
Noname manuscript No.
(will be inserted by the editor)

Models for the single-vehicle preemptive pickup and

delivery problem

H. L. M. Kerivin · M. Lacroix ·

A. R. Mahjoub

Received: date / Accepted: date

Abstract In this paper, we study a variant of the well-known single-vehicle
pickup and delivery problem where the demands can be unloaded/reloaded at
any node. By proving new complexity results, we give the minimum informa-
tion which is necessary to represent feasible solutions. Using this, we present
integer linear programs for both the unitary and the general versions. We then
show that the associated linear relaxations are polynomial-time solvable and
present some computational results.

Keywords pickup and delivery · reloads · minimal representations ·
complexity · integer linear programs · separation problems

1 Introduction

The Single-vehicle Pickup and Delivery Problem (SPDP) is a well-studied
problem which consists of constructing a route for a limited-capacity vehicle in
order to satisfy transportation demands defined by paired pickup and delivery
locations, see Parragh et al. (2008); Berbeglia et al. (2007); Savelsberg and Sol
(1995) for surveys of the SPDP and close-related problems. In this paper, we
are interested in a variant of the SPDP where no time-windows are considered

H. L. M. Kerivin
LIMOS, CNRS UMR 6158, Université Blaise-Pascal - Clermont-Ferrand II,
Complexe Scientifique des Cézeaux, 63173 Aubière Cedex, France
E-mail: kerivin@clemson.edu
Present address: Department of Mathematical Sciences, Clemson University, O-326 Martin
Hall, Clemson, SC 29634, USA

A. R. Mahjoub · M. Lacroix
LIMOS, CNRS UMR 6158, Université Blaise-Pascal - Clermont-Ferrand II,
Complexe Scientifique des Cézeaux, 63173 Aubière Cedex, France
E-mail: {lacroix,mahjoub}@lamsade.dauphine.fr
Present address: Université Paris Dauphine, LAMSADE, CNRS UMR 7024, Place du
Maréchal de Lattre de Tassigny, 75775 PARIS Cedex 16, France

2

and reloads are allowed anywhere during the transportation of the demands
in order to get a better route for the vehicle. We will call this problem the
Single-vehicle Preemptive Pickup and Delivery Problem (SPPDP). Following
the graph terminology and notation in Schrijver (2002), the SPPDP can be
stated in terms of graphs as follows.

Let D = (V,A) be a simple and strongly connected digraph, hereafter
called the initial digraph. (Remark that D may not be complete.) Let v0 ∈ V
be a distinguished node corresponding to the depot. We also consider one
vehicle having a given transportation capacity Q ∈ R+, and a non-empty set
P of demands. Each demand p ∈ P is specified by an arc (op, dp), where
op ∈ V corresponds to its origin node and dp ∈ V \ {op} to its destination
node, and a volume qp ∈]0;Q]. The digraph Φ = (V, P) is called the demand
digraph. We suppose that a demand cannot be split and cannot go through the
same node more than once. This implies that any demand is carried on a path.
However, before reaching its destination node, a demand can be fully unloaded
at any node and then picked up later by the vehicle. This unloading/picking-
up process, called a reload, can be repeated several times and we consider
restrictions neither on the storage volume nor on the number of reloads at
any node. The vehicle closed walk starts at the depot and we suppose that
no arc can appear more than once in the vehicle closed walk. We associate
with each arc a ∈ A of the digraph a cost ca ∈ R+ which corresponds to
what must be paid by the vehicle to use this arc, and we consider no reload
costs. Hence, the SPPDP consists of finding the vehicle closed walk and the
demand paths so that the vehicle carries every demand from its origin node to
its destination node, the demand paths may contain some reloads, the vehicle
is never overloaded, and the cost of the vehicle closed walk is minimum.

The fact of considering reloads in the SPDP considerably modified the
structure of its solutions. First of all, even if the digraph is complete, any
node is incident to at most one demand, no demand is incident to the depot
and the cost function satisfies the triangle inequalities, the vehicle closed walk
is no more totally defined by its set of arcs. In fact, at any node where a reload
occurs, the vehicle has to go through this node at least twice, which implies
that the vehicle closed walk does not correspond to a circuit (that is, a closed
walk composed of nodes traversed exactly once) as it is the case for the SPDP.
Moreover, reloads make necessary to differentiate between the vehicle closed
walk and the demand paths, that is, a demand path may not coincide with
part of the vehicle closed walk. Furthermore, it is not possible to restrict the
set of nodes to the depot and the origin/destination nodes since reloads may
take place anywhere in the digraph.

Despite its additional complexity, it is worth considering the SPPDP be-
cause of the important savings that may be obtained with the reloads. The
following example illustrates this cost reduction between the SPDP and the
SPPDP. Consider the graph given in Figure 1 where each edge represents two
opposite arcs, the weights on the edges correspond to the costs associated with
the arcs, and the dashed arcs represent the three demands p1, p2 and p3. For
the sake of clarity, we have only depicted the arcs which allow us to present

3

optimal solutions even though the digraph we consider is complete. (The costs
of the non-depicted edges can be easily obtained by computing the shortest
paths between their extremities.) The volume of each demand is supposed to
be equal to the transportation capacity of the vehicle. An optimal solution to
the SPDP consists of passing by the nodes v0, v5, v7, v4, v6, v1, v3, v0 in that
order for a cost of 475. An optimal solution to the SPPDP is the ordered
sequence of nodes v0, v1, v3, v4, v5, v7, v5, v6, v0 in which a reload for demand
p2 occurs at node v5. The cost of this solution is 446 which corresponds to a
saving of more than 6%.

10

5151

p2

p3

5050

p1

1

v2

v5

v0

112100112

v1 v3

v4
v6

v7

50 50

1 1

Fig. 1 Example of savings thanks to reloads

Clearly, the SPPDP is NP-hard. Indeed, consider an instance of the SP-
PDP where the overall volume of demands is lower than the transportation
capacity of the vehicle, the digraph is complete, each node different from the
depot is the origin or the destination of exactly one demand and the costs are
positive, symetric and satisfy the triangle inequalities. Under these assump-
tions, it is straightforward to see that every optimal solution to the SPPDP
is such that no reloads occur and the vehicle closed walk corresponds to a
Hamiltonian circuit traversing the origin of every demand before its destina-
tion. This problem is nothing but the pickup and delivery traveling salesman
problem which has been shown to be NP-hard (Renaud et al. 2002).

In this paper, we are interested in integer linear programming formulations
for the SPPDP based on minimal representations of feasible solutions. In Sec-
tion 2, we give some literature overview. In Section 3, we first consider the
complexity of the demand-paths checking problem and show that this prob-
lem is NP-hard, which implies that the set of arcs associated with the demand
paths are necessary in minimal representations. We then look at the vehicle-
sequence checking problem, which permits to distinguish the unitary version

4

of the SPPDP (i.e., when the vehicle cannot carry more than one demand at
a time) from the general one. We actually prove that for the unitary case, the
order of the arcs of the vehicle closed walk can be removed from a minimal
representation, which is not the case in general. The obtained minimal repre-
sentations of the solutions are used in Sections 4 and 5 to give integer linear
programming formulations for the unitary and general versions of the SPPDP.
We also prove that the associated linear relaxations are polynomial-time solv-
able, and present some computational results. Finally, Section 6 gives some
concluding remarks.

The rest of this section is devoted to more graph definitions and notation.
Given a walk P = (a1, . . . , ak) and two distinct arcs ai, aj ∈ P with i < j, we
say that ai is traversed before aj in P and we write ai ≺P aj . We say that
a walk C respects a path P if for any arc a of P that belongs to C, the arcs
traversed before a in P are also traversed before a in C. Note that if C respects
P , two adjacent arcs of P are not necessarily adjacent in C, and an arc of P
may not appear in C. If C respects all the paths of a given set K, then C
respects K. (We remark that it is possible for two vertices to appear before
each other with respect to a path set K.) Furthermore, when a graph notation
is used without specifying as subscript the graph on which it is applied, it is
applied on the initial digraph D.

2 Literature overview

Even though reloads have already been considered in transportation problems
for a few years, no previous work seems to have specifically dealt with the SP-
PDP. In the literature, reloads are actually involved in more general problems
or particular cases of our problem.

The Preemptive Stacker Crane Problem (PSCP) (Atallah and Kosaraju
1988) is probably the closest problem to ours which has already been studied.
The main difference with the SPPDP lies in the fact that the vehicle cannot
carry more than one demand at a time. Some other minor differences exist: the
vehicle may pass several times per arc, and as the costs are symetric, the initial
graph is undirected. The PSCP can then be considered as a particular case
of the SPPDP. However, we are not aware of any integer linear programming
formulation dedicated to the PSCP. In fact, only few works have been pub-
lished on this problem. Atallah and Kosaraju (1988) study the problem when
the graph is a line or a circle. They develop an exact algorithm which runs in
O(k + n). Frederickson and Guan (1992) show that the PSCP is polynomial-
time solvable if the graph is a tree. They present two algorithms running in
O(k+ qn) and O(k+nlog(n)) where k denotes the number of demands, n the
number of nodes, and q is less than or equal to min{k, n} and corresponds to
the number of non-trivial components in a related digraph. A survey of the
complexity of this problem and other close ones can be found in Anily et al.

