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Abstract

In this paper, we study the recently introduced Traveling Car Renter Problem. This latter

is a generalization of the well-known Traveling Salesman Problem (TSP), where a solution is

a set of paths of different colors as well as an orientation of each path in such a way that the

union forms a directed Hamiltonian circuit. Considering costs associated with all edges and

all ordered pairs of nodes for each color, the cost of a solution is the sum of the costs of its

colored oriented paths, the cost of these later being the sum of the edge costs plus the costs

of the arcs from their destination to their origin. We also consider the Quota version of this

problem where a weight is associated with every node and the circuit formed by a solution

may not be Hamiltonian but must cover a subset of nodes whose sum of weights should be

greater than or equal to a fixed value. We propose integer linear programming formulations for

these problems. We also propose some valid inequalities for strengthening the models and we

devise branch-and-cut algorithms for solving these formulations. The computational results

show the efficiency of our formulations as we solve to optimality almost all the instances of

the literature, and outperform by an order of magnitude all published approaches.

October 16, 2023

1 Introduction

In this paper, we consider the Traveling Car Renter Problem (CARS). An instance of the CARS is

given by an undirected graph G = (V,E) where V = {1, . . . , n} indicates a set of nodes and ij ∈ E
is an edge between nodes i and j. A set K = {1, . . . , o} of colors is also given. Moreover, for every

color k ∈ K, a cost dke is associated with each edge e ∈ E and a cost cki,j is associated with each

ordered pair (i, j) ∈ V × V (note that c is asymmetric whereas d is symmetric). A solution to the

CARS is a set of paths of different colors as well as an orientation of each path in such a way that

the union forms a directed Hamiltonian circuit. The cost of a solution is defined as the sum of the

costs of the colored oriented paths, where the cost of a st-path P with color k oriented from s to

t is defined as
∑

e∈P d
k
e + cks,t. The CARS consists of finding a solution of minimum cost.

The CARS was introduced by Goldbarg et al. (2012), and it is directed to the viewpoint of

vehicle rental customers. In general, a user of rented vehicles aims at traveling a specific route

1This author carried out part of this research during an academic stay at Université Sorbonne Paris Nord,
LIPN, CNRS, UMR 7030, F93430, Villetaneuse, France
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by minimizing the rental cost. Nowadays, there are several available vehicles, which means that

a user may choose the most attractive vehicle for traveling different parts of the intended route.

Nevertheless, an extra fee must be paid whenever a vehicle is delivered to a city different from the

one it was rented. Hence, this problem corresponds to the CARS: each vehicle corresponds to a

color k ∈ K and a st-path P of color k oriented from s to t in a solution corresponds to renting

the vehicle k at city s, traveling with this vehicle through P and delivering it at city t. The total

rental cost of a trip is given by the travel cost
∑

e∈P d
k
e plus the extra fee cks,t of returning the

vehicle from t to s. Note that in this context, a specific node corresponding to the initial position

of the customer is generally set, and an initial rental is required at this node.

The Quota CARS (QCARS) is a variant of the CARS where a weight qi is associated with

each node i ∈ V , and a quota Q is given, representing the minimum amount of weight that

should be collected. In the QCARS, it is not anymore mandatory to visit all the nodes. Indeed,

the algorithm can select the subset of nodes it visits under the constraint to reach at least the

threshold Q. Therefore, the QCARS aims at finding at minimum cost a set of paths of different

colors with orientations in such a way that the union forms a directed circuit covering a subset of

nodes U satisfying
∑

i∈U qi ≥ Q.

The QCARS was introduced in (da Silva Menezes et al., 2014) to model the variant of the CARS

where the user, a tourist, wants to visit a subset of touristic places to reach a level of satisfaction.

The QCARS also models a specific case of the Rapid Transit Networks Design problems that

consist of embedding a set of interconnected transit lines within an undirected network. The nodes

correspond to population centroids in a city, while the edges correspond to potential connections

to be built between node pairs. Let qi be the population associated with node i, usually defined

as the population living within a reasonable walking distance of the node. Let dkij be the cost of

constructing a link of type k between i and j and let cki,j indicate the cost of constructing a depot

at the beginning (i.e., node i) and a depot at the ending (i.e., node j) of the transit line of type

k. This cost is asymmetric due to the difference in real-estate price in i and j and the different

size of the starting and ending depots. Moreover, the cost could be different since the lines could

be of different types, such as: buses, metros, light metros, tramways, or fully overground light-rail

systems. An objective of a rapid transit system is to minimize the cost while deserving a certain

amount of population (Laporte et al., 2011). In this case, the model locates the stations chosen

among a subset of nodes, determines the connections between the stations, and partitions them

into different lines. Under the hypotheses that there is only one line of each type and the lines

should create a circuit, this is precisely the QCARS.

The TSP is a particular case of the CARS where only one car is considered, and since the TSP

is NP-hard, so is the CARS. However, from a computational point of view, the TSP can be solved

up to thousands of nodes (Applegate et al., 2006), whereas the exact existing methods can only

solve instances of the CARS with up to 20 nodes and five colors. In this paper, we provide a new

integer linear programming formulation for the CARS, and devise a branch-and-cut algorithm able

to solve in an exact way almost all the instances of Goldbarg et al. (2012), even those containing

hundreds of nodes and more than four colors.

Moreover, the proposed formulation and the branch-and-cut algorithm have been adapted to

the QCARS, solving to optimality all the instances generated in (da Silva Menezes et al., 2014),

the vast majority being solved in less than a second.
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2 Literature review

Mathematical programming models and approaches for solving the CARS have been scarcely ex-

plored. The first formulations for modeling the CARS have been proposed in (Goldbarg et al.,

2016) and in (da Silva and Ochi, 2016). As pointed out by Rios et al. (2017), the formulation

in (da Silva and Ochi, 2016) actually models the CARS without an initial rental required on a

specific node. Nevertheless, an incomplete integer programming formulation containing nonlinear

constraints was previously proposed in the literature (Goldbarg et al., 2013). In (Goldbarg et al.,

2018), three different mathematical formulations are proposed and computationally compared.

