is an integer linear
combination of the machine constants), cf. Blum et al. (1998, Chapter 18).

We put I+
γ = {1 ≤ i ≤ r | γi = 1}, I−

γ = {1 ≤ i ≤ r | γi = −1},
Iγ = I+

γ ∪ I−
γ , and Eγ = {1 ≤ j ≤ r | γj = 0}. Then the leaf set Dγ is the

following convex set

Dγ = {x ∈ Rn | Fj(x) = 0 for all j ∈ Eγ , Fi(x) > 0 for all i ∈ I+
γ ,

and Fi(x) < 0 for all i ∈ I−
γ }.

If Dγ is not empty, then its Euclidean closure is given by

Dγ = {x ∈ Rn | Fj(x) = 0 for all j ∈ Eγ, Fi(x) ≥ 0 for all i ∈ I+
γ ,

and Fi(x) ≤ 0 for all i ∈ I−
γ }.

Moreover, the Zariski closure Dγ
Z

of Dγ is the affine hull of Dγ . Therefore

Dγ
Z

= {x ∈ Rn | Fj(x) = 0 for all j ∈ Eγ},

provided Dγ is not empty. Part (ii) follows now immediately.

(iii) It follows from the above that dimDγ = dim Dγ
Z

= n− rank A, where
A denotes the integer matrix (ajk)j∈Eγ ,1≤k≤n. It is known that the rank of an
integer matrix can be computed in polynomial time by a Turing machine by a
suitable variant of Gaussian elimination, cf. Bareiss (1968). In particular, such
a computation can be performed by an additive machine in polynomial time.
This shows Part (iii).

(iv) Note that Dγ
Z
⊆ Dγ′

Z
is equivalent to dim(Dγ

Z
∩ Dγ′

Z
) = dim Dγ

Z
.

Moreover, by the proof of Part (ii), we can compute equations for D
Z

γ ∩ Dγ′

Z

in time polynomial in the size of C . The claim follows now from Part (iii). �
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Remark 3.5. If we have the a priori information that Dγ is nonempty, then
the polynomial time algorithms to solve the above tasks (ii)–(iv) do not rely
on Tardos’ algorithm. In the proofs of all our results that follow, it is enough
to use the fact that Dγ 6= ∅ can be (trivially) certified in NPadd. So we do not
rely on Tardos’ algorithm.

4. Properties for the Euclidean Topology

In this section we study the complexity of several topological properties of
semilinear sets, where the considered topology is the Euclidean one.

4.1. Euclidean Adherence, Closedness, and Denseness.

Proposition 4.1. The problem EAdhadd is NPadd-complete.

Proof. We first exhibit an NPadd algorithm solving EAdhadd. Let C be a
decision circuit with n input gates and r selection gates. We have

SC =
⋃

γ∈AC

Dγ =
⋃

γ∈AC

Dγ.

Hence x ∈ SC iff ∃γ ∈ AC x ∈ Dγ. By Lemma 3.4, the property x ∈ Dγ can
be tested in Padd. This proves the membership of EAdhadd to NPadd.

For proving the hardness, we reduce CBSadd to EAdhadd. Assume C is
a decision circuit with n input gates. Consider a circuit C

′ computing the
function

(4.2) GC : Rn → {0, 1}, x 7→ FC (pos(x)).

The mapping C 7→ (C ′, 0) reduces CBSadd to EAdhadd. Indeed, if SC ∩
{0, 1}n = ∅ then SC ′ = ∅ as well and hence 0 6∈ SC ′ . On the other hand, if
SC ∩ {0, 1}n 6= ∅ then SC ′ contains at least one quadrant and hence 0 ∈ SC ′ . �

Proposition 4.3. The problem EClosedadd is coNPadd-complete.

Proof. We first prove that EClosedadd belongs to coNPadd. Let a decision
circuit C with n input gates be given. Then, SC is closed if and only if

∀x ∈ Rn
(

x ∈ SC ⇒ x ∈ SC

)

⇐⇒ ∀x ∈ Rn
(

(∃γ ∈ AC x ∈ Dγ) ⇒ x ∈ SC

)

⇐⇒ ∀x ∈ Rn
(

∀γ ∈ AC x 6∈ Dγ

)

∨ x ∈ SC .



The complexity of semilinear problems 11

Since the predicate x 6∈ Dγ can be checked in Padd by Lemma 3.4 we are done.
For proving hardness, we reduce CBSadd to the complement of EClosedadd

with a reduction similar to the one of Proposition 4.1. Assume C is a decision
circuit with n input gates. Consider a circuit C ′ computing the following

input x ∈ Rn

if x = 0 REJECT else if pos(x) ∈ SC ACCEPT else REJECT

Clearly, SC ∩ {0, 1}n = ∅ implies SC ′ = ∅, which is closed. Conversely, if
SC ∩ {0, 1}n 6= ∅, then SC ′ is not closed since 0 ∈ SC ′ and 0 6∈ SC ′ . �

Proposition 4.4. The problem EDenseadd is coNPadd-complete.

Proof. Given a decision circuit C with n input gates, SC is dense in Rn

if and only if its complement has dimension strictly less than n. This is in
coNPadd since Dimadd is in NPadd by Bürgisser & Cucker (2003, Theorem 5.1).

To show the hardness we reduce CBSadd to the complement of EDenseadd

by assigning to a decision circuit C a circuit C ′′ computing the function x 7→
1 − GC (x), where GC is the function introduced in (4.2). �

4.2. Unboundedness and Compactness.

Proposition 4.5. The problem Unboundedadd is NPadd-complete.

Proof. For proving the hardness we reduce CSatadd to Unboundedadd.
Let C be a decision circuit. Define C ′ by adding a dummy variable to C .
Then SC ′ is a cylinder of base SC satisfying that SC is non-empty if and only
if SC ′ is so, and in this case the latter is unbounded.

For the membership, assume that SC ⊆ Rn is bounded. Then, every ac-
cepting path γ defines a bounded leaf set Dγ and SC =

⋃

γ∈AC
Dγ. Denote

by y a point of SC which is at the greatest distance from the origin. Then y
is a vertex of one of the polyhedra Dγ. This vertex is therefore defined by n
equalities: y is the unique solution of a system Ay = b, where A = (aij) is a
n×n integer matrix and |aij | ≤ 2p(n) for some polynomial p. The bi are integer
linear combinations of the constants c1, . . . , ck ∈ R of the circuit C defining S,
hence bi =

∑k
j=1 βijcj with βij ∈ Z and |βij | ≤ 2p(n). Therefore, |bi| ≤ kc2p(n),

where c = max |cj|.
By Cramer’s rule we have yi = det Ab

i/ det A, where Ab
i denotes the matrix

obtained by replacing in A the ith column by b. Since A is invertible and
aij ∈ Z, we have | det A| ≥ 1. Denote by (A)ij the submatrix of A obtained
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by removing the ith column and the jth row. Developing det Ab
i along the ith

column, we get
det Ab

i =
∑n

j=1(−1)i+jbj det Aij .

Taking into account that | detAij | ≤ n!2np(n) we obtain

|yi| ≤ | det Ab
i | ≤ kcn2p(n)n!2np(n) =: B(n).

This bound is clearly computable in FPadd.
An NPadd algorithm for Unboundedadd now easily follows. Given a circuit

C , guess a point y ∈ Rn with ‖y‖∞ > B(n). Then accept if and only if
C (y) = 1. �

Proposition 4.6. The problem Compactadd is coNPadd-complete.

Proof. Membership follows from the membership of Unboundedadd to
NPadd and of EClosedadd to coNPadd. Hardness follows from the reduction of
Proposition 4.3. �

4.3. Isolated points and Local Dimension.

Proposition 4.7. The problem Isolatedadd is coNPadd-complete.

Proof. Membership easily follows from the equivalence

x not isolated in S ⇐⇒ x 6∈ S ∨ x ∈ S \ {x}

and the membership of EAdhadd to NPadd. Hardness follows from Proposi-
tion 4.1 and the equivalence

x ∈ S ⇐⇒ x ∈ S ∨ x not isolated in S ∪ {x},

which reduces from EAdhadd to the complement of Isolatedadd. �

Proposition 4.8. The problem ExistIsoadd is Σ2
add-complete.