5

(2006).

Among the more general versions, we can first mention the Pickup and
Delivery Problem with Transfers (PDPT) (Cortés et al. 2005), the Pickup
and Delivery Problem with Time-Windows and Transshipments (PDPTWT)
(Mitrović-Minić and Laporte 2006) and the Pickup and Delivery Problem with
Reloads (RPDP) (Oertel 2000). These problems actually correspond to the
same one which is the pickup and delivery in which demands may be fully
unloaded and picked up later on certain specific nodes, called hubs. Moreover,
reloads may be transshipments since the vehicle unloading a demand may be
different from the one picking it up. The problem also differs from ours since
it takes into account time-windows constraints.

Mitrović-Minić and Laporte (2006) give a two-phase heuristic to approx-
imately solve the PDPTWT. They first construct an initial solution using
multi-start cheapest insertion procedure. The best solution is used as the ini-
tial one. This solution is then improved by successively removing and rein-
serting every demand. In both phases, a demand may be inserted with one
or no reload. This choice is made by considering all possible insertions and
choosing the best one. The insertion of a demand p carried from op to dp with
a reload at node v is represented by two demands having op, v as origins and
v, dp as destinations respectively. Time-windows of both demands are chosen
to ensure that p is carried within its time-window and the first part of the
demand path (corresponding to the path from op to v) is made before the
second one (from v to dp). The experimental results they obtain show that
allowing transshipments is very useful to reduce total travel distance.

To model the RPDP, Oertel (2000) creates an auxiliary graph by consider-
ing multiple copies per hub. In fact, every hub is split into two nodes for every
demand. This transformation ensures that every vehicle closed walk now cor-
responds to a circuit. Using this new graph, Oertel then gives a mixed-integer
formulation for the problem. He then solves this latter using a tabu-search
algorithm by reinserting every demand in the same way as in (Mitrović-Minić
and Laporte 2006). Instances with about seventy demands and a hub are solved
with this heuristic.

Cortés et al. (2005) also consider for the PDPT an auxiliary graph with
multiple copies per hub. The number of copies is equal to twice the maximum
number of times a vehicle can make a reload at a same node. (This limit is
arbitrary fixed by the user.) The given formulation is then an arc-node formu-
lation. They also present a solution method based on Benders decomposition.
This method is then applied to solve exactly instances up to six demands, two
vehicles and a hub.

We can also mention The Vehicle and Request Flow Network Design Prob-
lem (VRFNDP) (Grünert and Sebastian 2000) which arises in the context of
ground transportation problem for postal deliveries. In this problem, nodes
correspond to letter mail centers and demands to mail packages. Several vehi-
cles and tight time-windows constraints are considered. Moreover, each time a
vehicle reaches a node, the mail carried inside the vehicle has to be unloaded

6

for a sorting stage. Grünert and Sebastian (2000) consider a discrete model
based on time periods. They use a space-time graph by creating two nodes
(one for the pickup action and the other for the delivery one) for all physical
locations at each period. They give a mixed-integer linear programming for-
mulation which is based on two types of commodity flows: the vehicle and the
demands. They yet give neither solution method nor computational results for
this problem.

The splittable pickup and delivery problem with reloads (SPDPR) (Kerivin
et al. 2008) is an extension of the SPPDP when several vehicles are available
to carry the demands, transshipments are permitted and demands may be
carried on several paths. The authors give a model for the problem using a
space-time graph similar to the one given by Grünert and Sebastian (2000)
for the VRFNDP. They provide two mixed linear programming formulations
based on that model and develop a branch-and-cut algorithm for each formula-
tion. Instances with up to 10 vertices and 15 demands are solved to optimality.

As the SPPDP can be seen as a particular case of different more general
problems such as the SPPDP, the RPDP or the PDPT, the models and solu-
tion methods which have been developed for those problems could naturally
be used for the SPPDP. However, the models developed for the RPDP and
the PDPT take advantages of the small number of hubs in the graph. If such
approach is used for modeling the SPPDP, every node will have to be replaced
by multiple copies, leading to a very large auxiliary digraph. Similarly, since
there is no time-windows constraints and no time limit is given for the ve-
hicle closed walk duration, the space-time graph that one should construct
for modeling the SPPDP will be much bigger than the initial digraph. Con-
sequently, none of these approaches can be used for the SPPDP for devising
exact efficient algorithms. For this, it is necessary to devise models for the
SPPDP which are specifically adapted. This is primordial if a polyhedral ap-
proach is chosen to solve the problem. In fact, as mentioned by Queyranne
and Schulz (1994), “the success of this approach depends highly on the choice
of variables which is typically the first question addressed in formulating a
model”. The set of variables, considered in an integer linear programming
formulation, actually corresponds to a representation of some kind of infor-
mation which may induce several non-necessary feasible solutions. A tractable
representation must contain enough information to assert in polynomial time
whether or not a feasible solution can be obtained from it. A (inclusionwise)
minimal representation is a tractable one from which no information can be
removed without losing the polynomial tractability. A minimal representation
then always implies the minimum number of distinct solutions with respect
to the given manner a representation is transcribed into variables. Therefore,
dealing with this reduced number of possible solutions in a method based on
implicit enumeration (e.g., branch-and-bound, branch-and-cut) allows to limit
the combinatorial explosion.

7

3 Minimal representations of the solutions to the SPPDP

This section is devoted to the problem of determining minimal representations
of the solutions to the SPPDP. The common way of representing a solution
to a transportation problem consists of specifying the sequences of arcs of
the vehicle closed walk and the demand paths. Furthermore, it is well-known
that for the classical single-vehicle pickup and delivery problem, a solution
can be represented by only considering the set of arcs traversed by the vehi-
cle (Savelsberg and Sol 1995). This representation of a solution to the SPDP
is mainly based on the fact that every vertex is visited exactly once. This
property clearly does not hold for the SPPDP and then, such a representation
cannot be straightforwardly proved tractable in our case. Therefore, a natural
question to address is whether or not there exists a (minimal) representation
of the solutions to the SPPDP where some information on the vehicle closed
walk and the demand paths may be discarded.

Clearly, it is sufficient to represent any demand path by its set of arcs in-
stead of its sequence. Moreover, it is trivial that we cannot put aside the whole
information associated with the vehicle closed walk. Consequently, among the
possible representations we need to investigate, we consider the two defined
by the following decision problems. The first one, called Demand-Paths Check-
ing Problem (DPCP), consists of deciding if there exists a feasible solution to
the SPPDP when the only information we have is the sequence of arcs of the
vehicle closed walk. In the second problem, called Vehicle-Sequence Checking
Problem (VSCP), we are given the sets of arcs of the vehicle closed walk and
the demand paths, and we check whether there exists an order on all the arcs
of the vehicle closed walk which induces a feasible solution to the SPPDP.

For both checking problems, we consider the set of demands P we defined
in the introduction, and the arc set A′ ⊆ A of the vehicle closed walk. This
set clearly induces an Eulerian digraph D′ = (V ′, A′) where V ′ is the set of
vertices of V covered by A′. Since v0 is the starting (and ending) vertex of
the vehicle closed walk, it is obvious that v0 belongs to V ′. Moreover, as the
vehicle passes exactly once by every arc of A′, at most Q units of the demands
can be carried on any arc of A′.

3.1 The demand-paths checking problem

Given an Eulerian closed walk C ofD′, the DPCP seeks to answer the following
question. Does there exist a set K = {Kp : p ∈ P} of demand paths of D′ so
that for every demand p ∈ P , the arcs of the opdp-path Kp are traversed in the
same order as in C, and for every arc a ∈ A′, the whole demand volume carried
on a does not exceed the vehicle capacity Q? The DPCP is NP-complete as
shown in the following theorem. The proof is given in the appendix.

8

Theorem 1 The DPCP is NP-complete even for the unitary case, and if no
vertex of D′ appears more than twice in the Eulerian closed walk C and v0
appears only as the starting and ending vertex of C. ⊓⊔

As it can be seen, for the unitary case, the DPCP is nothing but an Arc-
Disjoint Path Problem (ADPP) where the demand paths must fulfill some
precedence constraints induced by C. The proof given in the appendix shows
that the precedence conditions can be ignored, leading to an ADPP by trans-
forming D′ to a specific acyclic digraph called Quasi-topological digraph. The
NP-completeness of the DPCP is then settled by proving that the ADPP re-
mains NP-complete in quasi-topological digraphs.

