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Abstract. We focus on the BSS model of computation over arbitrary
structures. We propose a modification of the logical characterizations
of Px and NPy given by Gridel and Gurevich in order to make them
applicable to any computational structure /.

1 Introduction

In the last decades complexity theory developed in many directions to offer a
broad perspective of the complexity of computations. Two directions relevant to
our work are the extension of complexity theory to domains other than finite al-
phabets and the characterizations of complexity classes in machine-independent
terms.

A seminal paper for the first direction above is the one by Blum, Schub and
Smale [BSS89], where a theory of computation and complexity that allowed an
ordered ring or field as alphabet for the space of admissible inputs was developed.
The authors emphasized the case when the ring is the field of real numbers, R,
bringing the theory of computation into the domain of analysis, geometry and
topology. Later on extended to the more abstract level of computations over ar-
bitrary structures in [Goo94,P0i95], this BSS model, among other things, makes
use of the extensively developed subject of the theory of discrete computations,
initiated by the work of Turing [Tur36].

In the classical setting of computation over finite alphabets, a great amount
of work has been done, along the second direction to provide machine indepen-
dent characterization of the major complexity classes. Such characterizations
lend further credence to the importance of the complexity classes considered,
relate them to issues relevant to programming and verification, and, in general,
help understand the notion of computability in a whole perspective. Several ap-
proaches for designing such characterizations have been chosen, among which
one can find descriptive complexity (global methods of finite model theory).
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Descriptive complexity began with the work of Fagin [Fag74], who proved,
in the classical setting, that the class NP can be characterized as the class
of sets describable within existential second-order logic. Subsequently, Vardi
and Immerman [Var82,Imm83,Imm&86] used this approach to characterize
P. Several other characterizations exist, for classes like LOGSACE [Gur83]
or PSPACE [Mo0s83,GS86,Imm8&87,Bon88,AV89,Lei90,ASV90,AV91,Imm91]. An
overview of the subject can be found in [EF95,Imm99]. These characterizations,
however, applied originally only to the classical setting of computation over finite
alphabets since only finite models were considered.

In [GM95], the notion of R-structure has been introduced, and characteriza-
tion of deterministic polynomial time Pr and non-deterministic polynomial time
NPy in terms of logics over these R-structures were provided. These results have
been later on extended in [CM99], in order to capture other complexity classes,
and in [GG98] over structures other than R.

In this paper, we extend the notions of R-structures to K-structures over an
arbitrary computational structure I, extend the notion of first order logic and
second order logic over R-structures of [GM95] to first and second-order logic
over K-structures. We also define a proper notion of fixed-point rule, different
from [GM95], allowing to capture Py, and propose a characterization of NP.
Our characterizations, while only slightly different from the ones of [GG98], apply
to any computational structure. In particular, when K is Z,, they coincide with
the classical ones.

Indeed, in the characterizations of [GM95,CM99], some logic is hidden in
basic computations over the real numbers. In particular, these characterizations
assume that the set of real numbers is equipped with a sign function and a multi-
plication: therefore they cannot be trivially extended, say, to the additive setting
or to the field of complex numbers. Similar restrictions apply to the more general
characterizations of [GG98], where it is required that the underlying computa-
tional structure contains an expansion of (N,0,1+, —, <, max, min, ¥, IT). Here
again, this does not apply to the field of complex number, or to finite structures.
Our characterizations overcome these drawbacks.

2 Computing over Arbitrary Structures

This section is devoted to a brief exposition of the BSS model of computation,
based on [BCSS98] and [Poi95].

2.1 Arbitrary Structures

The following notion of structure describes the domain of elements over which a
machine computes, as well as the operations and relations that can be performed
over these elements.

Definition 1.  (Structure): A structure K =
(K, {op; }icr,rely ... rel;,0,1) is given by some wunderlying set K, some
operators {op;ticr, and a finite number of relations rely, ... rel;.



Constants correspond to operators of arity 0. While the index set I may be
infinite, the number of operators with arity greater than 1 is assumed to be
finite, that is, only symbols for constants may be infinitely many. We will not
distinguish between operator and relation symbols and their corresponding in-
terpretations as functions and relations of the same arity, respectively over the
underlying set K. We assume that the equality relation = is a relation of the
structure, and that there are at least two constant symbols, with different inter-
pretations (denoted by 0 and 1 in our work) in the structure.