Proof. The membership to Σ2
add trivially follows from Proposition 4.7. For

the hardness, we will use the problem Σ2CBSadd consisting of deciding, given
a decision circuit C with n + m input gates, whether

∃x ∈ {−1, 1}n ∀y ∈ {−1, 1}m (x, y) ∈ SC .

This is a Σ2
add-complete problem and we will reduce it to ExistIsoadd. To do

so, let C ′ be the decision circuit computing the following
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input (x, y) ∈ Rn+m

if x 6∈ {−1, 1}n REJECT else if y = 0 ACCEPT
else if ∃j ≤ m such that yj = 0 REJECT
else if (x, sg(y)) 6∈ SC ACCEPT else REJECT

By definition, all points in SC ′ have as x-component a vertex of an n-
dimensional hypercube. Over each one of these points, say x0, lies a space Rm

corresponding to the y coordinates. The origin of this space is in SC ′. The
possible other points of SC ′ in this space must lie in quadrants. Moreover, a
point in this space lies in a quadrant if and only if ∃y ∈ {−1, 1}m (x0, y) 6∈ SC .
That is, (x0, 0) is isolated in SC ′ if and only if ∀y ∈ {−1, 1}m (x0, y) ∈ SC .
Since the only possible isolated points in SC ′ are those with the form (x, 0)
with x ∈ {−1, 1}n it follows that SC ′ has isolated points if and only if C ∈
Σ2CBSadd. �

Our next completeness result, Corollary 4.11 below, is about counting prob-
lems and complexity classes. We briefly remind the reader of the main notions
involved.

Definition 4.9. Given a set A ⊆ R∞ and a polynomial p, we define the
functions #p

A, D#p
A : R∞ → N∪{∞} which associate to x ∈ Rn the cardinalities

#p
A(x) = |{y ∈ Rp(n) | (x, y) ∈ A}|,

D#p
A(x) = |{y ∈ {0, 1}p(n) | (x, y) ∈ A}|,

respectively. If C ⊆ 2R
∞

is a complexity class of decision problems, we define

# · C = {#p
A | A ∈ C and p a polynomial},

D# · C = {D#p
A | A ∈ C and p a polynomial}.

When C = Padd we write #Padd instead of # · Padd. These definitions
mimic similar definitions in the discrete setting. The class #P was introduced
by Valiant (1979a,b) in seminal papers. Valiant defined #P as the class of
functions which count the number of accepting paths of nondeterministic poly-
nomial time machines and proved that the computation of the permanent is
#P-complete. This exhibited an unexpected difficulty for the computation of
a function, whose definition is only slightly different from that of the determi-
nant, a problem known to be in FNC2 ⊆ FP, and thus considered “easy.” This
difficulty was highlighted by a result of Toda (1991) proving that PH ⊆ P#P,
i.e., that #P has at least the power of the polynomial hierarchy. This result
was extended by Toda & Watanabe (1992) who showed that # · PH ⊆ FP#P.
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In Bürgisser & Cucker (2003, Corollary 4.6) the result of Toda & Watanabe
(1992) was extended to show that D# · PHadd ⊆ FP#Padd

add . Using the same
ideas, it is not hard to further extend this as follows.

Theorem 4.10. We have # · PHadd ⊆ FP#Padd

add = FP#P
add.

Proof. The proof of the inclusion is analogous to the one of Bürgisser &
Cucker (2003, Theorem 4.7) and we therefore only sketch it. There, it was
shown that if ϕ is a function in #Padd that takes only finite values, then ϕ ∈
D# · NPadd. Moreover, for given x ∈ R∞, one can test in NPadd whether ϕ(x)
is infinite, cf. Bürgisser & Cucker (2003, Lemma 3.4).

The same arguments show that if ϕ ∈ Σk
add, k > 0, then we can test in

Σk
add whether ϕ(x) is infinite. Moreover, if ϕ takes only finite values, then

ϕ ∈ D# · Σk
add. Combining these two arguments proves the inclusion.

The equality FP#Padd

add = FP#P
add is from Bürgisser & Cucker (2003, Theo-

rem 4.7). �

Corollary 4.11. The problem #Isoadd is Turing-complete in FP#Padd

add .

Proof. The membership follows from Proposition 4.7 and Theorem 4.10.
For proving the hardness, since FP#Padd

add = FP#P
add, it is enough to reduce

#Sat to #Isoadd. To do so, assume φ is an input for #Sat, i.e., a Boolean
formula in conjunctive normal form. It is easy to compute from φ a decision
circuit C which accepts only the subset of {0, 1}n consisting of the satisfying
assignments of φ. Then, by definition, every point in SC is isolated, and the
number of points in SC is the number of satisfying assignments for φ. �

The local dimension of a semilinear set S ⊆ Rn at x ∈ S is defined as
dimx S := minr>0 dim(S ∩Br(x)), where Br(x) denotes the open ball of radius
r centered at x.

Proposition 4.12. The problem LocDimadd is NPadd-complete.

Proof. The membership follows from the observation that, for x ∈ S,

dimx S ≥ d ⇐⇒ ∃γ ∈ AC x ∈ Dγ ∧ dim Dγ ≥ d.

The predicates x ∈ Dγ and dim Dγ ≥ d can be checked in Padd by Lemma 3.4.
The hardness follows from the following equivalence

x isolated in S ⇐⇒ x ∈ S ∧ dimx S < 1

and from Proposition 4.7. �
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4.4. Continuity and Counting Points of Discontinuity.

Proposition 4.13. The problem LocContadd is coNPadd-complete.

Proof. Let us first focus on the membership. Given a decision circuit C ,
the local continuity of FC in a point x ∈ Rn can be expressed in the following
way:

(4.14) ∀ǫ > 0 ∃η > 0 ∀y ∈ Rn
(

‖x − y‖∞ < η ⇒ ‖FC (x) − FC (y)‖∞ < ǫ
)

.

For ǫ > 0 consider the following semilinear set

Sǫ
x := {y ∈ Rn | ‖FC (x) − FC (y)‖∞ < ǫ}.

The local continuity of FC in x can then be expressed as follows:

(4.15) ∀ǫ > 0 x 6∈ (Rn \ Sǫ
x).

Note that, given ǫ and x, a circuit for Rn \ Sǫ
x can be computed in polynomial

time. In addition, EAdhadd is in NPadd by Proposition 4.1. Therefore, (4.15)
can be decided in coNPadd and with it, the continuity of FC at x ∈ Rn.

For proving the hardness, consider the reduction of Proposition 4.3. The
function FC ′ is continuous at the origin if and only if SC = ∅. Therefore it
reduces CBSadd to the complement of LocContadd. �

Proposition 4.16. The problem Contadd is coNPadd-complete.

Proof. The membership is a consequence of Proposition 4.13: it suffices to
check the local continuity at all points. For the hardness, we reduce CBSadd

to the complement of Contadd. To a decision circuit C with n input gates we
assign a circuit C ′ computing the indicator function f of SC ∩ {0, 1}n in Rn.
Then SC ∩ {0, 1}n is empty iff f is continuous. �

Proposition 4.17. The problem #Discadd is Turing-complete in FP#Padd

add .

Proof. The upper bound follows from Proposition 4.13 and Theorem 4.10.
For the lower bound note that the reduction used in the proof of Proposi-
tion 4.16 is parsimonious. �
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4.5. Surjectivity.

Proposition 4.18. The problem Surjadd is Π2
add-complete.

Proof. The membership follows from the definition of surjectivity. Given
an additive circuit C , FC is surjective if and only if

∀y ∈ Rm ∃x ∈ Rn FC (x) = y.

For the hardness, we reduce the Π2
add-complete problem Π2CSatadd to Surjadd.

We recall, the former is the problem of deciding, given a decision circuit C with
n + m input gates, whether ∀y ∈ Rm ∃x ∈ Rn FC (x, y) = 1.