Theorem 1 implies that, in any tractable representation of a solution to
the SPPDP, no information relative to the arc sets of the demand paths can
be put aside. In the next subsection, we look at the VSCP which aims to
decide whether or not the order on the arc set of the vehicle closed walk can
be dropped in a tractable representation.

3.2 The vehicle-sequence checking problem

Given the demand path set K = {K1,K2, . . . ,Kp}, the VSCP consists of
determining whether or not there exists an Eulerian closed walk C of D′,
starting at v0, which traverses the arcs of D′ in the same order as in the
demand paths. The complexity of the VSCP has been previously stated in
Kerivin et al. (2010) where the VSCP is referred to as the so-called Eulerian
Closed Walk with Precedence Path Constraints Problem.

Theorem 2 (Kerivin et al. 2010) The VSCP is NP-complete. �

Kerivin et al. (2010) also present a polynomial-time algorithm to solve the
VSCP when the set K is composed of arc-disjoint paths. They give necessary
and sufficient conditions for the existence of a feasible solution in this case.
These conditions are based on the concept of impregnable Eulerian subgraphs
which can be defined as follows. Let D̃ = (Ṽ , Ã) be an Eulerian subgraph of
D′. A vertex v of Ṽ is called D̃-impregnable with respect to K if for every arc
a of δout

D̃
(v), there exists an arc a′ of δin

D̃
(v) so that

(i) a′ ≺Ki
a for some path Ki of K, if v = v0

(ii) either a′ ≺Ki
a for some path Ki of K or v is incident with no arc of A′ \Ã,

if v 6= v0.

The subgraph D̃ is then called impregnable if every vertex of D̃ is D̃-impreg-
nable. This new concept is the keystone of our argument towards the polyno-
mial-time solvable case. In fact, an impregnable Eulerian subgraph corresponds
to a component of the digraph D′ that cannot be traversed by the vehicle
according to the order on the arcs specified by the demand paths.

9

Theorem 3 Kerivin et al. (2010) The VSCP admits a feasible solution when
the set K is composed of arc-disjoint paths if and only if D′ does not con-
tain any impregnable Eulerian subgraph with respect to K. Moreover, checking
whether or not D′ contains an impregnable Eulerian subgraph can be done in
polynomial time. �

Theorem 3 can be used to deduce a particular case of the SPPDP for which
the VSCP can be solved in polynomial time. This particular case occurs when
the demand paths are arc-disjoint and corresponds to the unitary version of the
SPPDP, that is, when the vehicle can carry at most one demand at a time. It
follows that for the unitary SPPDP, the information relative to the order on the
arc set of the vehicle closed walk is not necessary in a tractable representation
of solutions to the SPPDP. It can be recovered in polynomial time from the
conditions of Theorem 3. However, for the SPPDP, this information has to
be taken into account in a tractable representation. These results provide the
structure of the remainder of the paper. In fact, the next section is devoted to
giving an integer linear programming formulation of the unitary SPPDP using
a minimum representation, whereas Section 5 focuses on the general case.

4 The unitary SPPDP

4.1 Formulation for the unitary SPPDP

We present in this section an integer linear programming formulation for the
unitary SPPDP. In this variant of the SPPDP, the vehicle can carry only
one demand at the same time. Since we have supposed that a demand trans-
portation cannot be split onto several paths, the unitary SPPDP occurs when
qp + qp

′

> Q for all distinct p and p′ of the set P of demands. An instance of
the unitary SPPDP then consists of an initial digraph D = (V,A), a specific
vertex v0 of V called the depot, and a demand digraph Φ = (V, P).

According to the developments of Section 3, a minimal representation of
solutions to the unitary SPPDP can be defined by only considering the sets
of arcs of the vehicle closed walk and demand paths. We then introduce the
following two sets of variables, the first one corresponding to the arcs of the de-
mand paths, and the second one representing which arcs belong to the vehicle
closed walk. Let x ∈ {0, 1}A×P be so that

xp
a =

{

1 if the demand p is carried on the arc a,
0 otherwise,

for all arcs a ∈ A and for all demands p ∈ P , and let y ∈ {0, 1}A be so that

ya =

{

1 if the vehicle traverses the arc a,
0 otherwise,

for all arcs a ∈ A. Let SU (D, v0, Φ) denote the set of vectors (x, y) asso-
ciated with the feasible solutions to the unitary SPPDP. A vector (x, y) of

10

SU (D, v0, Φ) satisfies the following inequalities

∑

a∈δout(W)

ya − ya′ ≥ 0 ∀ W ⊆ V with v0 ∈ W, ∀ a′ ∈ A[W], (1)

∑

a∈δout(v)

ya −
∑

a∈δin(v)

ya = 0 ∀ v ∈ V, (2)

∑

a∈δout(v)

xp
a −

∑

a∈δin(v)

xp
a = bpv ∀ p ∈ P, ∀ v ∈ V, (3)

∑

a∈δout(W)

xp
a −

∑

a∈δout(v)

xp
a ≥ 0

∀ p ∈ P, ∀ W ⊆ V with op, dp ∈ W,
∀ v ∈ W,

(4)

∑

a∈δout(v)

xp
a ≤ 1 ∀ p ∈ P, ∀ v ∈ V, (5)

ya −
∑

p∈P

xp
a ≥ 0 ∀ a ∈ A, (6)

where the number bpv defined by

bpv =

1 if v = op,
−1 if v = dp,
0 otherwise,

represents the supply/demand associated with vertex v ∈ V with respect
to demand p ∈ P . In fact, constraints (1) and (2) imply that the arc set
Ay = {a ∈ A : ya = 1}, corresponding to the vehicle closed walk, induces an
Eulerian digraph passing by v0. Constraints (1), hereafter called connectivity
constraints, actually ensure that v0 is incident with at least one arc of Ay and
that the induced digraph is weakly connected. Constraints (2) are the flow-
conservation constraints and enforce the number of arcs entering any vertex
to be equal to the number of arcs leaving this vertex. Constraints (3) are the
flow-conservation constraints associated with the demands. Constraints (4) are
the connectivity-demand inequalities and ensure that the set of arcs traversed
by any demand leads to a weakly connected digraph. The circuit constraints
(5) prevent the demands from passing more than once per vertex and then
garantee, with constraints (3) and (4), that every demand is carried on a path
from its origin to its destination. Constraints (6) are the capacity constraints.
They impose that at most one demand is carried at the same time on an arc
traversed by the vehicle.

Let S be the set of binary vectors (x, y) which satisfy (1)-(6). Theorem
3 implies that SU (D, v0, Φ) (S since constraints (1)-(6) do not prevent the
Eulerian digraph induced by Ay from containing an impregnable Eulerian
subgraph with respect to the demand paths associated with variables x. We
then need further inequalities to formulate the problem. In what follows, we
describe a new class of valid inequalities.

11

Proposition 1 Let W 6= ∅ be a proper vertex subset of V so that v0 ∈ W ,
AΦ[W] 6= ∅ and δΦ(W) = ∅. Then, the inequality

∑

a∈δout(W)

ya −
∑

p∈AΦ[W]

∑

a∈δout(W)

xp
a ≥ 1 (7)

is valid for the unitary SPPDP.

Proof Assume that we are given a feasible solution (x, y) to the unitary SPPDP
that violates an inequality of type (8), that is,

∑

a∈δout(W)

ya −
∑

p∈AΦ[W]

∑

a∈δout(W)

xp
a ≤ 0.

From the feasibility of (x, y), we know that ya − xa(AΦ[W]) ≥ 0 for all a ∈ A
and then, we deduce that ya = xa(AΦ[W]) for all a ∈ δout(W). Consequently,
on any arc a leaving W with ya = 1, the vehicle carries a demand having
both its origin and its destination in W . Since the depot v0 belongs to W
and AΦ[W] 6= ∅, this implies that there is no arc of δout(W) to first reach
the origin of a demand of AΦ[W]. Therefore, (x, y) could not be a vector of
SU (D, v0, Φ). ⊓⊔

Inequalities of type (7) will be called vulnerability constraints. In the follow-
ing, we introduce a weaker version of inequalities (7). Let W 6= ∅ be a proper
vertex subset of V so that v0 ∈ W , AΦ[W] 6= ∅ and δΦ(W) = ∅. Consider the
inequality

∑

a∈δout(W)

ya −
∑

p∈AΦ[W]

∑

a∈δout(W)

xp
a +M

∑

p∈AΦ[W]

∑

a∈δout(W)

xp
a ≥ 1, (8)

where M denotes a sufficiently large constant. It is not hard to see that in-
equality (8) is also valid for the unitary SPPDP. Indeed, every inequality (8)
associated with a vertex subset W is nothing but a linear combination of the
vulnerability constraint (7) associated with W and some trivial constraints
xp
a ≥ 0. The value M may be any non-negative value. Inequalities of type

(8) will be called relaxed vulnerability constraints. As it will be seen later,
inequalities (8) can be separated in polynomial time for specific values of M .