The main examples of structures are Zo, = ({0,1},=,0,1), R =
(R, +,—,%,/,<,{c € R}) and R,ps = (R,+,—,<,{c € R}). When considered
over Zso, the notions of BSS computability and complexity coincide with the one
of the classical Turing model.

2.2 BSS Machines

Denote by K a structure as above. We now define machines over K following
the lines of [BCSS98]. A machine over K is roughly a Turing machine with a bi-
infinite tape, where the tape cells holds elements of K. A machine can perform
operations and relations of IC over its tape elements at unit cost. More formally,

Definition 2. (Machine): A machine over K consists of an input space T =
K* = U,enK?, an output space O = K*, and a register space S = K, =
{(zi,...,x}),i € Z,j € L,xi<p<j € K}, together with a connected directed graph
whose nodes labelled 0, ..., N correspond to the set of different instructions of
the machine. These nodes are of one of the siz following types: input, output,
computation, copy, branching and shift nodes.

1. Input nodes. There is only one input node and it is labelled with 0. Associated
with this node there is a next node £(0), and the input map g5 : Z — S.

2. Output nodes. There is only one output node which is labelled with 1. It
has no next nodes, once it is reached the computation halts, and the output
map go : S = O places the result of the computation in the output space.

3. Computation nodes. Associated with a node m of this type there are a next
node B(m) and a map g, : S — S. The function g,, replaces the component
indexed by 0 of S by the value op(wy, ..., wp—1) where wg, wa, . .., w,_1 are
components 0 to n — 1 of S and op is some operation of the structure K of
arity n. The other components of S are left unchanged. When the arity n is
zero, m is a constant node.

4. Copy nodes. Associated with a node m of this type there are a next node
B(m) and a map g,, : S = S. The function g,, performs one of the following
actions:

— Replace the component indexed by 0 by a copy of the component indexed
by 1. This is denoted as a copy left.

3 In the original paper by Blum, Shub and Smale, this is called the state space. We
rename it register space to avoid confusions with the notion of ‘state’ in a Turing
machine.



— Replace the component indexed by 0 by a copy of the component indexed
by —1. This is denoted as a copy right.

— Exchange the component indexed by 0 and the component indexed by 1
. This is denoted as a switch.

5. Branch nodes. There are two nodes associated with a node m of this type:
BT (m) and B~ (m). The next node is 31 (m) if rel(wo, ..., w,_1) is true and
B~ (m) otherwise, where wg,ws,...,w, 1 are components 0 ton —1 of S
and rel is some relation of the structure X of arity n.

6. Shift nodes. Associated with a node m of this type there is a next node 5(m)
and amap o : S =+ S. The o is either a left or a right shift.

As in the classical Turing model of computation, complexity classes over an
arbitrary structure X can be defined such as Px and NPy, as well as the notions
of reduction and completeness. Over the three major structures, natural complete
problems exist for NPy, and the question Px = NPy remains open.

3 First-Order Logic on K-structures

In the rest of the paper, denote by K a structure as above. We will consider
machines over K, as well as the complexity classes Px and NPg.

3.1 Definitions

We assume that the reader is familiar with first-order mathematical logic. In
order to capture computation over arbitrary structure, we extend the notion
of R-Structures from [GM95,BCSS98] to the notion of K-Structures. Our K-
Structures are particular instances of the meta-finite structures of Gradel and
Gurevich [GG98].

Definition 3.  (K-Structures): Let Ly, Ly be finite vocabularies, where L
may contain relation and function symbols with their arities, and Ly con-
tains function symbols only, with their arities. An K-structure of signature
o = (Ls,Ly) is a pair D = (U, F) consisting of

(1) a finite logical structure U of vocabulary L, called the skeleton of D, whose
(finite) universe A is also called the universe of D, and

(ii) a finite set F of functions fP : A¥ — K interpreting the function symbols
fi in Lg, with the corresponding arities k;.

K-Structures as above are a generalization of the concept of logical structure,
over a fixed computational structure K, in order to denote inputs to algorithms
performed by BSS machines over . The skeleton of a K-structure is used for
describing the finite, discrete part of a structure, while the set F is used for
describing its computational part.



Ezample 1. Consider for instance the real case R, and the NPgr-complete prob-
lem 4FEAS: decide whether a given polynomial of degree 4 has a real zero.
Inputs to this decision problem are polynomials of degree 4, which can be en-
coded by R-structures of signature (Ly, L¢) = (0,{fo, f1, f2, f3, f4}) as follows:
The universe A contains one variable for each variable of the polynomial. The
interpretation of the function f; : A* — R of L; gives the (real) coefficient for
each monomial of degree 4, and similarly for the other coefficients with fs, ... fo.