The first model has a quadratic objective function and is based on the TSP formulation viewed

as a particular case of the quadratic assignment problem. The assignment variables represent the

positions of the nodes in the Hamiltonian circuit. The second model also has a quadratic objective

function, but it is based on the Gavish-Grave’s formulation for the TSP. The last proposed model

is based on the Dantzig-Fulkerson-Johnson’s formulation for the TSP (Applegate et al., 2006) and

has quadratic constraints. An experimental comparison of the three linearized formulations is

performed. Instances with up to 52 nodes and three colors are solved to optimality. However,

when the number of colors increases, the performance worsens dramatically: with five colors, only

instances with less than 20 nodes are solved to optimality.

Pedrosa et al. (2019) study the CARS for which the rental costs cks,t are all equal for any s, t ∈ V
and any color k ∈ K. They propose an O(log n)−approximation algorithm for the problem based

on the randomized rounding of an exponentially large linear relaxation.

Different metaheuristics have been devised for the CARS. Goldbarg et al. (2012) devise two

greedy randomized adaptive search procedures with variable neighborhood descent. Several evolu-

tionary algorithms have also been developed: memetic algorithms (Goldbarg et al., 2012; da Silva

Menezes et al., 2014), transgenetic algorithms (Asconavieta et al., 2011; Goldbarg et al., 2013) and

scientific algorithm (Felipe et al., 2014). Two hybrid algorithms have also been proposed (da Silva

and Ochi, 2016; Rios et al., 2017).

The QCARS has also been considered in the literature. Two integer linear programming formu-

lations for the QCARS are presented in (da Silva Menezes et al., 2014; Goldbarg et al., 2016). Both

formulations are based on the same nonlinear constraints, but differ by the linearization techniques

applied. By using these formulations, instances with up to 16 nodes are solved to optimality. da

Silva Menezes et al. (2014) and Goldbarg et al. (2016) also devise evolutionary algorithms to solve

the QCARS. Computational experiments based on instances with up to 100 nodes are reported.

A related problem to the CARS is the colorful traveling salesman problem (Xiong et al., 2007;

Ismkhan, 2017), where edges are colored, and the objective is to find a Hamiltonian circuit with

the minimum number of distinct colors. The different colors must not be contiguous, and there

are no rental costs as in the CARS. Another problem close to the CARS is the traveling salesman

problem with flexible coloring (Roemer et al., 2012). In this problem, nodes belong to various color

classes, and the aim is to assign a color to each node to find the shortest Hamiltonian circuit with

the particularity that all nodes of the same color must be visited consecutively.
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3 Integer linear programming formulations

In this section, we introduce new formulations for the CARS and the QCARS. Moreover, we

present valid inequalities to strengthen the formulations and devise branch-and-cut algorithms to

solve these formulations. We also discuss some variants of the problems.

To compare our approach with those in the literature (except the one proposed by da Silva and

Ochi (2016)), we take into account the same assumption: node one must be the extremity of a

path. This assumption stems from the fact that a tourist arrives at a specific city (node one) and

starts its trip by renting a vehicle.

3.1 CARS Formulation

In our formulation the orientation of a st-path of color k is represented by the arc from s to t with

color k. Then a solution with several colors consists of a union of undirected colored paths and by

a directed circuit composed of the orientations of the paths. Figure 1 represents a solution on 14

nodes with three colored paths: one with extremities 1 and 8, one with extremities 8 and 11, and

the last one with extremities 11 and 1. The first path is oriented from 1 to 8, the second from 8

to 11, and the last one from 11 to 1.
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Figure 1: An example of a solution of an instance of 14 nodes which uses three colors: red, blue
and black

The proposed formulation contains four types of variables. The binary variable xke equals one

when the edge e ∈ E belongs to the path having color k ∈ K. The binary variable yki,j equals

one when the solution contains a path of color k ∈ K that has i and j as extremities and that

is oriented from i to j, for all i 6= j ∈ V × V . The binary variable zki equals 1 if node i ∈ V is
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adjacent to an edge of color k ∈ K. The binary variable wk equals 1 if color k ∈ K is the only

color used in the solution. Therefore the CARS can be formulated as follows where δ(i) is the set

of edges of E incident to a node i ∈ V , E[S] is the set of edges having both extremities in a node

set S ⊆ V and xk(F ) =
∑

e∈F x
k
e for F ⊆ E.

(CARS) min
∑
k∈K

∑
e∈E

dkex
k
e +

∑
k∈K

∑
i6=j∈V

cki,jy
k
i,j +

∑
k∈K

ck1,1w
k (1)

s.t.
∑
k∈K

xk(δ(i)) = 2 i ∈ V (2)

∑
k∈K

xk(E[S]) ≤ |S| − 1 S ⊆ V, 2 ≤ |S| ≤ bn
2
c (3)

xk(δ(i)) +
∑

j∈V \{i}

(
ykj,i + yki,j

)
= 2zki k ∈ K, i ∈ V (4)

∑
i 6=j∈V

yki,j +
∑
`∈K

w` ≤ 1 k ∈ K (5)

xk(δ(1)) = zk1 + wk k ∈ K (6)∑
k∈K

∑
j∈V \{i}

yki,j −
∑
k∈K

∑
j∈V \{i}

ykj,i = 0 i ∈ V (7)

wk, xke , y
k
i,j , z

k
i ∈ {0, 1}

The objective function (1) minimizes the travel cost of the Hamiltonian circuit and the sum of

the rental costs. Equations (2) are the degree constraints that force the tour to visit each node

once. Constraints (3) are the well-known subtour elimination constraints stating that for each node

subset S ( V the number of edges in the solution having both extremities in S must be less than

|S|. By (4), if a node i is colored with k ∈ K (that is zki = 1) then it is incident to two edges of the

path of color k or it is one of its extremities. Inequalities (5) imply that there is at most one path

of each color if the solution contains several colors (i.e.,
∑

k∈K wk = 0) and if the solution contains

only one color (wk = 1 for some k ∈ K), its colored path is a circuit (i.e., yki,j = 0 for all i 6= j ∈ V ,

k ∈ K). Equation (6) specifies that node 1 is adjacent to two edges of a same color k ∈ K only if

k is the only color in the solution. Equations (7) are the flow conservation constraints associated

with variables y. Consider a binary point w̄, x̄, ȳ, z̄ satisfying constraints (2)-(7). By (2) and (3),

the set of edges satisfying
∑

k∈K x̄ke = 1 corresponds to a Hamiltonian circuit, say C. For a color

k ∈ K, let Sk be the set of nodes i ∈ V with z̄ki = 1, Ek be the set of edges e ∈ E with x̄ke = 1 and

Ak be the set of arcs (i, j) such that ȳki,j = 1. By (4), Ek ⊆ E[Sk] and i, j ∈ Sk for all (i, j) ∈ Ak.