We now prove that the relaxed vulnerability constraints (8) are sufficient
to reduce the set S to SU (D, v0, Φ).

Proposition 2 Any binary vector of S satisfying constraints (8) induces a
feasible solution to the unitary SPPDP.

Proof Let (x, y) be a vector of S, Dy be the Eulerian digraph induced by
the arc set Ay of the vehicle closed walk, and K = {K1, . . . ,Kp} be the set
of demand paths induced by variables x. Due to the unitary property, the
paths of K are pairwise arc-disjoint. As previously mentioned, (x, y) induces
a feasible solution to the unitary SPPDP if and only if the Eulerian digraph

12

Dy does not contain an impregnable Eulerian subgraph with respect to K.
We then prove that the existence of an impregnable Eulerian subgraph, say
D′ = (V ′, A′), of Dy with respect to K implies that (x, y) violates a relaxed
vulnerability constraint (8).

Consider the vertex subsets V1 = {v ∈ V ′ : v = v0 or δDy
(v) \A′ 6= ∅} and

V2 = V ′ \ V1. Let W = V \ V2. We remark that v0 ∈ W and V2 is composed of
all the vertices of V ′ \ {v0} that are not incident with arcs of Ay \A

′. Clearly,
we have V1 ⊆ W and

δoutDy
(W) ⊆

⋃

v∈V1

δoutD′ (v). (9)

We claim that any demand that is carried on an arc of A′ has its origin
and its destination in V2. Consider a demand p ∈ P carried on the path
Kp = (a1, a2, . . . , aq) with q ≥ 1 so that at least one of the arcs of Kp belongs
to A′. Suppose that op 6∈ V2 and let aj , j ∈ {1, 2, . . . , q}, be the first arc of Kp

in A′. If j = 1, then it is obvious that op ∈ V1. Therefore, since the demand
paths are pairwise arc-disjoint, the arc a1 has no predecessor which means
that op is not D′-impregnable. If j ∈ {2, 3, . . . , q}, then the arc aj−1 = (u, v)
is in Ay \ A′ and v ∈ V1. Thus, the arc aj has no predecessor in A′ which
implies that v is not D′-impregnable. Using similar arguments, we can prove
that dp ∈ V2.

From the definition of impregnable Eulerian subgraphs, we know that D′

contains at least one arc which is traversed by a demand of P . The previous
claim directly implies that there exists at least one demand whose origin and
destination are in V2. Moreover, since vertices of V2 are only incident with
arcs of A′, there cannot exist a demand having exactly one extremity in V2.
As V2 = V \W , we also have AΦ[W] 6= ∅ and δΦ(W) = ∅.

Let K ′ be the path subset of K induced by the demands of AΦ[W]. The
vertex set V1 is thus composed of the vertices v of V ′ so that for every arc
a of δoutD′ (v), there exists an arc a′ of δinD′(v) with a′ ≺Ki

a for some path Ki

of K ′. From (9), we then obtain that ya − xa(AΦ[W]) = 0 for all arcs a of
δoutD (W). Furthermore, since the demand paths of K are pairwise arc-disjoint,
it is straightforward to see that xp

a = 0 for all arcs a of δoutD (W) and for all
demands p of AΦ[W]. Consequently, the vulnerability constraint (8) associated
with W is violated by (x, y). ⊓⊔

Using Propositions 1 and 2, we can now define the set of the feasible solu-
tions to the unitary SPPDP.

Theorem 4 The set {(x, y) ∈ {0, 1}A×P×{0, 1}A : (x, y) satisfies (1)−(6), (8)}
corresponds to the set SU (D, v0, Φ) of the feasible solutions to the unitary
SPPDP. �

The previous theorem allows to formulate the unitary SPPDP as the fol-
lowing integer linear program

min{cT y | (x, y) ∈ conv(SU (D, v0, Φ))},

hereafter denoted by PU .

13

We also point out that the connectivity constraints (1) are no more nec-
essary in the formulation PU if arc cost vector c is positive since the digraph
induced by Ay is weakly connected by (8). We are now interested in the com-
plexity of solving the linear relaxation of PU . Before stating it, we consider
the separation problem for inequalities (8). We then show that inequalities
(8) can be separated in polynomial time for any M ≥ maxa∈A,p∈P {

1
x
p
a
}. In

consequence, the value of M depends on the precision used for coding rational
values.

Proposition 3 Suppose that M ≥ maxa∈A,p∈P {
1
x
p
a
}. Let (x̄, ȳ) be a vector

of RA×P
+ × RA satisfying constraints (4) and (6). The separation problem for

the relaxed vulnerability constraints (8) with respect to (x̄, ȳ) can be solved in
polynomial time.

Proof We show that the separation problem associated with the relaxed vul-
nerability constraints reduces to a polynomial number of computations of min-
imum cut in an auxiliary digraph. Let D̂ = (V̂ , Â) be the digraph obtained
from D = (V,A) by contracting the vertices op and dp into a vertex vp for

every demand p ∈ P . Let ŵ ∈ RÂ be the vector associated with the arcs of
Â so that for all (u, v) ∈ Â, the value ŵ(u,v) corresponds to the sum of the
values ya − xa(P) associated with the arcs a ∈ A for which the contraction of
the vertices op and dp into vp for all p ∈ P transforms a into (u, v) in D̂.

For all demands p ∈ P , we denote by V p the vertices of the digraph covered
by the arc set {a ∈ A : xp

a > 0}. We then define, for every demand p ∈ P , the
arc set

Bp = {(vp, v) : v ∈ V p \ {op, dp}} .

Consider the digraph D̃ = (V̂ , Ã) obtained by adding the arcs of Bp in D̂

for all p ∈ P . We then have Ã = (∪p∈PB
p) ∪ Â. Let w̃ ∈ RÃ be the vector

associated with the arcs of D̃ so that

w̃a =

{

+∞ if a ∈ ∪p∈PB
p,

ŵa otherwise,
∀ a ∈ Ã.

Consider a demand of P , say p̄. We now show that a relaxed vulnerability
constraint (8) associated with a vertex subset W so that p̄ ∈ AΦ[W] is violated
if and only if there exists a v0v

p̄-cut whose weight is less than 1 in the digraph
D̃ with weights w̃.

Suppose that the vector (x̄, ȳ) violates the vulnerability constraint associ-
ated with a vertex subset W so that p̄ has both extremities in W . We then
have

∑

a∈δout(W)

ȳa −
∑

p∈AΦ[W]

∑

a∈δout(W)

x̄p
a +M

∑

p∈AΦ[W]

∑

a∈δout(W)

x̄p
a < 1.

Since x̄ is non-negative and due to the hypothesis made on the value of M ,
this means that, for every demand p ∈ AΦ[W], x̄p

a = 0 for all arcs a ∈ δout(W).
Let W ′ be the vertex subset obtained from W by contracting the origin op and

14

the destination dp into a vertex vp for every demand p ∈ P . It is clear that

v0 ∈ W ′ and vp̄ ∈ W
′
. Since δΦ(W) = ∅, by definition of ŵ, we have

ŵ(δout(W ′)) =
∑

a∈δout(W)

ȳa −
∑

p∈AΦ[W]

∑

a∈δout(W)

x̄p
a.

Consider a demand p of AΦ[W]. Since x̄ satisfies constraints (4), the digraph
induced by {a ∈ A : xp

a > 0} is weakly connected and no arc of this di-
graph belongs to δout(W). We then have V p ⊆ W . Consequently, there does
not exist an arc of Bp, p ∈ P , belonging to δout(W ′). We then deduce that
ŵ(δout(W ′)) = w̃(δout(W ′)) < 1. The cut associated with W ′ has a weight

less than 1 in the digraph D̃. Finally, as v0 ∈ W ′ and vp̄ ∈ W
′
, there exists

a v0v
p̄-cut whose weight is less than 1 in D̃ with weights w̃. The proof of the

converse is similar.
Looking for a violated vulnerability constraint associated with a vertex

subset W so that p̄ belongs to AΦ[W] then reduces to find a minimum v0v
p̄-

cut in D̃ with weights w̃. Since p̄ is any demand of P such that v0 /∈ {op, dp},
this means that the separation problem associated with the relaxed vulnera-
bility constraints (8) reduces to the computation of at most |P | minimum cuts
in the digraph D̃ with weights w̃. Moreover, as (x̄, ȳ) satisfies the capacity
constraints (6) and the weight vector w̃ is non-negative, the computation of
every minimum cut can be performed in polynomial time. Since the construc-
tion of D̃ from D can also be performed in polynomial time, it follows that
the separation problem associated with the relaxed vulnerability constraints
(8) is polynomial-time solvable. �

Theorem 5 The linear relaxation of PU can be solved in polynomial time.