For the reduction, we associate to C another circuit C
′ computing the

following

input (a, x1, x2, (y1, . . . , ym)) ∈ R × Rn × Rn × Rm

define y = (y1, . . . , ym) ∈ Rm and denote 0 := (0 . . . , 0) ∈ Rm

if y = 0 then
if FC (x1, 0) = 1 return 0 else return (−1, . . . ,−1) ∈ Rm

else if FC (x1, (−y1, y2, . . . , ym)) = 1 and FC (x2, (y1, y2, . . . , ym)) = 1 and a > 0
then return (|y1|, y2, . . . , ym) else return (−|y1|, y2, . . . , ym)

We now show that FC ′ : R1+2n+m → Rm is surjective if and only if C ∈
Π2CSatadd. Assume FC ′ is surjective. Then:

1. There exists (a, x1, x2, y) ∈ R1+2n+m such that FC ′(a, x1, x2, y) = 0. This
occurs only when y = 0 and FC (x1, 0) = 1. Hence ∃x ∈ RnFC (x, 0) = 1.

2. For all y ∈ Rm \ {0}, there exists (a, x1, x2, z) ∈ R1+2n+m such that
FC ′(a, x1, x2, z) = (|y1|, y2, . . . , ym). This occurs only when a > 0 and
|z1| = |y1|, zi = yi for 2 ≤ i ≤ m and FC (x1, (−z1, z2, . . . , zm)) = 1 and
FC (x2, (z1, z2, . . . , zm)) = 1. Then, either FC (x1, y) = 1 or FC (x2, y) = 1.

It follows that C ∈ Π2CSatadd. Assume now that C ∈ Π2CSatadd. Then

1. There exists x ∈ Rn such that FC (x, 0) = 1. It follows FC ′(0, x, 0, 0) = 0.

2. For all y = (y1, . . . , ym) ∈ Rm\{0} there exist points x1, x2 ∈ Rn such that
FC (x1, (−y1, y2, . . . , ym)) = 1 and FC (x2, (y1, y2, . . . , ym)) = 1. In this
case, we have FC ′(1, x1, x2, y) = (|y1|, y2, . . . , ym) and FC ′(−1, x1, x2, y) =
(−|y1|, y2, . . . , ym).

It follows that FC ′ is surjective. �
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5. Problems of Connectivity

5.1. Reachability and Connectedness. While the following result is al-
ready proven for semilinear sets of arbitrary dimension in Bürgisser & Cucker
(2003), we need an alternative and simpler argument for proving Theorem 5.2
later on. Our graph-theoretic arguments are largely inspired by a similar result
stated for graphs in Chandra et al. (1984).

Lemma 5.1. The problem Reachadd is PARadd-complete under Turing reduc-
tions. The same holds when restricted to problems in R3.

Proof. For the membership, we refer the reader to Bürgisser & Cucker
(2003) and therefore focus on the hardness. We remarked in Equation (3.3)
that PARadd = PPSPACE

add . To obtain Turing-hardness for Reachadd it is therefore
enough to prove that Reachadd is PSPACE-hard.

Before going into the details, we note here that the general idea is to reduce
the computation of a PSPACE Turing machine to an instance of Reachadd.
We use three dimensions since we need one each for the configuration and the
step counter and the third is necessary to create sufficient space for expressing
connectedness of vertices by linear inequalities.

Let L ⊆ {0, 1}∗ be any language in PSPACE. Then L is decided by a
single tape deterministic Turing machine M with polynomial space bound
function p(n). Denote by Σ the alphabet of M , and by Q its set of states.
For a fixed input length n, a configuration of M is an element c in the set
Cn = Q × {1, . . . , p(n)} × Σp(n). We will identify Cn with the set {1, 2, . . . , T}
for a suitable T by interpreting a configuration c as a natural number written
in base |Σ|. To an input x ∈ {0, 1}n, we also assign an initial configuration
i(x) ∈ Cn. Without loss of generality, we may assume that there are unique
accepting and rejecting configurations cA and cR ∈ Cn, respectively. Since M is
deterministic, it accepts or rejects an input x in less than T computation steps.
We may assume that after reaching cA or cR, the machine enters an infinite
loop.

In the following we will use the notation [T ] := {0, 1, . . . , T}. Consider the
undirected graph Gn = (Vn, En), where

Vn = (Cn × [T ]) ∪ {(cA, T + 1), (cR, T + 1)}

and, for t < T ,

{(c, t), (c′, t + 1)} ∈ En iff c′ is the next configuration of M from c

{(c, T ), (cA, T + 1)} ∈ En iff c = cA

{(c, T ), (cR, T + 1)} ∈ En iff c 6= cA.
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Clearly, x ∈ L if and only if there exists a path from (i(x), 0) to (cA, T + 1)
in Gn. We claim that the graph Gn satisfies the following properties:

(i) Gn can be succinctly described, i.e., there exists a Boolean circuit of size
polynomial in n deciding whether two given vertices are linked by an edge
in Gn.

(ii) Gn is a forest with two trees, which can be rooted at the vertices (cA, T +1)
and (cR, T + 1).

(iii) Gn can be embedded in R3 as a semilinear set representable by a decision
circuit of size polynomial in n.
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cR cA cR cA

x 6∈ L x ∈ L

t = 0

t = T + 1

i(x) i(x)

Figure 5.1: Two graphs Gn, with T = 3, for the cases x 6∈ L and x ∈ L
respectively.

As the Claim (i) is obvious, we prove Claim (ii). Since M is deterministic,
each configuration c ∈ Cn has a unique next configuration c′ ∈ Cn. Therefore,
for t < T , each vertex (c, t) is connected to a unique vertex (c′, t + 1). This
implies that every connected component of Gn is a tree. Since any node (c, T )
is connected to either (cA, T + 1) or (cR, T + 1) (but not to both), the graph
Gn has exactly two connected components. See Figure 5.1 for an illustration
(note, though, the dashed lines are not edges in Gn; they will be referred to in
the proof of Theorem 5.2 below). For the rest of this proof, the two vertices
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(cA, T + 1) and (cR, T + 1) will be called the roots of these two connected
components.

We finally prove (iii). Define the layer t of Gn to be the set {(c, t) | c ∈ Cn}.
It follows from (ii) that the edges of Gn link only vertices of two consecutive
layers. Let us focus first on the geometrical representation in R3 of two con-
secutive layers, corresponding to vertices of the form (c, t) and (c′, t + 1) for a
given t ≤ T .
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(0, t + 1, c1)

(0, t + 1, c2)

(0, t + 1, c3)

(0, t + 1, c4)

(c1, t, 0) (c2, t, 0) (c3, t, 0) (c4, t, 0)

Figure 5.2: Sn(t) with T = 4 and t even.

Consider the set Sn(t) ⊆ R3 of Figure 5.2 defined as follows. For t even,
the vertices (c, t) are represented by the points (c, t, 0) ∈ R3 and the vertices
(c′, t + 1) are represented by the points (0, t + 1, c′) ∈ R3. When (c, t) and
(c′, t + 1) are linked by an edge in Gn, their corresponding representations in
Sn(t) are connected by a line segment. The same idea applies for t odd, with
vertices (c, t) represented by the points (0, t, c) ∈ R3 and vertices (c, t + 1)
represented by the points (c, t + 1, 0) ∈ R3.

Note that when t is even, Sn(t) lies in the tetrahedron with vertices (1, t, 0),
(T, t, 0), (0, t + 1, 1), and (0, t + 1, T ) (see Figure 5.2). This tetrahedron is
defined by the inequalities y− t−1+x ≥ 0, y− t−z ≤ 0, T (y− t−1)+x ≥ 0,
and T (y − t) − z ≤ 0.