We present now the notion of first-order logic over K-structures. A key feature
of this logic is that the quantified variable range only over the skeleton of the
structures, and not over K. Assume that V is a fixed, countable set of variables.

Definition 4.  (First-Order Logic for K-Structures): The language of
first-order logic for K-structures, FOx, contains for each signature o = (Ls, Ly)
a set of terms and formulas. We first define terms, of which there are two kinds.
When interpreted in a K-structure D = (U, F) with universe A, each term t
takes values either in A, in which case we call it an index term, or in K, in
which case we call it a number term. Terms are defined inductively as follows.

(1) The set of index terms is the closure of the set V' of variables under the
application of functions symbols of L.
(ii) If b1, - - ., hi, are index terms, and X is a k-ary function symbol of Ly, then

X(h1,...,ht) is a number term.
(iii) If t1,...,tr;, are number terms, and op; is an operation of the compu-
tational structure K of arity ki, opi(t1,...,tx;) is also a number term. In

particular, operations of arity 0 of K yield constant number terms.
Atomic formulas are defined as follows.

(1) equalities hy = hy of index terms are atomic formulas.

(ii) If t1,. .., tr; are number terms, and rel; is a relation of the computational
structure K of arity k;, rel;(t1,...,tx,) is an atomic formula. In particular
we may consider equalities t| = ty of number terms.

(iii) If hy,...,hg are index terms, and P is a k-ary relation symbol in Ly,
P(hy,...,ht) is also an atomic formula.

The set of formulas of FOx is the smallest set containing all atomic formulas
and which is closed under Boolean connectives, V, A, =, and quantification (Jv)y

and (Vo).

Definition 5.  (Interpretation of First-Order Logic for K-Structures):
We adopt the usual interpretation. The main point is that the quantifiers range
over the universe of the K-Structure: a formula (3x)1) where ¢ contains variables
Z,Y1, .-, Yn, n > 0 is true at b € A" if there exists a € A such that 4P is true,
where x is interpreted as a and y; is interpreted as b;, for i = 1,...,n. Similarly
for a formula (Vx)y being interpreted as —(3x)—p. For details, see the Appendiz.

Definition 6.  (Order): Let 0 = (Ls, Ly) be a signature. A K-structure D =
(U, F) of signature o with universe A is ordered if there is a binary relation
symbol < in Ly whose interpretation <P€ U is a total order on A.



Remark 1. Our  order  relation replaces the ranking function
of [GM95,CM99,BCSS98,GGI8]. In these papers, the ranking function is
a function in Ly, defining a bijection between A and {0, ...,|A| — 1}. This uses
the property that R is ordered and contains at least the natural numbers. It is
not applicable in our setting of arbitrary structure, where no such requirement
can be made on K.

Remark 2. Tt is checkable in first-order logic over K-structures that a structure
is ordered. Based on this order relation, one can also define in first-order logic
a lexicographic order over A* for any k € N. Therefore, we will freely use the
symbol <, for a total order over A¥. In what follows, we will only consider
ordered K-structures. Note also that the minimal element of A* and the maximal
one with respect to this lexicographic order are definable in first-order logic. We
will denote them 0 and n*F — 1 respectively.

Definition 7.  (Fixed Point Rule): Fiz an signature 0 = (L,,Ly), D a re-
lation symbol of arity r > 0 and Z o function symbol of arity r, both not contained
in this signature. Let H(D,t1,...,t.), 1i(D,t1, .-, tr), -, Ig—1(D,t1,. .., 1),
k > 0 be first-order formulas over the signature (L, U{D}, Ly U {Z}) with free
variables t1,...,t.. Let F1(Z,t1,...,tr),..., Fx(Z,t1,...,t,) be number terms
over the signature (Ls U {D},Ls U {Z}) with free variables ti,...,t,. We al-
low D to appear several times in H and the I;’s, but we do not require that its
arguments are (t1,...,t.). The only restriction is that the number of free vari-
ables in H and the I;’s coincide with the arity of D. A similar remark holds
for the F;’s and Z. For any K-structure D of signature o and any interpre-
tation ( : A" — K of Z and A C A" of D, respectively, the number terms
F(Z,t1,...,t), ..., Fx(Z,t1,...,1t.) define functions