Proof Since PU contains a polynomial number of variables, and constraints
(2),(3),(5),(6) appear in a polynomial number in PU , the complexity of solving
its linear relaxation only depends on the separation problems associated with
inequalities (1), (4) and (8) for any vector (x̄, ȳ) ∈ [0, 1]A×P× [0, 1]A satisfying
(2),(3),(5) and (6).

Separating (1) can be reduced to |A| minimum v0v
a′

-cuts, where va
′

is
the vertex obtained from the contraction of a′ and the arc weight function is
given by ȳ ≥ 0. The separation problem of constraints (4) associated with any
demand p ∈ P reduces to the computation of |V | vpv-minimum cuts, where vp

is the vertex obtained by contracting op and dp and v is any vertex of V \{vp},
the arc weight function being given by x̄ ≥ 0. Therefore, inequalities (1) and
(4) are polynomial-time separable.

Suppose now that (x̄, ȳ) satisfies constraints (4). Since (x̄, ȳ) also satisfies
inequalities (6) and x̄ ≥ 0, it follows, from Proposition 3, that the separation
problem for inequalities (8) can be also solved in polynomial time. ⊓⊔

From the previous results, it is clear that by replacing inequalities (8) by
inequalities (7) in the formulation PU of the unitary SPPDP given by The-
orem 4, one gets a strengthened formulation of the problem which might be

15

a stronger formulation for a cutting plane based algorithm. However, we do
not have an exact efficient algorithm for separating inequalities (7). We even
conjecture that the separation problem for these inequalities is NP-complete.
For this, we will use formulation PU in our branch-and-cut algorithm. How-
ever, we can remark that if a relaxed vulnerability constraint (8) associated
with a vertex subset W is violated by a vector (x, y) so that x is non-negative,
then, (x, y) also violates the vulnerability constraint (7) associated with W .
Therefore, during our branch-and-cut algorithm, once a violated relaxed vul-
nerability constraint (8), associated with a vertex subset W has been found
during the separation procedure, the constraint we add in the current lin-
ear program is the vulnerability constraint (7) associated with W in order to
strenghten the linear relaxation. In consequence, the big constant M does not
appear in the constraints during the algorithm. One can also remark that the
connectivity-demand inequalities (4) are not necessary in the formulation since
no cost is associated with the demands. However, they are necessary from an
optimization point of view in order to exactly solve the separation problem
associated with the relaxed vulnerability constraints (8).

In Lacroix (2009), it has been shown that, if the digraph D is complete,
the origins and destinations of the demands are distinct nodes of V \ {v0}
and the costs satisfy the triangle inequalities, allowing the vehicle to pass by
any arc more than once does not change the optimal value of the unitary
SPPDP. This result has an interesting application for the PSCP. Indeed, we
can suppose, without loss of generality, that any instance of the PSCP satisfies
the three previous assumptions. These latter can be fulfilled by considering
copies of nodes and by computing shortest paths between the two extremities
of each edge. Furthermore, as the vehicle may pass several times per edge in
the PSCP, we can replace each edge by two opposite arcs having the same cost
as the edge. Therefore, this instance is also an instance of the unitary SPPDP
and the only difference between these two problems is that the PSCP gives
the possibility for the vehicle to pass by every arc more than once whereas
the unitary SPPDP does not. However, the result given in Lacroix (2009)
implies that this possibility does not change the optimal value, which means
that we can restrict our attention to solutions in which every arc is traversed
by the vehicle at most once. Thus, the two problems are equivalent from an
optimization point of view and the formulation PU , devised for the unitary
SPPDP, is then valid for the PSCP providing, to the best of our knowledge,
the first one dedicated to this problem.

4.2 Experimental results

In this section, we present a branch-and-cut algorithm for the unitary SPPDP.
Our aim is to determine if the formulation PU has an interest from an opti-
mization point of view. For this, the algorithm does not consider constraints
in addition to the vulnerability constraints (7) and those belonging to PU .

16

Indeed, we think that an efficient branch-and-cut must be based on a deep
polyhedral study and such work is clearly beyond the scope of this paper. Fur-
thermore, as in the tested instances, arc costs are positive, we do not consider
the connectivity constraints (1) since these latter are not necessary.

To start the optimization, we consider the following program, called P0,
given by the inequalities of PU that appear in polynomial number, that is,

P0 = {min cT y | (x, y) ∈ [0, 1]A×P × [0, 1]A : (x, y) satisfies (2), (3), (5), (6)}.

An important task for the branch-and-cut algorithm is to determine whether
or not an optimal solution of the relaxation of PU is feasible. An optimal so-
lution (x̄, ȳ) is feasible for the unitary SPPDP if it is an integer vector that
satisfies the connectivity-demand constraints (4) and the relaxed vulnerability
constraints (8).

If an optimal solution (x̄, ȳ) of the linear relaxation is not feasible, the
branch-and-cut algorithm generates further valid inequalities that are violated
by (x̄, ȳ). The separation of valid inequalities is performed in the following
order:

– connectivity-demand inequalities,
– relaxed vulnerability inequalities.

We remark that all inequalities are global (i.e., valid in all the branch-and-cut
tree) and several constraints may be added at each iteration. Moreover, we go
to the next class of inequalities only if we do not find any violated inequalities
in the current class.

To separate the connectivity-demand inequalities, we use the algorithm
described in the proof of Theorem 5. We separate the relaxed vulnerability
constraints using the algorithm described in the proof of Proposition 3. We re-
mark that the algorithm separates inequalities (8) in an exact way because it is
performed only if no violated connectivity-demand constraint is found. More-
over, as noted before, each time a violated relaxed vulnerability constraint (8)
associated with a vertex subset W is found, we add the violated vulnerability
constraint (7) induced by W instead, in order to enforce the linear relaxation.

To store the generated inequalities, we created a pool whose size increases
dynamically. All the generated inequalities are put in the pool and are dy-
namic, i.e., they are removed from the current LP when they are not active.
We first separate inequalities from the pool. If all inequalities in the pool are
satisfied by the current LP-solution, we separate the classes of inequalities in
the order given above.

The branch-and-cut algorithm has been implemented in C++, using CBC
(Lougee-Heimer 2003) to manage the branch-and-cut tree, CLP (Lougee-Heimer
2003) as LP-solver and BGL (Siek et al. 2000) for the maximum-flow algorithm
used in the separation algorithms. It was tested on processor 2.5 GHz with 6
Gb RAM, running under Linux. We fixed the maximum CPU time limit to 2
hours.

Results are presented here for randomly generated instances. The initial
digraphs in the instances are complete digraphs with positive arc costs that

17

come from the asymetric instances of the TSP Library (Reinelt 1991). We
consider digraphs with up to 101 nodes. The origins and destinations of the
demands are randomly chosen so that each vertex different from the depot is
incident to at most one demand and no demand is incident to the depot.

In Table 1, the entries are :

– |V | : the number of nodes in the initial digraph,
– |P | : the number of demands,
– o/t : the number of instances solved to optimality over the number of tested

instances,
– NCD : the number of generated connectivity-demand inequalities,
– NV uln : the number of generated vulnerability inequalities,
– NT : the number of generated nodes in the branch-and-cut tree,
– Gap : the gap between the best upper bound and the lower bound obtained

at the root node before branching,
– TS : the time consumed in the separation algorithms in seconds,
– TT : the total time in seconds.

Table 1 summarizes results for the unitary SPPDP. Each line reports the
average results obtained for five instances, all of them having the same num-
ber of nodes and demands, and the same arc costs. The five instances only
differ by the origins and destinations of the demands. We remark that all the
instances except 6 could be solved to optimality within the time limit. Two
instances with 81 nodes and 15 and 25 demands respectively could not be
solved to optimality within two hours. Moreover, 4 instances with 101 nodes
and 10, 30, 35 and 35 demands respectively could neither be solved to op-
timality. The average number of generated connectivity-demand constraints
is very small. Except for instances with 81 nodes and 5 demands, no more
than 30 connectivity-demands constraints have been generated within the al-
gorithm. However, a significant number of vulnerability constraints have been
generated. We remark that the average gap between the best upper bound and
the lower bound obtained before branching is very small. In fact, it does not
exceed 1% for all the tested instances. Moreover, the number of nodes in the
branch-and-cut tree is very small. Except for the instances with 81 nodes and
5 demands and instances with 101 nodes and 35 demands, this number does
not exceed 6. We can also note that the time consumed for the separation of
inequalities (4) and (8) is rather small with respect to the number of generated
inequalities.