It is easy to check that the tridimensional representations of two different
edges in Gn intersect only at the end points. Indeed, let e1 and e2 be two such
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input (x, y, z) ∈ [0, T + 1]3

if y = T + 1
if x ∈ {cA, cR} ∧ z = 0 then ACCEPT else REJECT

else
compute t = ⌊y⌋ # 0 ≤ t ≤ T , t ≤ y < t + 1
if t is even then

if y = t ∧ x ∈ {0, 1, . . . , T} ∧ z = 0 then ACCEPT
# (x, y, z) represents a vertex of Gn

else # t < y < t + 1
(i) if y − t − 1 + x < 0 ∨ y − t − z > 0 then REJECT

else
(ii) compute ct = max{c ∈ {1, . . . , T} : c(y − t − 1) + x ≥ 0}

compute ct+1 = max{c ∈ {1, . . . , T} : c(y − t) − z ≤ 0}
(iii) if ct(y − t − 1) + x = 0 ∧ ct+1(y − t) − z = 0 ∧ {(ct, t), (ct+1, t + 1)} ∈ En

then ACCEPT else REJECT
else
# the case where t is odd is treated similarly

Figure 5.3: Algorithm for deciding Sn.

edges and s1 and s2 be their corresponding representations in R3. Without
loss of generality we assume that the orthogonal projections of s1, s2 onto the
plane z = 0 lie in the strip R × [t, t + 1] and that t is even. Then these
orthogonal projections do not intersect in the open strip R × (t, t + 1) (since
any configuration has a unique next configuration). It follows that s1 and s2

do not intersect above this open strip, i.e., they may only intersect at their end
points.

Define now the set Sn ⊆ R3 as the union of the Sn(t) for t ∈ [T ]. This set
is the desired tridimensional representation of Gn. Without loss of generality
we will assume that T is odd.

We claim that the algorithm given in Figure 5.3 decides Sn. The detailed
proof of this claim is left to the reader; let us just make some comments. First
note that Step (i) guarantees that the maxima defining ct and ct+1 exist. The
point (x, y, z) lies on a line segment connecting (c, t, 0) with (0, t + 1, c′) for
c, c′ ∈ [T ] iff c = ct, c′ = ct+1, ct(y − t − 1) + x = 0, and ct+1(y − t) − z = 0.
Moreover, this line segment represents an edge of Gn iff {(ct, t), (ct+1, t + 1)} is
an edge of Gn.

In order to implement the algorithm as an additive circuit of size polynomial
in n, we use the binary representation for the occurring natural numbers c ∈ [T ].
Then it is possible to compute the product of c with a real number y using
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additions only (fast exponentiation). Note that the bit size of T is polynomially
bounded in n.

Summarizing, the above algorithm can be implemented by an additive
circuit Cn of size polynomial in n. Moreover, we have x ∈ L iff the im-
ages of (i(x), 0) and (cA, T + 1) are connected in Sn. Hence, the mapping
x 7→ (Cn, (i(x), 0), (cA, T + 1)) reduces L to Reachadd. �

Theorem 5.2. The problem Connectedadd is PARadd-complete under Tur-
ing reductions. The same holds when restricted to problems in R3.

Proof. The membership follows from Bürgisser & Cucker (2003, Theo-
rem 5.19) where it is proved that the computation of the 0th Betti num-
ber b0(SC ) is FPARadd-complete. Note that SC is connected if and only if
b0(SC ) = 1.

The hardness proof relies heavily on the construction of the graph Gn in
the proof of Lemma 5.1. Consider the graph G′

n derived from Gn by adding an
edge between (i(x), 0) and (cR, T + 1) (the dashed edge in Figure 5.1). Then
G′

n is connected if and only if i(x) and cA lie in the same connected component
of Gn. This is the case iff x ∈ L.

Now, from the semilinear set Sn ⊆ R3 of Lemma 5.1 representing Gn, it is
easy to construct a semilinear set representing G′

n by realizing the additional
edge by a chain of line segments. �

5.2. Torsion-free Homology. Algebraic topology studies topological spaces
by assigning to them various algebraic objects in a functorial way. In partic-
ular, homeomorphic (or even homotopy equivalent) spaces lead to isomorphic
algebraic objects. General references for algebraic topology are Hatcher (2002);
Munkres (1984) and a survey on recent applications can be found in Dey et al.

(1999). Typical examples of such algebraic objects assigned to a space X are
the (singular) homology groups Hk(X; Z). Those are abelian groups, which
are finitely generated if X is a finite cell complex (e.g., a semilinear set).
Let Tk(X) denote the torsion subgroup of Hk(X; Z), that is, the set of ele-
ments of finite order of Hk(X; Z). Then it is well-known from algebra that
Hk(X; Z) ≃ Zbk(X) ×Tk(X), where the rank bk(X) is called the kth Betti num-

ber of X. We already noted in the proof of Theorem 5.2 that the 0th Betti
number b0(X) counts the number of connected components of X. For k > 0,
bk(X) measures a more sophisticated “degree of connectivity”.

In Bürgisser & Cucker (2003) it was shown that, for all k ∈ N, the problem
to compute the kth Betti number of the semilinear set given by a decision circuit
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is FPARadd-complete and the question was raised whether this holds also for
the problem of computing the torsion subgroup of Hk(X; Z). We give a partial
answer to this question by showing that this problem is in fact FPARadd-hard.
Hereby we focus on the problem Torsionadd of deciding whether the torsion
subgroups Tk(SC ) of a semilinear set SC given by a circuit vanish for all k, that
is, whether all the homology groups Hk(SC ; Z) are free abelian groups. The
question of the corresponding upper bound remains open, but at least we show
that the problem is in EXPadd.

Theorem 5.3. The problem Torsionadd is PARadd-hard under Turing reduc-
tions and belongs to EXPadd.

Before giving the proof, we recall some facts from algebraic topology. We
will write I := [0, 1] for the closed unit interval.

The simplest space whose homology is not torsion free is the real projective
plane. To describe it, recall that a Moebius strip M is the space obtained from
I2 by identifying the points (0, t) with (1, 1 − t) on opposite edges in reverse
orientation. The salient feature of M is that its boundary ∂M is homeomorphic
to the circle S1. It is well known (Massey 1977, Example 4.3, p. 9 or Stöcker
& Zieschang 1988, Satz 1.4.18, p. 24) that when attaching to M a 2-cell by
identifying the points on the cell’s boundary S1 with ∂M , one obtains the real

projective plane P2(R). Moreover, we have H1(P
2(R); Z) ≃ Z2.

Let P2(R) ∨ S1 be the space obtained from the disjoint union of P2(R) and
the circle S1 by identifying a point of P2(R) with one of S1 (one-point union).
Then

(5.4) H1(P
2(R) ∨ S1; Z) ≃ Z2 ⊕ Z.

The following lemma provides the lower bound part of Theorem 5.3.

Lemma 5.5. The problem Torsionadd is PARadd-hard under Turing reduc-
tions. The same holds when restricted to circuits with a fixed number k of
input gates, for all k ≥ 5.

Proof. In the proof of Theorem 5.2 we reduced an arbitrary language L
in PSPACE to the problem Connectedadd. In fact, we showed that from
x ∈ {0, 1}∗ one can compute in polynomial time a decision circuit describing
a semilinear set S ′

n ⊆ R3 such that x ∈ L iff S ′
n is connected. We will now

modify this construction.
Recall that S ′

n was obtained from the semilinear set Sn ⊆ R3 constructed in
the proof of Lemma 5.1 by joining the images in R3 of the distinguished points
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(i(x), 0) and (cR, T + 1) in Gn by a chain of line segments. Let e = {u, v} be
the first of these line segments.

In a first stage, we construct a twisted version of the cylinder S ′
n × I ⊆ R4

embedded in R4. For this we will use a set τe ⊆ R4, which is obtained from
e× I ⊆ R3 essentially by twisting (in the fourth dimension) the opposite edges
{u} × I and {v} × I by 180 degrees. We show now how to realize this with
a semilinear set. For simplicity, we assume that e is the closed line segment
connecting the origin u = (0, 0, 0) and the point (0, 1, 1). Then we define the
twist over e as

τe := {0} ×
(

(I2 × {0}) ∪ ({0} × I2) ∪ ({1} × I2)
)

,

see Figure 5.4 (where the 3-dimensional representation is accurate since the
objects lie in {0}×R3 ≃ R3 and points in R4 have coordinates (x, y, z, w)). The
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τ+
e

u × {0} = (0, 0, 0, 0)

u × {1} = (0, 0, 0, 1)

τ−
e

v × {1} = (0, 1, 1, 1)

y
z

w v × {0} = (0, 1, 1, 0)

e

..............................................................................................