Moreover, |Ek|+ |Ak| = |Sk|. If wk = 1 for some k ∈ K, then Ak = ∅ by (5) and Ek 6= ∅ by (6).

Since |Ek| = |Sk|, constraints (3) imply that Sk = V and the solution if a Hamiltonian circuit of

color k. Suppose now that wk = 0 for all k ∈ K. For each k ∈ K, Ek is not a Hamiltonian circuit

by (6). Hence, by (3), |Ek| ≤ |Sk| − 1. This implies that Ak = {(sk, tk)} and |Ek| = |Sk| − 1 by

(5). Constraints (2), (3) and (4) ensure that Ek is a sktk-path covering Sk which means that C is

a union of different colored paths. By (7), their orientation forms a directed Hamiltonian circuit,

proving the validity of the formulation.
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3.2 QCARS formulation

Recall that for this version of the CARS, some nodes may not be visited. Indeed, the model

determines the nodes to visit to reach the quota Q at the least cost. Thus, we modify the previous

model by introducing additional binary variables: the variable ui equals one if the node i ∈ V is

visited. To ensure that the collected profit reaches the quota, we consider the following constraint:∑
i∈V

qiui ≥ Q (8)

We also need to modify inequalities (2) and (3). Equations (2) are replaced by the following:∑
k∈K

xk(δ(i)) = 2ui i ∈ V (9)

These equations impose that the circuit formed by {e ∈ E :
∑

k∈K xke = 1} covers i if and only if

i is visited (i.e., ui = 1).

The colored paths may form a circuit that is not Hamiltonian but covers node 1 since some

of the other nodes may not be visited. Hence, inequalities (3) are no more valid. We must either

restrict inequalities (3) to node subsets not containing node 1 or replace these inequalities by the

following generalized subtour inequalities introduced by Wolsey (1998):

∑
k∈K

xk(E[S]) ≤
∑

j∈S\{i}

uj , S ⊆ V such that 1 /∈ S, i ∈ S. (10)

3.3 Strengthening the linear programming relaxations

In this section, we reinforce the linear relaxations of the CARS and QCARS formulations by

strengthening the lower and upper bounds of each variable zki with three inequalities. The efficiency

of these new inequalities is experimentally showed in Section 4.

The first family gives an upper bound on variables z by ensuring that a node i is adjacent to an

edge of color k (i.e., zki = 1) only if there exists a path or a circuit of color k (i.e.,
∑

u6=v∈V y
k
u,v +

wk = 1):

zki ≤
∑

u6=v∈V

yku,v + wk i ∈ V, k ∈ K (11)

Note that inequalities (5) imply that inequalities (11) dominate z ≤ 1.

The other two families of constraints give a lower bound on variables z. The second family

imposes that an edge e = ij is of color k (i.e., xke = 1) only if its extremities are incident to an

edge of color k (i.e., zki = 1 and zkj = 1).

xke ≤ zki i ∈ V, e ∈ δ(i), k ∈ K. (12)

The last family implies that a node i ∈ V \ {1} is the extremity of the path of color k (i.e.,∑
j∈V \{i}(yki,j + ykj,i) = 1) only if it is incident to an edge of color k (i.e., zki = 1).

wk +
∑

j∈V \{i}

(
yki,j + ykj,i

)
≤ zki i ∈ V \ {1}, k ∈ K. (13)
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Note that inequalities (13) are not defined for node 1 since it is redundant with respect to the

equation (4) associated with node 1 and equation (6).

3.4 Branch-and-cut algorithms

In the previous sections, we proposed integer linear formulations for the CARS and its quota

variant. Both formulations contain an exponential number of inequalities in order to prevent the

formation of subtours: the subtour elimination constraints (3) for the CARS and the generalized

subtour elimination constraints (10) for the QCARS. Note that the other constraints, even those

introduced in Section 3.3 for strengthening the linear relaxations, are in polynomial number. These

formulations cannot be directly solved outside very small instances due to this exponential number

of constraints. Hence, we solve these formulations using branch-and-cut algorithms where the

(generalized) subtour elimination constraints (3) and (10) are added in a lazy way.

CARS The formulation obtained by adding the strengthening inequalities of Section 3.3, but

removing the subtour elimination constraints (3), that is, the formulation given by inequalities (2),

(4)-(7), (11), (12) and (13) is solved using a branch-and-bound procedure. Each time an integer

solution is found, the algorithm checks whether it is feasible for the CARS, that is, whether it

satisfies all the subtour elimination constraints (3). If not, the integer point is discarded and a

constraint (3) violated by this point is added to the current linear relaxation.

This ckeck procedure, called separation problem associated with the subtour elimination cons-

traints, is performed in linear time using a breadth-first search. When subtours are encountered,

only the inequality associated with the smallest subtour is added to the current linear relaxation2.

QCARS The formulation solved using a branch-and-bound is given by inequalities (4)-(9), (11),

(12) and (13). An integer solution of this formulation is feasible for the QCARS if it satisfies all

the generalized subtour elimination constraints (10).

The separation problem associated with the generalized subtour elimination constraints is per-

formed in linear time using a breadth-first search. If the solution contains subtours, let S be the

smallest subset of nodes inducing a subtour and not containing node 1. In this case, the |S| violated

inequalities (10) associated with S are added to the current linear relaxation.

3.5 Variants

The formulations introduced below can be slightly modified to tackle different variants of the CARS

and QCARS.

Depot. The proposed formulations are based on the assumption that node one is the extremity

of a path or the starting node of the Hamiltonian circuit with only one color. However, this

assumption may be relaxed by modifying the cost ck1,1 to mini∈V c
k
i,i and by replacing constraints (6)

by inequalities (11). Indeed, the modification of the cost ensures that the associated rental cost is

2We tested the variant where instead of adding one inequality, we added the inequalities associated with all the
encountered subtours, but it is less efficient probably because many more constraints have to be handled at each
node.
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minimum when a solution contains only one color. Constraints (11) ensure that if color k ∈ K is

the only used color (i.e., wk = 1), no other color is used (i.e., z`i = 0 for all i ∈ V , ` ∈ K).