These experimental results show that the linear relaxation of PU is really
tight when every found violated relaxed vulnerability constraint (8) is replaced
by the vulnerability constraint (7) induced by the same vertex subset. Indeed,
we have a small number of nodes in the branch-and-cut tree and a small
value of the gap. Finally, many instances could be solved without branching.
However, the total time is quite long. We can remark, for example, that it needs
more than 4000 seconds in the average to solve instances with 101 vertices and
50 demands whereas the branch-and-cut tree only contains few nodes and the
number of generated constraints is 8 in the average. In fact, almost all the

18

|V | |P | o/t NCD NV uln NT Gap TS TT
31 5 5/5 0.00 20.00 0.00 0.00 0.02 0.44
31 10 5/5 0.00 15.60 0.60 0.01 0.03 1.13
31 15 5/5 0.00 9.20 2.40 0.15 0.08 2.21
41 5 5/5 12.00 55.60 5.60 0.01 0.12 5.71
41 10 5/5 30.60 125.80 0.00 0.00 0.99 71.30
41 15 5/5 2.40 52.00 0.20 0.00 0.51 34.22
41 20 5/5 0.00 4.20 0.60 0.00 0.09 8.89
51 5 5/5 0.00 20.80 0.00 0.00 0.07 2.05
51 10 5/5 0.00 11.40 0.60 0.00 0.11 6.55
51 15 5/5 0.00 97.40 2.20 0.02 1.12 27.94
51 20 5/5 0.00 33.60 2.40 0.15 0.79 41.60
51 25 5/5 0.00 4.40 0.00 0.00 0.25 36.30
61 5 5/5 0.00 43.40 0.00 0.00 0.32 7.97
61 10 5/5 0.00 19.20 0.00 0.00 0.21 14.68
61 15 5/5 0.00 205.00 0.20 0.00 4.05 161.83
61 20 5/5 0.00 14.80 0.60 0.00 0.60 59.28
61 25 5/5 0.00 44.20 2.00 0.00 2.06 170.57
61 30 5/5 0.00 5.00 0.40 0.00 0.38 127.52
71 5 5/5 0.00 1.40 0.00 0.25 0.00 0.55
71 10 5/5 0.00 9.60 0.80 0.00 0.10 86.87
71 15 5/5 0.00 10.60 0.00 0.04 0.30 32.50
71 20 5/5 0.00 4.20 1.20 0.05 0.22 417.93
71 25 5/5 0.00 5.80 0.80 0.11 0.24 274.82
71 30 5/5 0.00 13.00 1.00 0.06 1.23 686.09
71 35 5/5 0.00 8.20 0.40 0.02 0.86 259.59
81 5 5/5 123.00 1140.20 421.00 0.23 103.06 1769.63
81 10 5/5 0.00 121.80 0.40 0.00 2.65 176.96
81 15 4/5 0.00 276.00 0.00 0.42 18.75 1561.71
81 20 5/5 0.00 219.80 1.40 0.00 13.01 1458.39
81 25 4/5 0.00 112.20 1.20 0.92 7.66 1931.71
81 30 5/5 0.00 16.00 2.40 0.00 1.86 845.37
81 35 5/5 0.00 9.60 2.80 0.00 1.34 1149.23
81 40 5/5 0.00 13.40 1.80 0.00 2.99 1404.16
91 5 5/5 0.00 152.40 0.80 0.01 1.58 72.18
91 10 5/5 0.00 466.40 2.60 0.01 13.60 518.38
91 15 5/5 0.00 511.80 1.40 0.05 18.65 857.56
91 20 5/5 0.00 405.80 0.00 0.00 22.32 955.36
91 25 5/5 0.00 139.00 1.80 0.00 9.70 1030.19
91 30 5/5 0.00 307.60 1.60 0.00 24.77 2086.76
91 35 5/5 0.00 147.80 4.20 0.00 16.10 2015.45
91 40 5/5 0.00 26.40 4.00 0.00 5.48 2431.55
91 45 5/5 0.00 8.20 1.80 0.00 4.84 3130.44

101 5 5/5 0.00 2.20 0.20 0.00 0.01 2.35
101 10 4/5 15.20 88.40 0.40 0.15 1.88 1457.59
101 15 5/5 0.00 2.00 0.20 0.00 0.08 428.35
101 20 5/5 0.00 3.80 0.80 0.00 0.27 510.40
101 25 5/5 0.00 25.80 0.00 0.05 3.24 3823.82
101 30 4/5 0.00 1.40 0.20 0.04 0.11 3228.09
101 35 3/5 0.00 31.80 14.60 0.43 10.92 3563.17
101 40 5/5 0.00 21.60 0.60 0.00 3.54 2268.91
101 45 5/5 0.00 16.20 1.00 0.00 6.78 2857.48
101 50 5/5 0.00 8.00 1.20 0.00 4.82 4075.84

Table 1 Results obtained for the unitary SPPDP

19

time is spent in solving the initial linear program P0. Even if the number of
variables and constraints of P0 is polynomial, it becomes difficult to efficiently
solve it when the size of the instances increases.

5 The SPPDP

5.1 Formulation for the SPPDP

We now focus on the general version of the SPPDP, that is, the only assump-
tion we consider for the demand volumes is that each of them is smaller than
or equal to the vehicle transportation capacity. In Section 3, we showed that a
minimal representation of the solutions to the SPPDP consists of the sequence
of arcs of the vehicle closed walk and the arc sets associated with the demand
paths. For the unitary SPPDP, we presented in Section 4 an ILP formulation
only based on the sets of arcs for the vehicle closed walk and the demand
paths. In this section, we extend this formulation by adapting the inequali-
ties (1)-(6) to arbitrary demand volumes and transportation capacity, and by
adding some variables and constraints to order the arcs of the vehicle closed
walk, and then to obtain a sequence of arcs.

We still consider the variable sets x ∈ {0, 1}A×P and y ∈ {0, 1}A. Obvi-
ously, the constraints (1)-(5) remain valid whatever the demand volumes and
transportation capacity are. Furthermore, since we now consider the order on
the arcs traversed by the vehicle, we can easily check if the vehicle closed walk
traverses the arcs in the same order as in the demand paths. Thus, inequalities
similar to constraints (7) and (8) are no more necessary in the formulation.
Therefore, the only constraints that need to be adjusted are the capacity con-
straints (6) that are generalized to the following

Qya −
∑

p∈P

qpxp
a ≥ 0, (10)

for all a ∈ A.

We now focus on modeling the sequence of arcs of the vehicle closed walk.
A natural way to represent the order on this arc set is by considering the
following linear ordering variables (Queyranne and Schulz 1994)

ηaa′ =

{

1 if a precedes a′ in the vehicle closed walk,
0 otherwise,

for every pair of distinct arcs a, a′ ∈ A. Since the vector η defines a linear
order on the arcs traversed by the vehicle, that is, on the arc set Ay = {a ∈
A : ya = 1}, the variable set (y, η) can be seen as inducing a partial linear
order on A. This concept of partial linear order was first introduced by Sirdey

20

and Kerivin (2007). Therefore, (y, η) has to satisfy the following constraints

ya + ya′ − ηaa′ − ηa′a ≤ 1 ∀ a, a′ ∈ A, a 6= a′, (11)

ηaa′ + ηa′a − ya ≤ 0 ∀ a, a′ ∈ A a 6= a′, (12)

ηaa′ + ηa′a′′ − ηaa′′ − ya′ ≤ 0 ∀ a, a′, a′′ ∈ A, a 6= a′ 6= a′′ 6= a, (13)

which were given for the so-called partial linear ordering polytope (Sirdey and
Kerivin 2007).

At this point, the linear order defined by η may not correspond to a closed
walk. We then have to add new constraints to enforce an alternate sequence
of leaving and entering arcs at every vertex. Moreover, we also have to impose
that, for every vertex v ∈ V \ {v0} (vertex v0, respectively), the first arc
incident with it is an entering (leaving, respectively) arc. This can be achieved
by introducing the following equations

∑

a∈δout(v)\{a′}

ηaa′ −
∑

a∈δin(v)

ηaa′ + ya′ = 0 (14)

for all vertices v ∈ V \ {v0} and for all a′ ∈ δout(v). Similar constraints also
hold for the depot v0 as follows

∑

a∈δout(v0)\{a′}

ηaa′ −
∑

a∈δin(v0)

ηaa′ = 0, (15)

for all a′ ∈ δout(v0). Constraints (14) are called alternate constraints, whereas
constraints (15) are called depot alternate constraints. Constraints (14) express
the fact that the tail of an arc a ∈ Ay, if it is not v0, has been entered one
more time than left before a is considered in the sequence. In a similar way,
constraints (15) express the fact that the depot v0 has been entered as many
time as left before an arc leaving v0 is considered in the sequence. We remark
that constraints (14) and (15) are defined for leaving arcs. It is clear that
these constraints could then be replaced by similar inequalities that would be
defined for entering arcs (Lacroix 2009).