Figure 5.4: The twist τe and the portion of a Moebius strip it corresponds to.

chains of line segments τ+
e and τ−

e drawn with thick lines in Figure 5.4 connect
the point u×{0} = (0, 0, 0, 0) with v×{1} = (0, 1, 1, 1), and u×{1} = (0, 0, 0, 1)
with v × {0} = (0, 1, 1, 0), respectively. Similarly, one can define τe for an
arbitrary line segment e, but we refrain from explicitly doing so.

Consider now the following semilinear subset of R4

Tn := ((S ′
n − e) × I) ∪ τe
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which is obtained from S ′
n × I by replacing e × I with the twist τe. Moreover

consider the set

Bn := ((S ′
n − e) × {0, 1}) ∪ τ+

e ∪ τ−
e

of “boundary lines” of Tn. Figure 5.5 and Figure 5.6 illustrate the sets S ′
n, Tn,

and Bn, the latter being drawn with thick lines. (Of course, these 3-dimensional
pictures are not fully accurate since Tn is embedded in R4.)

Starting from the decision circuit describing the set S ′
n, it is straightforward

to design (and to compute in polynomial time) a decision circuit for Tn.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

..
..
..
..
..
..
..
..
..
...
...
.....
................................

...
..
.
..
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

..

.

..

.

..

..

..

..
..
.
..
..
.
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
...
..
...
...
...
...
....
.....
........

........................................................................................
....
...
...
..
..
..
..
..
.
..
.
..
.
..
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
..
.
.
..
.
..
..
.
..
..
...
..
...
...
.......
......................................................................................

.......
....
....
...
...
...
...
..
...
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
.
..
.
..
.
.
..
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

q q

qqq

q q q

qqq

q q

q
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
..
.
..
..
.
..
..
..
..
..
..
..
...
....
..................................

..

..

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

..

...
..................................

....
..
...
..
..
..
..
..
.
..
.
..
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

qqqqqqq
qqqqqqq
qqqqqqq
qqqqqqq
qqqqqqq
qqqqqq

qqqqqqq
qqqqqqq
qqqqqqq
qqqqqqq
qqqqqqq
qqqqqq

qqqqqqq
qqqqqqq
qqqqqqq
qqqqqqq
qqqqqqq
qqqqqqqq
qqqqqqqq
qqqqqqq
qqqqqqq
qqqqqqq
qqqqqqq
qqqqqqqq
qqqqqqq
qqqqqqq
qqqqqqq
qqqqqqq
qqqqqqq
qqqqqqqq
qqqqqqq
qqqqqqq
qqqqqqq
qqqqqqq
qqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqq
qqqqqqq
qqqqqqq
qqqqqqq
qqqqqqq
qqqqqqq
qqqqqqq
qqqqqqq
qqqqqqqq
qqqqqqq
qqqqqqq
qqqqqqq
qqqqqqq
qqqqqqq
qqqqqqq
qqqqqqqq
qqqqqqq
qqqqqqq
qqqqqqq
qqqqqqq
qqqqqqq
qqqqqqq
qqqqq

qqqqqqqq
qqqqqqq
qqqqqqq
qqqqqqq
qqqqqqq
qqqqqqq
qqqqqqq
qqqqqqq
qqqqqqqq
qqqqqqq
qqqqqqq
qqqqqqq
qqqqqqq
qqqqqqq
qqqqqqq
qqqqqqqq
qqqqqqq
qqqqqqq
qqqqqqq
qqqqqqq
qqqqqqq
qqqqqqq
qqqqq

qqqqqqq
qqqqqqq
qqqqqqq
qqqqqqq
qqqqqqq
qqqqqq qqqqqqq

qqqqqqq
qqqqqqq
qqqqqqq
qqqqqqq
qqqqqq qqqqqqq

qqqqqqq
qqqqqqq
qqqqqqq
qqqqqqq
qqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqq
qqqqqqqqqqqqqq
qqqqqqqqqqqqqq
qqqqqqqqqqqqqqq
qqqqqqqqqqqqqq
qqqqqqqqqqqqqq
qqqqqqqqqqqqqqq
qqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

..........................................................................................................................

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
.
..
.
..

....
...
.....
....

..
...
...
...
..
...
...
...
...
...
..
...
...
...
...
...
..
...
..

..
..
.
..
..
.
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..

..
..
.
..
..
.
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..

..
..
.
..
..
.
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqq
qqqqqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqq.........................................qqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

...............................

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

......................................................................................................

q q q q q q q q q q q

q
q
q
q
q

.

.

cR cA

x, z

w

y

i(x)

Figure 5.5: Illustration of S ′
n, Tn, and Bn in the case where x ∈ L.
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Figure 5.6: Illustration of S ′
n, Tn, and Bn in the case where x 6∈ L.

In the case where x ∈ L, the set Tn is homeomorphic to S ′
n × I and Bn cor-

responds to S ′
n × {0, 1} under this homeomorphism. Indeed, we can “untwist”

the set in this case. By contracting the tree S ′
n to a point we see that the pair

(Tn, Bn) is homotopy equivalent to the pair (I, {0, 1}).
In the case where x 6∈ L, let SA

n denote the connected components of S ′
n

containing cA. Then the set Tn is homeomorphic to the disjoint union of SA
n ×I

with a space that can be continuously contracted to a Moebius strip M such
that the boundary set is mapped into itself during the contraction. From this
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it follows that the pair (Tn, Bn) is homotopy equivalent to (M ∪I, ∂M ∪{0, 1})
where ∪ denotes disjoint union.

We consider now the space Qn := Tn/Bn obtained by collapsing all points
of Bn to a point. In the case where x ∈ L, we have (∼ denoting homotopy
equivalent spaces)

Qn ∼ I/{0, 1} ∼ S1.

Since H0(S
1; Z) ≃ H1(S

1; Z) ≃ Z and all other homology groups of S1 vanish,
the homology of Qn is torsion free.

To analyze the case where x 6∈ L, we claim that the space M/∂M obtained
by collapsing the points in ∂M is homotopy equivalent to the real projective
plane P2(R). Indeed, note that M/∂M is homotopy equivalent to the space
obtained from M by attaching a cone with base ∂M . The latter space is
homeomorphic to the space obtained from M by attaching a 2-cell along ∂M
and thus homeomorphic to P2(R). Using this observation, it is easy to see that

Qn ∼ M/∂M ∨ S1 ∼ P2(R) ∨ S1.

Hence in the case x 6∈ L we have H1(Qn; Z) ≃ H1(P
2(R) ∨ S1; Z) ≃ Z2 ⊕ Z by

(5.4) and thus the homology of Qn is not torsion free.
It remains to realize Qn, up to homotopy equivalence, as a semilinear set.

This is achieved by the following semilinear set Q̃ in R5:

Q̃ := (Tn × {0}) ∪ (Bn × I) ∪ (R4 × {1}).

It is not hard to see that Q̃ is homotopy equivalent to Qn. Moreover, a decision
circuit for Q̃ can be easily computed from a decision circuit for Tn. �

We finally provide the upper bound part of the proof of Theorem 5.3.

Lemma 5.6. The problem Torsionadd is in EXPadd.

Proof. The proof is very similar to the one of Bürgisser & Cucker (2003,
Proposition 5.22) in which the FPARadd-upper bound for the computation of
the Betti numbers was established. Therefore we only sketch the proof.

Assume we have group homomorphisms Zm α
→ Zn β

→ Zp such that β◦α = 0
and put B := im α, Z := ker β, and H := Z/B. Then we have H ≃ Zr ×
Z/d1Z × · · · × Z/dsZ, where r ∈ N is the rank and the torsion coefficients

d1, . . . , ds are positive integers. The group H is torsion-free iff s = 0. It is well
known that d1, . . . , ds can be obtained by computations of the Smith normal
form of integer matrices, cf. Munkres (1984).
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When studying the homology of a finite cell complex, the maps α and β
are given by the incidence matrices between cells of contiguous dimensions. In
the situation of a semilinear set SC given by a circuit, there is a natural cell
decomposition of SC of exponential size, in which the cells and the incidence
matrices are given in succinct representation. (A succinct representation of an
integer matrix (aij) is a Boolean circuit computing aij from the index pair (i, j)
given in binary.)