Remark that for the QCARS, node one must still be covered by the circuit.

Symmetric vs. asymmetric costs. Accordingly to the instances proposed in the literature, we

consider in this paper that the cost matrix c is asymmetric, whereas d is symmetric. However, the

proposed formulations can be adapted to all the other cases. If c is symmetric, the formulations

may be changed by only using variables yki,j with i < j and removing equations (7). If d is

asymmetric, one needs to consider directed variables xki,j and xkj,i for all ij ∈ E and k ∈ K and

add flow conservation constraints similar to (7) for the x variables.

Paths with the same color. In a solution to the CARS and QCARS, the paths have different

colors. This hypothesis is quite restrictive, and one may consider a variant where several paths

with the same color are allowed. This variant can be tackled by removing inequalities (5) and by

adding the following inequalities:

∑
i∈W

∑
j /∈W

(yki,j + ykj,i) ≤ xk(δ(W )) k ∈ K, ∅ 6= W ( V. (14)

and replacing (5) by

yki,j +
∑
`∈K

w` ≤ 1 k ∈ K, i 6= j ∈ V. (15)

Inequalities (14) impose that the number of paths of a color k ∈ K having one extremity in W

is no more than the number of edges of color k in the cut δ(W ), for every ∅ 6= W ( V . The validity

of these inequalities stems from the fact that the paths a the same color are disjoint since the union

of all the colored paths forms a Hamiltonian circuit. Note that the complexity of the separation

problem associated with inequalities (14) is unknown, but such a model may be solved within a

branch-and-cut algorithm by separating these inequalities in a lazy way (that is, for binary points

only).

4 Computational study

In this section, we present the computational results we obtain for the CARS and the QCARS

by using the branch-and-cut algorithms given in Section 3.4. We describe the instances of

the literature on which our algorithms have been applied and then, we discuss the experi-

mental results we obtain. The instances, the codes and the detailed results can be found in

https://doi.org/10.6084/m9.figshare.11959287.

Implementation details The branch-and-cut algorithms presented in Sections 3.4 were imple-

mented in C++, solved with Gurobi 8.01 with the default parameters, and executed on a MacPro

with 3.5 GHz 6-Core Intel Xeon E5 and 32 GB of RAM. The time limit for solving each instance

is of 10000 seconds, as proposed by Goldbarg et al. (2018).
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4.1 Instances

CARS We use the benchmark proposed in Goldbarg et al. (2018), which is composed of 100

different instances based on complete graphs, divided into two sets of 50 instances each: the

Euclidean instances and the non-Euclidean instances. These two sets differ by the way the distance

matrices dk, k ∈ K, are obtained.

The symmetric cost matrices dk are computed from an initial n× n symmetric matrix d̄. This

matrix d̄ stems from a TSP instance, or it is generated either by considering real distances between

some arbitrarily chosen cities or by taking random values.

In the Euclidean instances, d̄ is Euclidean and a positive integer Lk
i is randomly generated for

all i ∈ V and for all k ∈ K. The matrix dk, k ∈ K, is then given by dkij =
2Lk

i +3Lk
j

3 + d̄ij for all

i < j. In the non-Euclidean instances, for each k ∈ K, the matrix dk is given by dkij = ωk
ij d̄ij

for all i < j, where ωk
ij is a random value between [1.4, 2]. In all instances, the asymmetric cost

matrices ck are generated as follows. A positive integer αk
i is randomly chosen for all i ∈ V and

for all k ∈ K and cki,j = 6αk
i + 2αk

j for all i 6= j.

QCARS We use the benchmark proposed in Goldbarg et al. (2016). These instances are some

CARS instances adapted to the QCARS. For this, an integer weight qi is generated uniformly from

[0,100] for all i ∈ V and the quota is Q = 0.8
∑

i∈V qi. There are 34 Euclidean instances and 33

non-Euclidean.

4.2 Discussion of Results

In Tables 1-3, we compare the results we obtain with our algorithms with the best exact and

heuristic approaches of the literature3. All tables contain four sets of columns. The first one

describes the instances, and the second reports the results we obtain with our formulation. The

last two sets report the best results among the exact and heuristic approaches proposed in the

literature, respectively. The first set contains the instance name, the number of nodes |V |, and

the number of different colors |K|. For all methods, the column entitled “Sol.” reports the best

solution value found, and the column entitled “Time” denotes the computational time in seconds.

For exact methods, the column entitled “Gap”4 reports the percentage relative gap between the

upper and lower bounds. Column “Col.” indicates the number of colors in the best solution found

by our algorithm. Finally, we always report to which paper of the literature we refer to. When it

is clear since there is only one paper, we report it as a label over the set of columns. When there

are several of them, we add a column entitled “Model” for the exact approach or “Algo” for the

heuristic one.

Empty values for a row in any of the last two sets of columns indicate that we could not find

computational results for the instance with the corresponding approach. Note that for both CARS

and QCARS, there are many instances for which there are neither exact nor heuristic computational

results in the literature, to the best of our knowledge.

In all the tables solution values in bold font correspond to the best found solution.

3The comparisons about running times in Tables 1-3 give an order of magnitude, but it is not precise since the
algorithms run on different computers.

4The gap is computed as 100(best solution found - best lower bound)/best lower bound.
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4.2.1 CARS Results

We compare our CARS model with the best approaches found in the literature. For exact ap-

proaches, DFJ and GG refer to the formulations given in (Goldbarg et al., 2018) based on the

Dantzig-Fulkerson-Johnson’s and Gavish-Grave’s formulations for the TSP, respectively. Since in

their paper, the authors run experiments with both Cplex 12.6.3.0 and Gurobi 6.5.2 on a PC

with an Intel Core i7 3.45GHz x 8 and 32 Gb of RAM, we precise the solver by adding the let-

ter C (DFJ-C and GG-C) or G (DFJ-G and GG-G) when the result is obtained using Cplex or

Gurobi, respectively. Concerning the heuristics, TA and MA refer to the transgenetic heuristic

and memetic algorithm proposed by Goldbarg et al. (2013) and implemented on an Intel Xeon

QuadCore W3520 2.8 GHz, 8 GB RAM, running Scientific Linux 5.5 with 64 bits and coded in

C++. EALSP reports the result achieved by the evolutionary algorithm hybridized with an adap-

tive local search procedure presented in (da Silva and Ochi, 2016) on a notebook with i7 3630-QM

2.4 GHz processor, 8GB RAM and Windows 8.0 64-bits using CPLEX 12.6.1. Finally, ScS+ALSP

gives the result obtained with the scientific heuristic also hybridized with the adaptive local search

procedure proposed by Rios et al. (2017) and tested on a PC with an Intel Core i5-2450M, CPU

2.50GHz x4, 3.8 Gb of RAM which ran Ubuntu.