Fl .. F + AT =K
[Fl(Z(—C,tl,...,tT (—ul,...ur)]D
Uy-nnyUp — :

[Fk(Z — C,tl,...,t,« «— ul,...uT)]D,

where [F;(Z + ( t1,...,t, < u1,...u,)|P is obtained from Fy(Z,t1,...,t,)
by replacing any occurrence of Z by (¢, any occurrence of t; by u;, and inter-
preting the whole number term in D. Also, the formulas H(D,ty,...,t,) and
Ii(D,t1,...,t.), 1 <i < k—1 define relations

HEJIZ?A g A"

[H(D(—A,tl,...,tr <—u1,...ur)]D
[Il(.D (—A,tl,...,tT <—u1,...ur)]D
UL, -y Up —> .

[Ik_l(D «— A,tl,...,tr <~ ul,...ur)]D.



Let us now consider the sequence of pairs {A%, (*}i>o with A* C A" and (' :
A" — K inductively defined by

A%(z) = false forallze€ A"
C(z)=0 forallze A"

At () = HY:(z) if Al(z) = false
true otherwise

FP.(z)  if ~Ai(z) AIP 5 (), else

(H(e) = .FIZ{LC,- (z) if —|A’:(x) A Il?—l,Ai (z), else
EIEC" (x)  if A (x), else
¢ ().

Since AL (z) only differs from A¥(zx) in case the latter is false, one has that
AI = AT for some j < |A|". In this case, we also have that ¢} = (1. We
denote these fixed points by D> and Z*° respectively and call them the fixed
points of H(D,ty,...,t,), the F;(Z, t1,...,t.), and the I;(D,t,...,t,) on D.
The fixed point rule is now stated as follows. If F;(Z,t1,...,t,), 1 <i <k are
number terms as previously, and H(D,t1,...,t.), I;(D,t1,...,t.), 1 <i <k are
first-order formulas as previously, then

[D(t1,...,tr) « H(D,t1,...,t.)](u1,-..,u.)
is o first-order formula of signature (Ls,Ly), and
fp[Z(t1, . ,tr) «— F,'(Z,tl, .. .,tr),Iz’(D,tl, .. .,tT),H(D,tl, .. .,tr)](ul, . ,’U,T)

is a number term of signature (Ls,Ly). Their interpretations on a given K-
structure D are D> and Z°°, respectively.

Remark 3. In [GM95,CM99,BCSS98], the fixed point rule allows to define only
number terms. Thus, the authors need to introduce another rule, the maximiza-
tion rule, which allows them to compute characteristic functions of relations of
L as number terms, and perform logical operations such as AND, NOT, OR,
by the appropriate use of multiplication, addition and a sign function. This ap-
proach, however, is not appropriate to our setting of an arbitrary structure, where
no specific requirement is made on the functions and operations of the compu-
tational structure. We introduce therefore the possibility to define relations as
fixed point, such as D> in the definition above, which enables us to perform
legally all kinds of logical operations in first-order logic. While our definition
of the fixed point rule is more complicated, it makes the need for a maximiza-
tion rule obsolete and enables us to prove our results over arbitrary structures,
which can be specialized to be the real numbers with addition and order R,ys,
or the complex numbers. Moreover, it allows us to capture also classes decided
by machines having no constant node, by an appropriate specialization of the
computational structure.



The fixed point rule allows us to defined an extension of the first-order logic,
as follows.

Definition 8.  (Fixed Point First-Order Logic for K-Structures):
Fized point first-order logic for K-structures, denoted by FPx, is obtained by
augmenting first-order logic FOx with the fixed point rule.

3.2 Characterizing Py

It is clear that, for any signature o = (L4, Ly), one can encode in polynomial
time finite ordered KC-structures of signature o as elements of K* of polynomial
size. For D an ordered K-structure of signature o, we will denote by e(D) its
encoding. Details can be found in the Appendix.

Definition 9.  (Decision Problem of Ordered K-structures): Let o =
(Ls, Ly) be a signature containing o binary relation symbol <. We denote by
Struct(o) the set of ordered K-structures of signature o. A decision problem of
ordered K-structures of signature o is a subset of Struct(c). Modulo a polynomial
encoding of ordered K-structures, any decision problem of ordered KC-structures
can be seen as a decision problem over K in the BSS model, and vice versa.