A crucial part of the proof of Bürgisser & Cucker (2003, Proposition 5.22)
is the fact that the rank of an integer matrix can be computed in FNC. If there
were a corresponding result for the computation of the Smith normal form of
an integer matrix, then Torsionadd ∈ FPARadd would follow along the lines
of Bürgisser & Cucker (2003, Proposition 5.22). However, we cannot hope
to provide an FNC-algorithm for computing the Smith normal form over Z

unless progress is made on the question whether the gcd of integers can be
computed in FNC, cf. Kaltofen et al. (1987). However, it has been known for
a long time Kannan & Bachem (1979) that the Smith normal form over Z can
be computed in FP. This results readily implies that the computation of the
Smith normal form of an integer matrix given in succinct representation can be
computed in FEXP. Using this, the assertion follows along the lines of Bürgisser
& Cucker (2003, Proposition 5.22). �

6. Properties for the Zariski Topology

In this section we study the complexity of several topological properties of
semilinear sets, where the topology considered is the Zariski topology.

6.1. Zariski Adherence, Denseness, and Closedness. The proof of the
following result is analogous to the one of Proposition 4.1 and Proposition 4.3
and therefore omitted.

Proposition 6.1. The problem ZClosedadd is coNPadd-complete and the
problem ZAdhadd is NPadd-complete. �

In Proposition 4.4 we showed that EDenseadd is coNPadd-complete. By
contrast, we prove the following.

Proposition 6.2. The problem ZDenseadd is NPadd-complete.

Proof. Note that

(6.3) SC

Z
=

⋃

γ∈AC

Dγ

Z

=
⋃

γ∈AC

Dγ
Z
.
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Therefore, S
Z

C
= Rn if and only if there exists γ ∈ AC such that Dγ is Zariski

dense in Rn. Since Dγ
Z

is the affine hull of Dγ (if Dγ 6= ∅), we see that Dγ is
Zariski dense in Rn if and only if dim Dγ = n. Hence, S is Zariski dense in Rn

if and only if dim S = n. The membership to NPadd now follows from the fact
that Dimadd is in NPadd (Bürgisser & Cucker 2003, Theorem 5.1).

The hardness follows from the reduction (4.2) in Proposition 4.1 which
reduces CBSadd to ZDenseadd. �

6.2. Deciding Irreducibility. Irreducibility is a natural concept in alge-
braic geometry (Shafarevich 1974). For semilinear sets this notion can be de-
fined as follows.

Definition 6.4. (i) A semilinear set S ⊆ Rn is called Zariski-irreducible if
its Zariski closure is an affine space. We call a semilinear set reducible if
it is not irreducible. (The empty set is considered to be irreducible.)

(ii) The Zariski closure S
Z

of a semilinear set S ⊆ Rn is a non-redundant
finite union of affine subspaces A1, . . . , As of Rn. We call A1, . . . , As the

irreducible components of S
Z

and call the sets S ∩ Ai the irreducible
components of S.

Recall that the complexity class PNP[log] consists of the decision problems
that can be solved in polynomial time by O(log n) queries to some NP language.
Equivalently, PNP[log] can also be characterized as the set of languages in PNP

whose queries are non adaptive. This means that the input to any query does
not depend on the oracle answer to previous queries, but only on the input of
the machine.

Both characterizations of PNP[log] can be extended to the additive setting in
the obvious way. Moreover, the proof of equivalence extends to the additive
setting in a straightforward way (cf. Papadimitriou 1994, Theorem 17.7). We
thus define:

Definition 6.5. P
NPadd[log]
add is the class of problems decidable by a polyno-

mial time additive machine which asks non adaptively a polynomial number of
queries to problems in NPadd.

The following is the main result of this section.

Theorem 6.6. The problem Irradd is P
NPadd[log]
add -complete.

We first prove the upper bound.
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Lemma 6.7. The problem Irradd is in P
NPadd[log]
add .

Proof. Consider the following algorithm:

input C with n input gates
for k = −1, . . . , n (independently) do

(i) check whether dim SC ≥ k

(ii) check whether ∀γ, γ′ ∈ AC (dim Dγ′ = k ⇒ Dγ
Z
⊆ Dγ′

Z
)

let d = max{k : (i) holds }
if (ii) holds for k = d then ACCEPT else REJECT

This algorithm decides whether SC is Zariski irreducible. Indeed, the di-
mension d of SC is computed, and the query (ii) for k = d checks whether for

all leaf sets Dγ′ of dimension d we have SC

Z
= Dγ′

Z
. This holds if and only if

SC is Zariski irreducible.
Since Dimadd is known to be in NPadd (Bürgisser & Cucker 2003), (i) is a

query to a problem in NPadd. By Lemma 3.4, (ii) is a query to a problem in
coNPadd. Since the queries are nonadaptive and the algorithm runs in polyno-
mial time, the set Irradd is in P

NPadd[log]
add . �

The easy proof of the following technical lemma is left to the reader.

Lemma 6.8. (i) Let S1 ⊆ Rn and S2 ⊆ Rm be two non-empty semilinear sets.
Then, S1 × S2 ⊆ Rn+m is irreducible if and only if both S1 and S2 are
irreducible.

(ii) A finite nonempty union of reducible semilinear sets is reducible. �

We turn now to the proof of the lower bound in Theorem 6.6.

Lemma 6.9. The problem Irradd is P
NPadd[log]
add -hard under many-one reduc-

tions.

Proof. Assume L is a problem in P
NPadd[log]
add . Then we may assume that L is

decided by a polynomial time additive machine asking non adaptively a poly-
nomial number of queries to the NPadd-complete problem ZDenseadd. Hence,
there exists a polynomial p and, for all n ∈ N, a polynomial size circuit C n

with n+p(n) input gates and a family of polynomial size circuits C
n
1 , . . . , C n

p(n)

with n input gates, such that, for x ∈ Rn, x is in L if and only if FC n(x, s) = 1,
where s = (s1, . . . , sp(n)) denotes the sequence of oracle answers for the input
x, that is si = 1 if the output of C n

i on input x is in ZDenseadd and si = 0
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otherwise. Thus the circuits C n
i compute the inputs to the oracle queries and

C n performs the final computation deciding the membership of x to L, given
the sequence s of oracle answers.

The output En
i of C n

i on input x is an input to ZDenseadd. Thus En
i is a

(description of a) decision circuit defining a semilinear set, which we denote by
Si ⊆ Rr(n). (Without loss of generality, we may assume that all these sets lie in
a Euclidean space of the same dimension r(n) > 1 and that all the circuits En

i

use the same number of selection gates q(n) > 1.) We denote by Ai the set
of accepting paths of En

i . Moreover, for γ ∈ Ai, we denote by Dγi ⊆ Si the
corresponding leaf set, and write ∂Dγi for its Euclidean boundary.

The reduction (4.2) from the proof of Proposition 6.2 that reduces CBSadd

to ZDenseadd produces either a Zariski dense or an empty set. Moreover, the
leaf sets produced by this reduction are, up to boundary points, quadrants
of Rr(n). Taking this into account, we may therefore assume without loss of
generality that Si is either empty or Zariski dense in Rr(n), for all x ∈ Rn and
all i. Moreover, we may assume that (recall r(n) > 1)

(6.10) Si 6= ∅ =⇒
⋃

γ∈Ai
∂Dγi is reducible.

Our goal is to reduce L to Irradd. Thus we have to compute from x ∈ Rn,
in polynomial time, a decision circuit defining a semilinear set Ω such that
x ∈ L iff Ω is irreducible. We will consider x ∈ Rn as fixed and suppress it
notationally. To simplify notation, we will write p := p(n), q := q(n), r := r(n)
for fixed x ∈ Rn.