Table 1 reports the computational results for the CARS on Euclidean instances. Our approach

is able to solve to optimality all the instances except three. Moreover, 86% of the instances are

solved to optimality in less than a minute. Note that the proposed approach outperforms the best

exact ones by at least one order of magnitude of computational time. Moreover, it is competitive

with heuristics in terms of computational time. Our algorithm is outperformed by the heuristics

for only two instances. However, it improves the best known solution for five instances.

Table 2 reports the results obtained for the non-Euclidean instances for the CARS. Our algo-

rithm solves all the instances except the one with 300 nodes and five colors. Moreover, 79% of the

instances are solved to optimality in less than a minute. Note that our exact approach is in general

at least one order of magnitude faster than the algorithms proposed in the literature including the

heuristics. For 14 instances, our algorithm finds a solution better than the best solution reported

in the literature.

4.2.2 QCARS results

In tables 4 and 3 we compare our QCARS model with the exact formulation and the evolutionary

algorithm proposed in (Goldbarg et al., 2016). One instance presents inconsistencies (reported by I

in the table) in the solution (the heuristic finds a solution whose value is better than the optimum).

Table 4 summarizes the results obtained for the QCARS on the Euclidean instances. All instances

except one are solved in less than nine seconds. The latter one is solved in 182 seconds, but it

seems to be a hard instance since the model proposed in Goldbarg et al. (2016) finds a gap of

38.12% after 80000 seconds while for all the others the gap is less than 0.3%. Table 3 summarizes

the results obtained for the QCARS on the non-Euclidean instances. All instances are solved in

less than four seconds except one which is solved in less than eight seconds.

The proposed algorithm is really more efficient than the exact approach proposed in (Goldbarg

et al., 2016). Some instances that were unsolved in 80000 seconds are now solved within few

seconds. Moreover, our algorithm is faster than their heuristic approach. However, note that it
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CARS Exact Approaches Heuristic Approaches

Instance |V | |K| Sol. Gap Time K Sol. Gap Time Model Sol. Time Algo.

Mauritania10e 10 2 540 0 0.01 2 540 1 TA, MA

Colombia11e 11 2 620 0 0.01 2 620 1 TA, MA

Angola12e 12 2 719 0 0.01 2 719 1 TA, MA

Peru13e 13 2 672 0 0.02 2 672 1 TA, MA

BrasilRJ14e 14 2 294 0 0.02 2 294 0 0.41 DFJ- G 294 1 TA, MA

Libia14e 14 2 730 0 0.02 2 730 0 0.50 GG-G 730 1 TA, MA

Congo15e 15 2 756 0 0.02 2 756 0 2.50 GLPK 756 1 TA, MA

Argentina16e 16 2 955 0 0.05 2 955 0 0.81 DFJ-G 955 1 TA, MA

BrasilRN16e 16 2 375 0 0.02 2 375 0 31.8 GLPK 375 1 TA, MA

EUA17e 17 2 912 0 0.02 2 912 0 0.85 DFJ-G

Bolivia10e 10 3 592 0 0.03 3

AfricaSul11e 11 3 567 0 0.03 3

Niger12e 12 3 743 0 0.03 3

Mongolia13e 13 3 760 0 0.30 3

Indonesia14e 14 3 799 0 0.05 3 799 0 0.36 GG - G

Argelia15e 15 3 840 0 0.28 3 840 0 6.95 GG - G

India16e 16 3 1035 0 0.11 3 1035 0 1.00 GG - G

China17e 17 3 1003 0 0.39 3 1003 0 24.40 DFJ-C

BrasilPR25e 25 3 508 0 0.22 3 508 12 TA

BrasilAM26e 26 3 467 0 0.38 2 467 0 9.44 DFJ-G 467 13 TA

att48eA 48 3 34571 0 21.39 3 34571 0 198.70 GG-G 34571 14 TA

berlin52eA 52 3 8948 0 55.37 3 8948 0 4458.30 GG-G 8948 52 TA

Betim100e 100 3 1394 0 24.39 3 1394 247 TA

PortoVelho200e 200 3 2274 0 81.91 3 2312 3165 TA

Egito9e 9 4 644 0 0.06 4

Etiopia10e 10 4 631 0 0.03 3

Mali11e 11 4 645 0 0.07 2

Chade12e 12 4 840 0 0.08 3

Ira13e 13 4 764 0 0.12 3

Mexico14e 14 4 789 0 0.09 3 789 0 2.46 GG-G

Sudao15e 15 4 823 0 0.06 4 823 0 1.55 DFJ-G

Australia16e 16 4 1051 0 0.42 4 1051 0 44.14 GG-G

Canada17e 17 4 1251 0 0.16 4 1251 0 30.84 GG-C

BrasilMG30e 30 4 529 0 0.58 4 529 0 72.13 DFJ-G 529 26 TA

BrasilRS32e 32 4 491 0 1.46 2 491 24 TA

BrasilSP32e 32 4 588 0 8.74 4 588 27 TA

st70eB 70 4 1706 2.05 10000.00 4 1777 310 TA

eil76eB 76 4 1638 0 3650.13 4 1703 420 TA

rd100eB 100 4 10062 4.44 10000.10 3 9909 255 TA

Cuiaba200e 200 4 2214 0 95.63 4 2275 3039 TA

Belem300e 300 4 2963 0 683.83 4 2985 9649 TA

Arabia14e 14 5 851 0 0.06 5 851 0 1.93 DFJ-G

Cazaquistao15e 15 5 904 0 0.11 5 904 0 14.4 GG-C

Brasil16e 16 5 1136 0 0.46 5

Russia17e 17 5 1061 0 0.40 4 1061 0 51.20 DFJ-C

BrasilCO40e 40 5 668 0 2.03 5 668 51 TA

BrasilNO45e 45 5 829 0 2.47 5 829 30 TA

BrasilNE50e 50 5 756 0 1.57 5 756 35 TA

rat99eB 99 5 4157 35.65 10000.10 5 3042 309 TA

Vitoria100e 100 5 1354 0 15.69 5 1354 292 TA

Table 1: The CARS formulation tested on the Euclidean instances and compared with other
mathematical formulations and heuristic approaches of the literature.
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CARS Exact Approaches Heuristic Approaches

Instance |V | |K| Sol. Gap Time K Sol. Gap Time Model Sol. Time Algo.