This yields the following characterization of Px.

Theorem 1. Let S be a decision problem of ordered K-structures. Then the
following statements are equivalent.

(i) S € Pk.
(ii) There ezists a sentence ¢ in fized point first-order logic such that S =

{DID = ¢}

Example 2. Recall the signature (Ly, L¢) = (0, {fo, f1, f2, f3, f4}) given in Ex-
ample 1 for encoding inputs to the 4FEAS problem. Consider X : A — K
whose interpretation in a K-structure D of signature (L, Ly U X)) instantiates
the variables of the polynomial. The problem 4EVAL of checking that a given
polynomial of degree 4 evaluates to 0 at a given point is in Px. It can be for-
mulated as follows: There exists a sentence ¢ in fixed point first-order logic over
the signature (L,, Ly U X) such that

4EVAL = {D|D = ¢}.

4 Second-Order Logic on K-structures

4.1 Definitions

Recall that K-structures can be naturally seen as points in K£*. A decision prob-
lem of ranked K-structures is then a decision problem, where the (positive) inputs
are encoded as K-structures, and satisfy the natural property of being ranked.



Definition 10.  (Existential Second-Order Logic For K-Structures):
We say that ¢ is an existential second-order sentence (of signature o = (L, Ly))
if v = 3AYq,...,3Y,. ¢, where ¢ is a first-order sentence in FOx of signature
(Ls, Ly U{Y1,...,Y.}). The function symbols Y1,...,Y, are called function vari-
ables. Fzistential second-order sentences are interpreted in K-structures D of
signature o in the following way: a sentence D |= (¢ = 3Y1,...,3Y,¢) if there
exist functions Xi,..., X, : A" — K with r; the arity of Y;, such that the inter-
pretation of 1 taking Y;P to be X; yields true. The set of second-order sentences

together with this interpretation constitutes existential second-order logic and is
denoted by SOk

Existential second-order logic has at least the expressive power of fixed point
first-order logic. Indeed:

Proposition 1. For every sentence v of signature o in FPx there exists a sen-
tence ¥ of signature o in ISOx such that, for every K-structure D,

D = ¢ if and only szlz'tZ

4.2 Characterizing NPy

Theorem 2. Let S be a decision problem of ordered K-structures. Then the
following statements are equivalent.

(i) S € NPg.
(ii) There exists an existential second-order sentence v such that S = {D|D =

¥}

Example 3. Recall the signature (Ls, Ly) = (0, {fo, f1, f2, f3, f1}) given in Ex-
ample 1 for encoding inputs to the 4FEAS problem. Consider X : A — K
whose interpretation in a K-structure D instantiates the variables of the poly-
nomial. Consider a formula ¢ in fixed point first-order logic over the signature
(Ls, Ly U X), whose interpretation for a K-structure D checks whether the eval-
uation of the polynomial at the point X? € K4l is 0. A instance of the result
above is
4FEAS = {D|D = 3X ¢}.

Note that by Proposition 1 ¢ can be expressed in existential second-order logic.
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Appendix

Interpretation of First-Order Logic for K-Structures

Let 0 = (Ls, L) be a signature, and D be a K-structure of signature ¢. For any
index term h(z1,...,2,) containing n > 0 variables, and any point a € A™, the
interpretation of the function symbols of & in D extend to a natural interpretation
hP(a) € A of h in D at the point a, where z; is interpreted as a; fori = 1,...,n.
The same holds with number terms ¢(z1,...,2,), the interpretation t?(a) at
a lying in K. The interpretation of the relation symbols of L, in D and the
relations of I enable us to associate truth values with atomic formulas evaluated
at point in A™. Thus, if Ay, . .., hg areindex terms and ¢y, . . ., ; are number terms
containing the variables 1, . . .,Z,, and a € A", we say that r(h1, ..., hy) is true
in D if (hP,...,hP) € rP and false otherwise, and, for a l-ary relation rel of
K, rel(ty,...,t;) is true if (tP,...,tP) € rel in K, and false otherwise. The
interpretation of the logical connectives V, A and — is the usual. A formula (3z)y
where 1) contains variables x,y1,...,yn, n > 0 is true at b € A" if there exists
a € A such that ¢P is true, where z is interpreted as a and y; is interpreted as
b;, for i = 1,...,n. Similarly for a formula (Vz)1 being interpreted as —(3z)—).
Proceeding recursively, we can associate with any formula ¢ with free variables
Zy,...,Z, over o and any a € A™ a truth value. If this value is true we say that
D satisfies ¢(a), and we denote this by D |= ¢(a). A formula with no variable is
called a sentence. If T' is a set of sentences over o, D satisfies T if and only if
D satisfies all the sentences of T'. This is denoted as D |= T. The K-structures
D such that D |= T are called the models of T. The sentences of T' are called
axitoms and T is a theory.