The set Ω will be a set of tuples (u, y, a) in the Euclidean space Π :=
Rq × (Rr)p × Rp. To convey an idea of the intended meaning, we call u ∈ Rq

selection gate vector, y = (y1, . . . , yp) ∈ (Rr)p oracle vector, and a ∈ Rp oracle

answer vector. A selection gate vector u induces a discrete vector γ := sg(u) ∈
{−1, 0, 1}q, which describes a possible path of one of the circuits En

i . An oracle
answer vector a induces a bit vector α := pos(a) ∈ {0, 1}p, which describes a
possible sequence of oracle answers. The set Ω will be a finite union of product

sets of the form U × Y1 × · · · × Yp × A ⊆ Π, where U ⊆ Rq, Yi ⊆ Rr, and
A ⊆ Rp are semilinear sets. Note that, by Lemma 6.8, a nonempty product set
is irreducible iff all U, Yi, A are irreducible and nonempty.

Let z be a fixed point in Rr (for instance the origin). Recall that s ∈ {0, 1}p

denotes the sequence of oracle answers for the fixed input x. We define the
subsets Ti := Si ∪ {z} ⊆ Rr, for which we make the following important
observation:

(6.11)
si = 1 ⇐⇒ Si

Z
= Rr ⇐⇒ Ti

Z
= Rr,

si = 0 ⇐⇒ Si = ∅ ⇐⇒ Ti
Z

= {z}.
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We define the set Ω ⊆ Π as the one accepted by the following algorithm:

input (u, y, a) ∈ Rq × (Rr)p × Rp

compute γ := sg(u) ∈ {−1, 0, 1}q , α := pos(a) ∈ {0, 1}p

(I) case (∀i yi ∈ Ti) ∧ (∃i ai = 0) ACCEPT
(II) case (FC n(x, α) = 1) ∧ (∀i yi ∈ Ti) ∧ ∃j

(

αj = 0 ∧ γ ∈ Aj ∧ yj ∈ ∂Dγj

)

ACCEPT
(III) case (FC n(x, α) = 1) ∧ ∀i

(

(αi = 0 =⇒ yi = z) ∧ (αi = 1 =⇒ yi ∈ Si)
)

ACCEPT
else REJECT.

It is easy to see that an additive circuit formalizing the above algorithm can
be computed from the given x ∈ Rn in polynomial time by an additive machine.
(Use that a description of the circuits C n, C n

i can be computed from n by an
additive machine in polynomial time.)

To prove the lemma, it is sufficient to show the following assertion:

(6.12) x ∈ L ⇐⇒ Ω is irreducible.

In order to show this we are going to analyze the set Ω. We define

ΩI = {(u, y, a) ∈ Π | (u, y, a) satisfies Case (I)}

and similarly ΩII and ΩIII. Note that ΩII is not the set of (u, y, a) accepted by
the step (II) of the algorithm. We have Ω = ΩI ∪ ΩII ∪ ΩIII, but this union is
not necessarily disjoint. It is obvious that ΩI is reducible.

We introduce some more notation needed for analyzing the above algorithm.
Consider the following subset

Y := {α ∈ {0, 1}p | FC n(x, α) = 1}

of possible oracle answer sequences leading to acceptance. Note that s ∈ Y iff
x ∈ L. Moreover, define for α ∈ Y the following set of indices

J(α) := {j | αj = 0 ∧ sj = 1}

and for j ∈ J(α) let Ωj
II(α) denote the set of (u, y, a) ∈ Π that satisfy the

condition of Case (II) with the α and j specified. Similarly, we define ΩIII(α).
We have

(6.13) Ω = ΩI ∪
⋃

α∈Y ,j∈J(α)

(

Ωj
II(α) ∪ ΩIII(α)

)

.
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The following claim settles one direction of (6.12).

Claim A. If x ∈ L, then Ω is irreducible.

In order to prove this claim, note that ΩIII(s) = Rq×F1×· · ·×Fp×pos−1(s),
where we have put Fi := Si if si = 1 and Fi := {z} otherwise. This implies
that

ΩIII(s)
Z

= Rq × T1
Z
× · · · × Tp

Z
× Rp =: Θ,

since pos−1(s)
Z

= Rp. The product set Θ is irreducible by Lemma 6.8(i) and
(6.11). It is clear that ΩI ∪ ΩII ⊆ Θ. Moreover, we claim that ΩIII(α) ⊆ Θ for
all α ∈ Y . Indeed, assume (u, y, a) ∈ ΩIII(α). If we had si = 0 and αi = 1 for
some i, then we would have yi ∈ Si, which contradicts the fact that Si = ∅ due
to si = 0. This shows that (u, y, a) ∈ Θ.

Altogether, using (6.13), we have shown that Ω ⊆ Θ. Hence Ω
Z

= Θ, which
finishes the proof of Claim A.

Claim B. For α ∈ Y \ {s}, j ∈ J(α), the set Ωj
II(α) ∪ ΩIII(α) is reducible.

Claim B implies the other direction of the assertion (6.12). Indeed, assume
x 6∈ L. Then s 6∈ Y and according to (6.13), Ω is a union of reducible sets and
thus reducible.

It remains to prove Claim B. Let πj : Π → Rr, (u, y, a) → yj be the projec-
tion onto the jth factor. In order to show that a subset Ω′ ⊆ Π is reducible, it
is sufficient to prove that πj(Ω

′) is reducible, since irreducibility is preserved by
linear maps. Hence it is enough to show that πj

(

Ωj
II(α)∪ΩIII(α)

)

is reducible.
Taking into account (6.10) and the fact that j ∈ J(α) implies Sj 6= ∅, it suffices
to prove that

⋃

γ∈Aj

∂Dγj ⊆ πj

(

Ωj
II(α) ∪ ΩIII(α)

)

⊆ {z} ∪
⋃

γ∈Aj

∂Dγj .

The right-hand inclusion is clear since j ∈ J(α) and thus αj = 0.
For the left-hand inclusion, assume yj ∈ ∂Dγj for some γ ∈ Aj . Choose

a ∈ Rp and u ∈ Rq such that pos(a) = α and sg(u) = γ. We then have
(u, z, . . . , z, yj, z, . . . , z, a) ∈ Ωj

II(α), where the yj is at the jth position. Hence
yj ∈ πj

(

Ωj
II(α) ∪ ΩIII(α)

)

. This finishes the proof of Claim B and completes
the proof of the lemma. �

6.3. Counting Irreducible Components.

Theorem 6.14. The problem #Irradd is FP#Padd

add -complete under Turing re-
ductions.
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Proof. It follows from (6.3) that the irreducible components of SC

Z
are

some of the sets Dγ
Z
. Note, however, that some nonempty Dγ

Z
may not be

irreducible components since they are embedded in some higher dimensional

components. Also, several paths γ may yield the same Dγ
Z
. A way to deal with

these features is to associate to an irreducible component V of SC

Z
the largest

γ ∈ AC (say, with respect to lexicographical ordering) such that V = Dγ
Z
.

Let IC ⊆ AC denote the set of paths associated to an irreducible component

of SC

Z
this way. Thus |IC | equals the number of irreducible components of SC .

The following algorithm decides membership of γ to IC

input (C , γ)
check that γ ∈ AC and Dγ 6= ∅, otherwise REJECT

check that for all γ′ ∈ AC (Dγ
Z
⊆ Dγ′

Z
⇒ Dγ

Z
= Dγ′

Z
) else REJECT

check that for all γ′ ∈ AC (Dγ
Z

= Dγ′

Z
⇒ γ′ ≤ γ) else REJECT

ACCEPT

Note that by Lemma 3.4, the second line is decided in Padd and the third
and fourth line are in coNPadd. Therefore, the algorithm decides a set in
coNPadd and it follows that #Irradd ∈ D# · coNPadd. By the additive ver-
sion of Toda-Watanabe’s Theorem (Bürgisser & Cucker 2003, Cor. 4.6), we
have D# · coNPadd ⊆ FP#Padd

add , hence #Irradd ∈ FP#Padd

add .
We now prove the hardness. Note first that the problem CSatadd trivially

belongs to P#Irradd

add . Indeed, we have SC = ∅ iff the number of irreducible com-

ponents of SC is zero. Since CSatadd is NPadd-complete, NPadd ⊆ P#Irradd

add .
Therefore, by Bürgisser & Cucker (2003, Theorem 5.1), we have Dimadd ∈

P#Irradd

add .
It is now easy to design a Turing reduction from #CSatadd to #Irradd.