Mauritania10n 10 2 571 0 0.01 2 571 1 TA, MA

Colombia11n 11 2 639 0 0.02 2 639 1 TA, MA

Angola12n 12 2 656 0 0.01 2 656 1 TA, MA

Peru13n 13 2 693 0 0.01 2 693 1 TA, MA

BrasilRJ14n 14 2 167 0 0.02 2 167 0 0.53 DFJ-G 167 0 MA

Libia14n 14 2 760 0 0.02 2 760 0 0.39 DFJ-C 760 1 TA, MA

Congo15n 15 2 886 0 0.02 2 886 1 TA, MA

Argentina16n 16 2 894 0 0.02 2 894 0 0.32 DFJ-C 894 1 TA, MA

BrasilRN16n 16 2 188 0 0.02 2 188 0.54 ScA, ScA+ALSP

EUA17n 17 2 822 0 0.02 2 822 0 0.88 DFJ-G

Bolivia10n 10 3 681 0 0.03 3

AfricaSul11n 11 3 714 0 0.06 3

Niger12n 12 3 869 0 0.09 3

Mongolia13n 13 3 740 0 0.06 3

Indonesia14n 14 3 796 0 0.08 3 796 0 1.48 DFJ-G

Argelia15n 15 3 863 0 0.12 3 863 0 6.53 DFJ-G

India16n 16 3 985 0 0.06 3 985 0 1.69 DFJ-G

China17n 17 3 918 0 0.10 3 918 0 11.99 DFJ-G

BrasilPR25n 25 3 226 0 0.26 3 226 9.54 ScA, ScA+ALSP

BrasilAM26n 26 3 202 0 0.18 2 202 0 6.17 DFJ-G 202 3.50 ScA, ScA+ALSP

att48nA 48 3 987 0 2.12 3 987 0 9695 DFJ-G 988 89.3 EALSP

berlin52nA 52 3 1303 0 2.03 3 1303 1.3 10000 DFJ-G 1303 120.6 EALSP

Londrina100n 100 3 1146 0 35.21 3 1146 738.0 EALSP

kroB150n 150 3 2839 0 103.63 3 2845 1200.0 EALSP

PortoVelho160n 160 3 1382 0 43.50 3

Aracaju200n 200 3 1836 0 236.72 3 1839 2400.0 EALSP

Egito9n 9 4 610 0 0.10 3

Etiopia10n 10 4 666 0 0.03 3

Mali11n 11 4 777 0 0.07 2

Chade12n 12 4 930 0 0.11 3

Ira13n 13 4 909 0 0.11 4

Mexico14n 14 4 902 0 0.20 3 902 0 58.93 DFJ-G

Sudao15n 15 4 1020 0 0.30 4 1020 0 19.48 DFJ-G

Australia16n 16 4 1061 0 0.07 3 1061 0 26.6 DFJ-G

Canada17n 17 4 1136 0 0.15 4 1136 0 12.42 DFJ-G

Canoas30n 30 4 376 0 0.43 3 376 24.6 TA

BrasilMG30n 30 4 271 0 0.54 4 271 0 652.54 DFJ-G 271 19.17 ScA, ScA+ALSP

BrasilRS32n 32 4 269 0 3.49 4 269 23.94 ScA, ScA+ALSP

BrasilSP32n 32 4 254 0 0.77 4 254 23.40 ScA, ScA+ALSP

st70nB 70 4 879 0 10.16 4 879 276.6 EALSP

w100nB 100 4 1615 0 73.80 4 1615 777.3 EALSP

rd100nB 100 4 1356 0 69.47 4 1357 834.0 EALSP

Osasco100n 100 4 964 0 18.12 4 964 666.0 EALSP

Cuiaba140n 140 4 1292 0 129.19 4 1505 441 TA

d198n 198 4 3024 0 503.75 4 3036 2400.0 EALSP

Arabia14n 14 5 1026 0 0.10 4 1026 0 29.38 DFJ-G

Cazaquistao15n 15 5 1043 0 0.07 3 1043 0 76.13 DFJ-C

Brasil16n 16 5 1164 0 0.29 4

Russia17n 17 5 1094 0 2.94 4 1094 0 116.77 DFJ-G

BrasilCO40n 40 5 574 0 3.29 5 575 50.4 ScA, ScA+ALSP

BrasilNO45n 45 5 539 0 2.26 5 541 62.37 ScA+ALSP

Santos50n 50 5 382 0 7.06 5 382 102.0 EALSP

BrasilNE50n 50 5 608 0 3.03 5 611 98.0 EALSP

Macapa80n 80 5 596 0 61.94 5 599 416.0 EALSP

rat99nB 99 5 1336 0 86.42 5 1349 873.3 EALSP

pr107n 107 5 1627 0 95.98 5 1631 1054.3 EALSP

ch130n 130 5 1630 0 75.91 5 1632 1200.0 EALSP

Teresina200n 200 5 1337 0 606.51 5 1343 2400.0 EALSP

Curitiba300n 300 5 NoInt NoInt 10000.80 2100 3600.0 EALSP

Table 2: The CARS formulation tested on the non-Euclidean instances and compared with other
mathematical formulations and heuristic approaches of the literature. NoInt: no feasible solution
was found within the time-limit.
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Goldbarg et al. (2016)