Let SCW denote the set of binary vectors (y, η) that induce closed walks
in D starting at v0. We have the following result

Proposition 4 The set SCW is given by

SCW = {(y, η) ∈ {0, 1}A×{0, 1}(
A
2) : (y, η) satisfies (2), (11)-(15)}.

Proof Consider a closed walk C of D starting at v0. Let (y, η) be the vector so
that ya = 1 if and only if a ∈ C and ηaa′ = 1 if and only if a appears before a′

in C. It is straightforward to see that (y, η) satisfies constraints (2),(11)-(15).
We now prove that a binary vector (y, η) that satisfies (2),(11)-(15), induces

a closed walk in D starting at v0. As previously mentioned, η corresponds to
a linear order on the arc set Ay. Constraints (14) imply that for every vertex
v ∈ V \ {v0}, the first arc in the order incident with it is an entering one. We
then deduce that the first arc of the linear order, say a1, leaves v0. Because of

21

constraints (14) and (15), the second arc in the order leaves the head of a1. By
repeating this argument, we clearly deduce that (y, η) corresponds to a walk
starting at v0. Moreover, since y satisfies constraints (2), this walk is then a
closed walk. This latter result ends the proof. ⊓⊔

We remark that the constraints (2) associated with the vertices v ∈ V \{v0}
are not necessary to describe the set SCW . The one associated with the depot
v0 only needs to be taken into account. Similarly, the constraints (1) do not
appear in the description of SCW since we now consider a linear order η on Ay.
In fact, this latter ensures that the digraph induced by Ay is weakly connected.

To obtain the set of the feasible solutions to the SPPDP, that we will
hereafter denote by SG(D, v0, Φ), we finally need to combine the closed walk
and the demand paths in such a way that the closed walk respects all the
demand paths. To do so, we introduce the demand precedence constraints

xp
a + xp

a′ − ηaa′ ≤ 1 (16)

for all p ∈ P , for all v ∈ V \ {op, dp}, for all a ∈ δin(v) and for all a′ ∈
δout(v). These inequalities allow every demand p to be carried from a vertex
v ∈ V \ {op, dp} through a leaving arc a′ ∈ δout(v) if and only if the arc
a ∈ δin(v) used for the transportation of the demand appears before a′ in
the closed walk. Clearly, inequalities (16) are valid for the SPPDP. Moreover,
from constraints (5), the demands are carried on paths, that is, they can go
through every vertex at most once. Therefore, constraints (16) suffice to ensure
that the closed walk respects all the demand paths. We can now define the set
SG(D, v0, Φ) of the binary vectors (x, y, η) associated with the feasible solutions
to the general SPPDP. We remark that the connectivity-demand inequalities
(4) are not necessary in the formulation since constraints (16) already ensure
that the set of arcs traversed by each demand corresponds to a walk. We then
remove these inequalities in the formulation of the general case. Using all the
previous results, a description of SG(D, v0, Φ) is given by the next theorem

Theorem 6 The set SG(D, v0, Φ) of the feasible solutions to the SPPDP is

{(x, y, η) ∈ {0, 1}A×P × {0, 1}A×{0, 1}(
A
2) : (x, y, η) satisfies (2), (3), (5), (10),

(11)-(16)}. �

Using the previous theorem, we can now formulate the general SPPDP as
the following integer linear program PG

min{cT y | (x, y, η) ∈ conv(SG(D, v0, Φ))}.

The formulation PG contains a polynomial number of variables and constraints
which leads to the following theorem

Theorem 7 The linear relaxation of PG can be solved in polynomial time. �

22

5.2 Experimental results

In this section, we present the experimental results obtained by solving the SP-
PDP using a branch-and-bound algorithm. Since the formulation PG contains
a polynomial number of variables and constraints, we entirely put the formu-
lation in the commercial interactive solver CPLEX 11.2 (Ilog, Inc. 2003). The
algorithm was tested on processor 2.5 GHz with 6 Gb RAM, running under
Linux. We fixed the maximum CPU time to 3 hours.

Results are presented for randomly generated instances. In these instances,
the density of the initial digraph, which is the ratio of the number of arcs over
the number of nodes, is a parameter of the instances. The digraphs are obtained
from random graphs, generated using RUDY (Rinaldi 1996), by replacing each
edge by two opposite arcs having the same cost as the edge. The origin, desti-
nation and volume of each demand are randomly chosen. The capacity of the
vehicle is a random number that is greater than or equal to the volume of each
demand.

Table 2 reports the running CPU time necessary to solve the instances
with the branch-and-bound algorithm and the gap between the best lower and
upper bounds. The entries of Table 2 different from those of Table 1 are the
following:

– dens : the density in percentage of the initial digraph. It is a scalar in the
interval [0,100]. The number of arcs of the digraph is given by the closest
integer to n ∗ (n− 1) ∗ dens/100,

– Gap2 : the gap between the best upper bound and the best lower bound,

We remark that for instances with less than 10 nodes, each instance could
be solved to optimality within the time limit. Also, instances of 10 (11, 13,
respectively) nodes and a density of 40 (30, 20, respectively) could be solved to
optimality. However, many instances could not be solved to optimality within
the time limit, in particular those with at least 12 nodes, a number of demands
greater than or equal to 5 and a density greater than or equal to 30. Moreover,
the algorithm could not find any feasible solution for some instances, as it is
the case for instances with 12 nodes and a density 40. Finally, we remark
that the gap between the best lower and upper bounds when the instances
are not solved to optimality is quite big. This can be explained by the fact
that, although the formulation PG contains a polynomial number of binary
variables and constraints, these numbers fastly grow with respect to the size
of the instance. These results show the necessity of devising an algorithm
dedicated to the SPPDP taking into account the specificities of the formulation
PG. For instance, although the transity constraints (13) are in polynomial
number, it would be more appropriate to not add all of them in the initial linear
relaxation in order to not uselessly increase the size of the linear program.
Moreover, further valid inequalities are necessary in order to strenghten the
linear relaxation. For this, a deep investigation of the polyhedral structure of
the problem is necessary.

23

|V | dens |P | Gap2 TT
7 40 3 0.00 0.08
7 40 5 0.00 1.83
7 50 3 0.00 24.20
7 50 5 0.00 23.21
8 40 3 0.00 0.38
8 40 5 0.00 0.79
8 50 3 0.00 66.85
8 50 5 0.00 36.93
9 40 3 0.00 0.39
9 40 5 0.00 1.49
9 50 3 0.00 26.06
9 50 5 0.00 5365.54

10 40 3 0.00 7152.56
10 40 5 0.00 10800.00
10 50 3 41.34 10800.00
10 50 5 32.90 10800.00
11 30 3 0.00 735.68
11 30 5 0.00 3620.89
11 30 7 0.00 2855.30
11 40 3 14.32 10800.00
11 40 5 13.68 10800.00
12 30 3 0.00 5961.10
12 30 5 8.42 10800.00
12 30 7 47.25 10800.00
12 40 3 0.00 5961.10
12 40 5 - 10800.00
12 40 7 - 10800.00
13 20 3 0.00 2370.24
13 20 5 0.00 1564.48
13 20 7 0.00 2456.15
14 20 3 0.00 3.71
14 20 5 0.00 817.24
14 20 7 18.27 10800.00
14 20 10 18.24 10800.00

Table 2 Results obtained for the SPPDP

6 Concluding remarks

In this paper, we have introduced a new NP-hard problem which is an exten-
sion of the single-vehicle pickup and delivery problem where every demand can
be carried using reloads. Based on some new complexity results, we have de-
fined the minimal representations of the solutions to this problem for both the
unitary and the general cases. We have then focused on the unitary SPPDP
since we have proven that, in this case, only the arc sets associated with the
vehicle closed walk and the demand paths are necessary to fully represent the
feasible solutions. We have thus given an integer linear programming formula-
tion whose linear relaxation is polynomial-time solvable and we have presented
some experimental results obtained using a branch-and-cut algorithm. We have
also pointed out that this formulation is also valid for the preemptive stacker
crane problem for which, to the best of our knowledge, there did not exist

24

a dedicated formulation yet. Next, we have extended this formulation to the
general SPPDP by considering variables representing a linear order on the arcs
of the vehicle closed walk. Once again, we have obtained a polynomial-time
solvable linear relaxation. We have finally reported some experimental results
obtained by solving the formulation with a branch-and-bound algorithm.

The results obtained for the unitary SPPDP show the interest of the for-
mulation given in this paper. Indeed, we could see that almost all instances
were solved to optimality without branching. In all cases, the gap between
the best upper bound and the lower bound obtained before branching is very
small, so as the number of nodes in the branch-and-bound tree. However, the
major weakness of our algorithm is the time spent for solving the initial lin-
ear relaxation. A way to bypass this problem is to decrease the size of the
initial linear relaxation. As we can see, our formulation describes the demand
paths using an arc-node approach. It would really be interesting to use a path
formulation instead. The approach would use an exponential number of vari-
ables for the demand paths in the formulation but it could be solved using a
branch-and-cut-and-price algorithm.