On input a decision circuit C , first decide whether SC is finite using oracle
calls to Dimadd, and hence to #Irradd. If SC is not finite, return ∞, otherwise
return the number of irreducible components of SC . Since #CSatadd is #Padd-
complete (Bürgisser & Cucker 2003, Theorem 3.6), this proves the hardness. �

Corollary 6.15. For all c, d ∈ N, c > 0, the problems #Irr
(d)
add and #Irr

[c]
add

are FP#Padd

add -complete under Turing reductions.

Proof. The membership of both problems is shown similarly as in the proof
of Theorem 6.14. We are going to prove the hardness of #Irr

(d)
add by reducing
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#Sat to #Irr
(d)
add. (The similar hardness proof for #Irr

[c]
add is left to the

reader.)
For ℓ ≤ n − d and s ∈ {−1, 1}n consider the affine function Lℓ,s : Rn → R

defined by Lℓ,s(x) =
∑n

j=ℓ sjxj − (n− ℓ+1) and put Hs := {x ∈ Rn | L1,s(x) =
0, . . . , Ln−d,s(x) = 0}. By construction, s ∈ Hs and dim Hs = d.

Assume that φ is a Boolean formula in conjunctive normal form with n vari-
ables. Consider a decision circuit C for the following algorithm (see Figure 6.1
that depicts the set accepted by the algorithm in the case n = 2, d = 1):

input (x1, . . . , xn)
check that xi 6= 0 for all i ≤ n else REJECT
check that x ∈ Hs(x) and ‖xi − sg(xi)‖∞ ≤ 1

2 else REJECT

check that pos(xn) ∈ {0, 1}n satisfies φ else REJECT
ACCEPT

Clearly, SC has the same number of irreducible components as φ has satis-
fying truth assignments. Moreover, all of these components have dimension d.
This provides the desired reduction from #Sat to #Irr

(d)
add. �

....
...
....
...
.....
...
....
...
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

qqqqqqqqq
qqqqqqqqq
qqqqqqqqq
qqqqqqqqq
qqqqqqqqq
qqqqqqqqq
qqqqqqqqq
qqqqqqqqq
qqqqqqqqq
qqqqqqqqq
qqqqqqqqq
qqqqqqqqq
qqqqqqqqq
qqqqqqqqq
qqqqqqqqq
qqqqqqqqq
qqqqqqqqq
qqqqqqqqq
qqqqqqqqq
qqqqqqqqq
qqqqqqqqq
qqqqqqqqq
qqqqqqq

qqqqqqqqq
qqqqqqqqq
qqqqqqqqq
qqqqqqqqq
qqqqqqqqq
qqqqqqqqq
qqqqqqqqq
qqqqqqqqq
qqqqqqqqq
qqqqqqqqq
qqqqqqqqq
qqqqqqqqq
qqqqqqqqq
qqqqqqqqq
qqqqqqqqq
qqqqqqqqq
qqqqqqqqq
qqqqqqqqq
qqqqqqqqq
qqqqqqqqq
qqqqqqqqq
qqqqqqqqq
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

......................

. . . . . . . . . . . . . . . . . . . . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...........

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

......
................................................................................

.....
...
...
..
..
..
.
..
..
.
.
..
.
.
..
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..

.

..

..

..
...
....
...................................................................

......
....
...
...
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
.
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

..

.

.

..

.

..

..

.

..
..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..
..
..
..
.
..
..
.
.
..
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

1
2 1

1

1
2

3
2

3
2

Leaf set for
φ(1,−1) = 1
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Figure 6.1: The leaf sets of C with n = 2, d = 1 where φ is a tautology.

Corollary 6.16. For all N ∈ N, N > 0, the problem #Irr
{N}
add is FP#Padd

add -
complete under Turing reductions.
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Proof. The membership is immediate from Theorem 6.14. Without loss of
generality we prove the hardness for N = 1, which is provided by the following

reduction from #Sat to #Irr
{N}
add . Assume that φ is a Boolean formula in

conjunctive normal form with n variables. Consider a decision circuit C doing
the following:

input x ∈ R

check that 0 ≤ x < 2n and x ∈ N, otherwise REJECT
compute the sequence ξ = (ξn−1, . . . , ξ0) of digits of x in binary
check that ξ is a satisfying assignment for φ, otherwise REJECT
ACCEPT

Note that the second line in the algorithm can be achieved in time poly-
nomial in n by binary search. The third line can also be computed in time
polynomial in n.

The non-empty leaf sets are irreducible, since they have dimension 0 and
they are in one-to-one correspondence with the satisfying assignments of φ. �

7. Completeness Results in the Turing Model

If an additive circuit has no constant gates (other than those with associated
constants 0 or 1) it is said to be constant-free. Such a circuit can be described
by means of a binary string and thus be taken as input by ordinary Turing
machines. In this way we can consider, for instance, the following problem
EAdhZ

add: given a constant-free additive circuit C with n input gates and
a point x ∈ Qn, decide whether x belongs to the Euclidean closure of SC .
Similarly, we can consider discrete versions of all the other problems dealt with
in this paper and define CompactZ

add, ConnectedZ

add, #IrrZ

add, etc.
We claim that all the completeness results shown in the previous two sec-

tions hold for the discrete versions of these problems with respect to the corre-
sponding discrete complexity classes. A way to prove this is to carefully check
all proofs given here. There is, however, an elegant way to get by free all the
membership statements in these proofs.

Recall (see e.g., Bürgisser & Cucker 2003, Section 4), if Cadd is a complexity
class of decision problems for the additive model, its constant-free Boolean part

BP0(Cadd) is defined by

BP0(Cadd) = {S ∩ {0, 1}∗ | S ∈ C0
add}.

Here C0
add is the subclass of Cadd obtained by requiring all machines to be

constant-free. That is, BP0(Cadd) is the discrete complexity class obtained by
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restricting additive machines to be constant-free and inputs to these machines
to be binary. It is known that (Blum et al. 1998; Bürgisser & Cucker 2003;
Koiran 1994)

BP0(Padd) = P, BP0(NPadd) = NP, BP0(FP
#Padd

add ) = FP#P, etc.

Now note that an immediate application of these equalities yields member-
ship results. For instance, since EAdhadd ∈ NP0

add, we have EAdhZ

add ∈
BP0(NPadd) = NP.

The hardness results need to be proved in a different way. Again, we ex-
emplify with EAdhZ

add. First note that CBSZ

add is NP-hard (a reduction from
Sat to CBSZ

add is immediate). Then, we note that the reduction from CBSadd

to EAdhadd given in Proposition 4.1 is constant-free (in the sense that it can
be performed by a constant-free additive machine) and that it can be per-
formed in polynomial time when restricted to binary inputs. In other words,
when restricted to binary data it yields a reduction from CBSZ

add to EAdhZ

add

thus showing NP-hardness of EAdhZ

add. Hardness for the other twenty-three
problems is shown similarly.

We remark that for ReachZ

add, ConnectedZ

add, and TorsionZ

add we actu-
ally prove the PSPACE-hardness with respect to many-one reductions (instead
of Turing reductions as in the additive model).

8. Final Remarks

Problems regarding the topology of a semilinear set other than those considered
thus far easily come to mind. For instance,

Manifoldadd (Topological smoothness) Given a decision circuit C , decide whether
SC is a topological manifold.

SimplyConnectedadd (Simple Connectedness) Given a decision circuit C , decide
whether SC is simply connected.

Contractibleadd (Contractibility) Given a decision circuit C , decide whether
SC is contractible.

The complexity of these problems is, as of today, an open problem. We
have realized, however, that the discrete version of SimplyConnectedadd is
undecidable since the group triviality problem, which is undecidable (Adian
1957; Rabin 1958), reduces to it.
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Paulin Jacobé de Naurois

LORIA
615 rue du Jardin Botanique, BP 101
54602 Villers-lès-Nancy Cedex, Nancy
France
e-mail: Paulin.De-Naurois@loria.fr