QCARS MILP Heuristic

Instance |V | |K| Sol. Gap Time Col. Sol. Gap Time Model Sol. Time

Mauritania10n 10 2 306 0.00 0.04 1

Colombia11n 11 2 461 0.00 0.07 2

Angola12n 12 2 409 0.00 0.05 1

Peru13n 13 2 502 0.00 0.11 2

Libia14n 14 2 504 0.00 0.16 1

BrasilRJ14n 14 2 101 0.00 0.14 2

Congo15n 15 2 573 0.00 0.15 2

Argentina16n 16 2 642 0.00 0.24 2

EUA17n 17 2 579 0.00 0.19 2

Bolivia10n 10 3 448 0.00 0.19 2 448 0.00 19 RLT 448 2.5

AfricaSul11n 11 3 537 0.00 0.34 3 537 0.00 4999 RLT 537 3.5

Niger12n 12 3 607 0.00 0.29 2 607 0.00 804 RLT 607 6.5

Mongolia13n 13 3 551 0.00 0.21 2 551 2.00 80000 Std 551 7.1

Indonesia14n 14 3 522 0.00 0.43 2 522 0.00 11616 RLT 522 5.9

Argelia15n 15 3 616 0.00 0.34 2 619 17.30 48859 Std 616 9.2

India16n 16 3 723 0.00 0.73 2 727 23.30 80000 RLT 723 9.4

China17n 17 3 638 0.00 0.61 3 651 20.10 62162 Std 638 8.3

BrasilAM26n 26 3 107 0.00 0.36 2 107 17.80 80000 Std 107 27.3

att48nA 48 3 524 0.00 7.88 3 579 24.00 80000 RLT 526 270.2

Egito9n 9 4 520 0.00 0.09 3

Etiopia10n 10 4 403 0.00 0.10 1 403 0.00 73 RLT 403 3.6

Mali11n 11 4 494 0.00 0.07 1 494 0.00 262 Std 494 5.9

Chade12n 12 4 649 0.00 0.29 2 654 10.40 69111 Std 649 6.1

Ira13n 13 4 693 0.00 0.95 3 697 20.90 54936 Std 625I 5.4

Mexico14n 14 4 610 0.00 0.51 2 620 18.70 61358 Std 610 5.5

Sudao15n 15 4 769 0.00 1.21 3 793 29.50 80000 Std 769 8.4

Australia16n 16 4 525 0.00 0.22 2 525 12.60 80000 RLT 525 8.5

Canada17n 17 4 824 0.00 0.39 3 827 23.80 77542 Std 824 13.0

BrasilMG30n 30 4 160 0.00 1.78 3 179 29.10 80000 RLT 160 36.3

Arabia14n 14 5 688 0.00 0.74 3 701 27.80 37832 Std 688 8.9

Cazaquistao15n 15 5 830 0.00 0.83 3 843 28.80 67421 Std 830 9.3

Brasil16n 16 5 742 0.00 1.52 2 743 26.90 32052 RLT 742 7.8

Russia17n 17 5 778 0.00 3.33 3 820 37.60 52468 Std 778 9.8

Table 3: The QCARS formulation compared on the non-Euclidean instances with the mathematical
formulations and heuristic approach of Goldbarg et al. (2016). I: incomparable solutions (probably
different instances with the same names).

is difficult to compare our running times with those of the literature since the algorithms have

been executed on different environments. In particular, the mathematical solver used in (Goldbarg

et al., 2016) is not competitive with the state of the art.

It is worth notice that the percentage of used colors by the QCARS solutions is around 55% of

the available ones, which is less than for the CARS instances. This result is probably due to the

fact that not all the nodes are chosen in the optimal solution.

4.2.3 Further Analysis of the Results

In Tables 5 and 6 we evaluate the impact of inequalities (11), (12), and (13) in our formulations

for the CARS and the QCARS, respectively. We have solved all the instances of the CARS and

the QCARS with every combination of these families of inequalities.

The first column of Tables 5 and 6 indicates whether the results are reported for Euclidean

instances (first eight lines marked with “E”) or non-Euclidean instances (last eight lines marked
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Goldbarg et al. (2016)

QCARS MILP Heuristic

Instance |V | |K| Sol. Gap Time Col. Sol. Gap Time Model Sol. Time

Mauritania10e 10 2 422 0.00 0.07 2

Colombia11e 11 2 326 0.00 0.06 1

Angola12e 12 2 490 0.00 0.11 1

Peru13e 13 2 556 0.00 0.34 2

Libia14e 14 2 521 0.00 0.11 2

BrasilRJ14e 14 2 230 0.00 0.43 2

Congo15e 15 2 513 0.00 0.10 2

BrasilRN16e 16 2 289 0.00 0.29 2

Argentina16e 16 2 719 0.00 0.43 2

EUA17e 17 2 602 0.00 0.15 2

Bolivia10e 10 3 384 0.00 0.06 3 384 0.00 1 RLT 384 3.2

AfricaSul11e 11 3 402 0.00 0.14 1 402 0.00 7 RLT 402 4.1

Niger12e 12 3 564 0.00 0.31 3 564 0.00 35 RLT 564 5.7

Mongolia13e 13 3 543 0.00 0.92 2 543 0.00 550 RLT 543 1

Indonesia14e 14 3 504 0.00 0.11 3 504 0.00 22 Std 504 6.5

Argelia15e 15 3 487 0.00 0.36 3 487 0.00 351 Std 487 6.3

India16e 16 3 705 0.00 0.18 2 705 0.00 30 RLT 705 8.4

China17e 17 3 728 0.00 0.76 2 735 3.70 80000 RLT 728 11.8

BrasilPR25e 25 3 328 0.00 4.06 1

BrasilAM26e 26 3 338 0.00 2.98 1 371 20.50 80000 Std 338 32.5

att48eA 48 3 19672 0.00 182.03 3 25234 38.12 80000 Std 19676 207

Etiopia10e 10 4 283 0.00 0.07 1 283 0.00 2 Std 283 2.9

Mali11e 11 4 428 0.00 0.16 1 428 0.00 8 RLT 428 4.7

Chade12e 12 4 655 0.00 0.39 3 655 0.00 861 Std 655 7.6

Ira13e 13 4 532 0.00 0.33 4 532 0.00 40 RLT 532 7.9

Mexico14e 14 4 492 0.00 0.49 2 492 0.00 144 Std 492 5.3

Sudao15e 15 4 422 0.00 0.21 2 422 0.00 33 RLT 422 4.4

Australia16e 16 4 682 0.00 0.18 4 682 0.00 453 Std 682 12.9

Canada17e 17 4 783 0.00 0.69 3 783 0.00 1599 Std 783 12.9

BrasilMG30e 30 4 368 0.00 8.81 1 412 31.30 80000 RLT 368 47.6

Arabia14e 14 5 482 0.00 0.27 4 482 0.00 48 RLT 482 4.8

Cazaquistao15e 15 5 574 0.00 0.57 5 574 0.00 823 RLT 574 9.32

Brasil16e 16 5 619 0.00 0.49 4 619 0.00 718 Std 637 7.9

Russia17e 17 5 750 0.00 1.78 3 760 10.40 80000 Std 750 12.3

Table 4: The QCARS formulation compared on the Euclidean instances with the mathematical
formulations and heuristic approach of Goldbarg et al. (2016).
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with “NE”). Thus, each line of the table shows the average results over the 50 instances for the