Encoding of Ordered K-structures

Let 0 = (Ls,Lys) be a signature containing a binary relation symbol <, and
let D be an ordered K-structure of signature o. Next, replace all relations in
the skeleton by the appropriate characteristic functions x : A¥ — {0,1} C K
Thus, we get a structure with skeleton a set A and functions Xi, ..., X; of the
form X; : A% — K Each of these functions X; can be represented by a tuple
&€= (zo,...,Tm;—1) € K™ with m; = |A[% and z; = X;(@(j)) where a(j) is the
jth tuple in A with respect to the lexicographic order on A*: induced by <.
The concatenation

€(D) = §1.€2. .. 'Et

of these tuples gives the encoding e(D) € K™t +---+me

Clearly, for a fixed finite signature and for any finite K-structure D of size
n, the size of e(D) is bounded by some polynomial n! where I depends only
on the signature. Thus, appending zeros to e(D) if necessary, we can also view

e(D) = (xo,...,71—1) as a single function Xp : A — K. This means that one
can encode an ordered K-structure by a single function from the ordered set
{0,...,n!' — 1} into K. Moreover, this encoding can be performed in polynomial

time.



Proof of Theorem 1

Let us first prove the (i) = (ii) direction. Assume that the signature is ¢ =
(Ls,Ly), and that it contains a binary relation symbol <. Let S € P, and
let M be a polynomial time BSS machine over K deciding S. Assume that, for
any ordered K-structure D of size n, encoded in K* by e(D), the computation
time of M on e(D) is bounded by n™, for some m € N. Assume also that
the size of e(D) is n™. This is without loss of generality since it suffices to
add some padding 0’s to the encoding e(D) of D. Assume also without loss of
generality that the state space of M is bounded by n™. A point in this space has
coordinates (zg,Z1,--.,Tym_1). In the following, we will use the formalism of a
Turing machine, with a scanning head moving in K™ instead of a state space
K.
Consider the lexicographic order <,, on A™ induced by the order < on A.
By Remark 2, <,,, is defined in first-order logic, and induces a bijection between
A™ and the set {0,...,n™ — 1}. Therefore, for any ¢t € A™ we will define:

- 1=
t sréli}ng{s <m t}

t+1= Srélfifrln{t <m S}

It is clear that these elements are definable in first-order logic over ordered K-
structures, thus we will freely use these notations hereafter. Note however that,
when ¢ is minimal in A™, we have t —1 = ¢. A similar remark holds for ¢ maximal
with t+ 1 = ¢. Following this notation, we will identify A™ with {0,...,n™ —1}.

Next, we assume that the number of nodes of M is bounded by 2%, k € N.
Note that k is fixed, independent of D or n. Thus, the nodes of M will be
denoted as elements in A¥, with the proviso that |A| > 2. We also assume that
they correspond to the first elements of A™ with respect to the lexicographic
order <,,. Since their number is constant, they are all definable in first-order
logic. We will therefore denote them with constants viyp. € A™, where type
denotes the type of the node as in Definition 2. Recall also the constant 0 € A™,
corresponding the the minimal element of A™ as in Remark 2.

Consider now the following relation symbol, not contained in Ly, of arity 4m:

Node(v, t, pos, c) = true iff
the current node of M at step ¢ is v and

pos =0 and the head of M is on cell ¢
pos =1 and the head of M is not on cell c.

Consider also the following function symbol, not contained in Ly, of arity 2m:
Cell(t,c) = content of cell ¢ at step t.