CARS and over 34 for the QCARS. The three following columns labeled with (11), (12), and (13)

are check-marked if the corresponding family of inequalities is considered in the model. Columns

entitled “Gap %”, “Nodes”, and “Time” (in seconds) are the average values of those retrieved at

the end of the branch-and-cut algorithm of the integer linear solver Gurobi. The “Lazy callbacks”

column reports the average number of subtour elimination constraints added to the model. The

“Root” column reports the average value of the continuous relaxations without subtour elimination

constraints. The column “Int. S. %”, gives the percentage of instances for which a feasible solution

could be found by the solver. Note that the instances for which the solver could not find an integer

solution within the time limit are not included in the computation of the gap. The last column

indicates the percentage of instances solved to optimality within the time limit. Bold values are

the best ones.

The results reported in Table 5 confirm the quality of the model without valid inequalities

presented in Section 3.1 which correspond to the rows of the table without check-marks. Indeed,

we are able to solve to optimality 88% of the instances, and the running time is around 1200

seconds for the Euclidean instances and 3000 seconds for the Non-Euclidean. However, when

inequalities (11), (12), and (13) are added for strengthening the model, the number of instances

solved to optimality increases up to 98 % and the computational time is almost divided by two

for the Euclidean instances and by 10 for the Non-Euclidean. These results show, experimentally,

the usefulness of these strengthening inequalities. More precisely, inequalities (11) have the most

significant impact, since alone, they are able to divide the computational time by at least 1.7 for the

Euclidean instances and around 10 times for the non-Euclidean instances. Similarly, the number

of nodes of the branch-and-cut tree is divided by 2 and by more than 300, respectively. Note that

for the Euclidean instances considering inequalities (11) and (13) to strengthen the model is the

best configuration since the computational time is the smallest, the number of instances solved to

optimality is the greatest and last, but not least, the solver is able to find at least a feasible solution

for all instances. The best configuration for the non-Euclidean instances is when the three families

of inequalities are added. Even if there is one instance in this configuration for which no feasible

solution is found, the running time is better than in any other configuration as well as the linear

relaxation. Remark that if inequalities (11) have the most significant impact, it is not this family

that increases the most the value of the linear relaxation. Indeed, inequalities (12) and (13) are the

families impacting the most the value of the linear relaxation for the Euclidean and non-Euclidean

instances, respectively. Finally, note that the number of added lazy violated subtour inequalities

behaves similarly to the number of nodes in the branch-and-cut tree. Without the three families

of valid inequalities, several instances could not be solved. There are ten instances where the

optimum cannot be found without the three families of valid inequalities in 10000 seconds. When

the valid inequalities enforce the model, nine out of ten are solved to optimality in less than 600

seconds. For example, the Euclidean instance Belem300e reaches the time limit without having

found a feasible solution when solved with the model without the strengthening inequalities, but

it is solved to optimality in ten minutes with them.

The results reported in Table 6 confirm that the model reported in Section 3.2 is useful for solv-

ing the QCARS, since it is able to solve to optimality 58 instances over 68 with an average running

time of 3000 seconds. Moreover, when inequalities (11), (12), and (13) are added for strengthening
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(11) (12) (13) Gap % Nodes Time (s) Lazy Root Int.S. % Opt. %

2.85 107412.75 1197.55 288.57 1768.14 98 88

X 0.87 49389.90 720.07 61.08 1780.89 100 94

X 2.65 62406.98 1188.95 214.75 1815.03 98 88

E X 2.88 87086.37 1087.69 325.24 1769.99 98 90

X X 2.06 22033.63 669.74 62.12 1824.37 98 94

X X 0.61 42084.73 641.45 57.29 1784.92 100 94

X X 2.59 66807.04 1190.99 240.16 1816.35 98 88

X X X 0.83 19491.90 679.54 52.94 1827.25 100 94

2.48 185144.19 2806.15 3328.72 864.98 98 72

X 3.45 2419.93 383.95 34.66 886.43 97 97

X 4.27 170367.47 2863.52 2505.97 869.98 97 72

NE X 5.75 170698.57 2788.13 3525.48 869.14 95 72

X X 1.72 1541.10 299.07 53.26 890.96 98 98

X X 1.72 763.76 213.58 32.05 897.31 98 98

X X 6.01 167289.74 2852.50 2537.47 873.90 95 72

X X X 1.72 542.69 209.91 30.17 901.21 98 98

Table 5: Performance of the CARS integer linear model enhanced by inequalities (11), (12), and
(13).

the model, the number of instances solved to optimality increases up 100%, the computational

time is divided by 500, and the number of nodes by 350. These results show, experimentally,

the usefulness of these strengthening inequalities. The results reported in Table 6 confirms the

importance of valid inequality (11) also for the QCARS instances. Indeed the computational time

for non-Euclidean instances is four orders of magnitudes higher when inequalities (11) are not in-

cluded. Notice that for the Euclidean instances, the combination of (11), (13) and (12) is the most

effective, while for non-Euclidean instances the most effective combination is of (11) with (13).

5 Conclusions

In this paper, we have proposed two integer linear programming formulations for the CARS and

the QCARS. We have reinforced these formulations using a polynomial number of inequalities and

have devised branch-and-cut algorithms for solving these formulations. The experimental results

show the effectiveness of our approach to solve these problems. We were able to solve to optimality

all the instances found in the literature but four, and our algorithms clearly outperform the existing

approaches. Moreover, the experimental results also show the usefulness of reinforcing the models.

The efficiency of our model and its strengthening inequalities deeply relies on the assumption that

there exists at most one path of each color in a solution. The variant without this assumption

seems far more difficult. However, it is more realistic from an application point of view, especially

in the rapid transit network design field, and deserves to be studied. A starting point could be to

evaluate the quality of the formulation we propose for this variant.
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