If Cell can be defined in FPx by a number term Z, then the implication (i) =
(ii) holds. The K-structure D is accepted by M if and only if after n™ steps, the
content of the first cell is 1. That is, Cell(n™ — 1,0) = 1, were n™ — 1 is the



maximal element in A™ as defined in Remark 2. Node and Cell can be defined
inductively as follows:

Node(input, 0, pos, c) < [(pos = 0) V (¢ = 0)] A [(pos = 1) V (¢ # 0)]
Node(v, 0, pos, c) « false if v # input
Node(v,t + 1,pos, ¢) « Node(v,p, , t, pos, c) for vy, s.t. v = F(vep;)
V Node(vshift, ,t, pos,c + 1) for vgp, s.t. v = B(vshise,)
Node(vspift, , t, pos,c — 1) for vgp, s.t. v = B(Vsnift, )
Node(Veopy, , t, POS, €) 1Or Veopy, St. Vv = B(Veopy:)
Node(Vcopy, , t, POs, €) for veopy, S.t. v = B(Veopy, )
Node(Vswitch, t, P08, €) Or Vswiten S.t. © = B(Vswitch)
Node(Voutput, t, POS, ¢) fOr Voutput S-t- v = B(Voutput)
Node(vyel;, t,0,¢) A rel;(Cell(t,c),...,Cell(t,c+ k;))
Apos =0  for Ve, s.t. v =B (Vrer;)
V Node(Vre;,t,0,¢) A —rel;(Cell(t,c),...,Cell(t,c + k;))
Apos =0  for vpe; s.t. v = 87 (Vrer;)

< <K K K <K< KL

and:

Cel1(0,¢) « XP(c)

op;i(Cell(t,c),...,Cell(t,c+ k;)) if Node(vp;, t,0,c)
Cell(t,c+ 1) if Node(veopy,, t,0, ¢)
Cell(t,c—1) if Node(vcopy.., t,0, ¢)
Cell(t+1,¢c) « Cell(t,c+1) if Node(Vswitch, t, 0, €)
Cell(t,c—1) if Node(Vswiteh, t,0,¢ — 1)
Cell(t,c) otherwise

This proves that Cell can be defined in FPx as the fixed point of the inductive
definition above, from which (i) = (ii) follows.

To prove (ii) = (i), we only need to prove that formulas and number terms
defined with the fixed point rule can be evaluated in polynomial time. Since
the number of updates is polynomially bounded, one only needs to apply the
inductive definition a polynomial number of times, which ends the proof. O

Proof of Proposition 1

It suffices to prove that the fixed point rule of Definition 7 can be ex-

pressed within existential second-order logic over K-structures. Assume F;, I;, H,

1 < 4 < k, Z and D are as in Definition 7. Every occurrence of

fp[Z(tl,.. . ,t,-) — E(Z,tl,. ..,tr),Ii(D,tl,. . .,t,-),H(D,tl,.. . ,tr)](ul,. ..,'LLT-)

and of fp[D(t1,...,t,) < H(D,t1,...,t;)](u1,...,u,) in ¢ will be replaced by
) a

Z(u1,-..,ur) and D(uy, .. .,u,), respectively. Denote by ¢ the resulting formula.



For any r-ary function F': A” — K, denote by F ther — ary formula with vari-
ables (ui, . ..,uy) defined by F(uy,...,ur) = (F(uy,...,ur) = 1).
Then, 1) is
3Z3ADY(uq, ..., u,)
D(ui,...,u;) < H(D,uy,...,u,)
ANF(Z, (u,.. . upn)) = Z(u, ..., uy) & L(D,ug, ... u,)
~(Ii(D,uy, ..., uy))

VENZ, (g 1)) = Z (g, uy)
2( (UI UT)) (ul uT) { A -[2 (D7 Ui,y ---, uT‘)

_1(11(157”17" '7u7'))
VFy 1(Z, (ugy. .. up)) = Z(ug, ..., up) &

A =(Ix—2(D,us, ..., ur))
A Ik_l(D,ul,...,ur)

~(Ii(D,us,...,uy))

Proof of Theorem 2

Let S € NPx be a problem of ordered K-structures of signature ¢ = (L4, Ly).
By definition of NPy, there exists r € N, a function symbol Y of arity r not in
Ly, and a decision problem H of ordered K-structures of signature (Ly, Ly UY'),
such that H belongs to Px and

S = {D € Struct(c)|3Y (D,Y) € H}.

By Theorem 1, there exists a fixed point first-order formula ¢ that describes H,
and thus,
D e S if and only if D |=3Y ¢.

By Proposition 1, ¢ can be replaced by an equivalent second-order formula 37
with ¢ a first-order formula. Then,

D € Sif and only if D |= 3Y3Z¢,

which shows (i) = (ii). For the other direction, it suffices to guess an interpre-
tation for the second-order quantified functions, and to check in Px that the
first-order formula induced is satisfied. O