Moreover, in order to better understand the structure of the solutions of
the unitary SPPDP and improve its resolution, it would be of big interest to
study the polytope of the solutions of this problem. This study would also
allow us to identify facet defining inequalities that may strengthen the linear
relaxation and speed up the resolution of the problem.

The results obtained for the SPPDP also indicate that a deep study is
necessary to obtain an efficient branch-and-cut algorithm for this problem.
These investigations form the guidelines of our future work.

Acknowledgements We would like to thank the anonymous referees for their valuable
comments that permitted us to considerably improve the paper.

References

Anily S, Gendreau M, Laporte G (2006) The preemptive swapping problem on a tree.
preprint

Atallah M, Kosaraju S (1988) Efficient Solutions to Some Transportation Problems with
Applications to Minimizing Robot Arm Travel. SIAM Journal on Computing 17:849–
869

Berbeglia G, Cordeau J, Gribkovskaia I, Laporte G (2007) Static pickup and delivery prob-
lems: a classification scheme and survey. TOP 15(1):1–31

Cortés C E, Matamala M, Contardo C (2005) The Pickup and Delivery Problem with Trans-
fers: Formulation and Solution Approaches. In: VII French - Latin American Congress
on Applied Mathematics, Springer

Frederickson G, Guan D (1992) Preemptive Ensemble Motion Planning on a Tree. SIAM
Journal on Computing 21:1130–1152

Grünert T, Sebastian H (2000) Planning models for long-haul operations of postal and
express shipment companies. European Journal of Operational Research 122(2):289–
309

Ilog, Inc (2003) Solver cplex. http://www.ilog.fr/products/cplex/

25

Kerivin H L M, Lacroix M, Mahjoub A R, Quilliot A (2008) The splittable pickup and
delivery problem with reloads. European Journal of Industrial Engineering 2(2):112–
133

Kerivin H L M, Lacroix M, Mahjoub A R (2010) On the complexity of the Eulerian closed
walk with precedence path constraints problem. Electronic Notes on Discrete Mathe-
matics (36):899–906

Lacroix M (2009) Le problème de ramassage et livraison préemptif : complexité, modèles et
polyèdres. PhD thesis, Université Blaise-Pascal, Clermont-II, France

Lougee-Heimer R (2003) The common optimization interface for operations research. IBM
Journal of Research and Development 47(1):57–66

Mitrović-Minić S, Laporte G (2006) The pickup and delivery problem with time windows
and transshipment. INFOR 44:217–227

Oertel P (2000) Routing with Reloads. Doktorarbeit, Universität zu Köln
Parragh S, Doerner K, Hartl R (2008) A survey on pickup and delivery problems. Journal

für Betriebswirtschaft 58(1):21–51
Queyranne M, Schulz A (1994) Polyhedral approaches to machine scheduling. Tech. rep.
Reinelt G (1991) TSPLIB - A Traveling Salesman Problem Library. ORSA Journal on

Computing 3(4):376–384
Renaud J, Boctor F F, Laporte G (2002) Perturbation heuristics for the pickup and delivery

traveling salesman problem. Computers & Operations Research 29:1129–1141
Rinaldi G (1996) RUDY: a generator for random graphs. http://www-user.tu- chem-

nitz.de/ helmberg/sdp software.html
Savelsberg M W P, Sol M (1995) The general pickup and delivery problem. Transportation

Science 29(1):17–29
Schrijver A (2002) Combinatorial Optimization: Polyhedra and Efficiency. Springer
Siek J, Lee L, Lumsdaine A (2000) Boost graph library. http://www.boost.org/libs/graph/
Sirdey R, Kerivin H L M (2007) Polyhedral combinatorics of a resource-constrained ordering

problem part I: on the partial linear ordering polytope. Tech. rep., PE/BSC/INF/017912
V01

Vygen J (1995) NP-completeness of some edge-disjoint paths problems. Discrete Applied
Mathematics 61(1):83–90

Appendix

Proof of Theorem 1 : We prove the NP-completeness of the DPCP by
reducing the so-called arc-disjoint paths in quasi-topological digraph problem
to it. Before stating precisely this new NP-complete problem, we introduce
what a quasi-topological digraph is. Let G = (VG, AG) be a simple acyclic
digraph with vertex set VG = {v1, v2, . . . , vn}. We suppose that the digraph G
contains a Hamiltonian path whose arcs are those of the set AH = {(vi, vi+1) :
i = 1, 2, . . . , n − 1}. The arcs of AJ = AG \ AH are called jump arcs. We
remark that since G is simple and acyclic, any arc of AJ is of the form (vi, vj)
with 1 ≤ i < j ≤ n and j − i > 1. The digraph G then is quasi-topological
if all the indegrees and outdegrees are bounded by two, and every vertex is
incident with at most three arcs. Due to the definition of G, any vertex of VG

is incident with at most one jump arc. Let S = {(si, ti) : i = 1, 2, . . . , k} be
a set of pairs of distinct vertices of G so that every vertex of G belongs to
at most one pair, degin(si) ≤ 1 and degout(ti) ≤ 1 for all i = 1, . . . , k. The
arc-disjoint paths in Quasi-Topological Digraph Problem (QTDP) consists of
checking whether there exist k arc-disjoint paths L1, L2, . . . , Lk so that Li is

26

a siti-path of G for i = 1, 2, . . . , k. In the following claim, we prove that the
QTDP is NP-complete.

Claim The arc-disjoint paths in quasi-topological digraph problem is NP-
complete.

Proof We prove the NP-completeness of the QTDP by a reduction from the so-
called arc-disjoint paths in acyclic digraph problem. This latter can be stated
as follows. The arc-disjoint paths in Acyclic Digraph Problem (ADP) consists,
given an acyclic digraph G′ = (VG′ , AG′) and a set S′ of k′ pairs of distinct
vertices (s′i, t

′
i), of checking if there exist k arc-disjoint paths L′

1, L
′
2, . . . , L

′
k′ so

that L′
i is a s′it

′
i-path of G′ for all i = 1, . . . , k′. This problem is known to be

NP-complete (Vygen 1995). An example of an instance of the ADP is depicted
in Figure 2, where the information relative to S′ is enclosed in parentheses.

v3(s
′

2) v4

v5

v6

v1

v8(t
′

2)v7(t
′

1)

v2(s
′

1)

Fig. 2 An instance of the ADP

First, for i = 1, 2, . . . , k′, we create two new vertices si and ti and two
new arcs (si, s

′
i) and (t′i, ti). Let S = {(si, ti) : i = 1, 2, . . . , k′}. Notice that no

vertex belongs to two pairs of S, which might not be the case with S′. Consider
the graph G∗ = (VG∗ , AG∗) where VG∗ = VG′ ∪ {si, ti : i = 1, 2, . . . , k′} and
AG∗ = AG′ ∪ {(si, s

′
i), (t

′
i, ti) : i = 1, 2, . . . , k′}. Since G∗ is acyclic, we can

compute a topological order T of G∗. Moreover, T is choosen in such a way
that vertex s′i (ti, respectively) directly follows si (t

′
i, respectively) in T for all

i = 1, 2, . . . , k′. Let Ã be the set of arcs (u, v) so that v is immediately after
u in T and the arc (u, v) does not belong to AG∗ . It is straightforward to see
that the digraph G̃ induced by AG̃ = AG∗ ∪ Ã contains a Hamiltonian path
traversing the vertices of VG∗ in the same order as in T . We denote by A′

H

the arcs of the Hamiltonian path. The graph obtained from the one of Figure
2 by the foregoing construction is given in Figure 3, where the dashed arcs
represent the arc set Ã.

At this point, the digraph G̃ may not be quasi-topological since the degree
conditions may not be satisfied or it may contain multiple arcs. Let Ṽ be the
subset of vertices v of VG∗ so that either rv = degin

G̃
(v) > 2, sv = degout

G̃
(v) > 2,

27

v1 v4 v5s2 v6s1 s
′

2
t
′

1
t2t1 t

′

2
s
′

1

Fig. 3 Digraph G̃

or dv = degG̃(v) > 3. Ṽ does not contain any vertex of a couple of S since we

have degin
G̃
(v) ≤ 1 and degout

G̃
(v) ≤ 1 for all v ∈ {si, ti : i = 1, 2, . . . , k′}. Let

v be a vertex of Ṽ . The entering (leaving, respectively) arcs of v are ordered
in such a way that if there exists an arc of A′

H in δin(v) (δin(v), respectively),
then it is the first (last, respectively) arc in the order. We consider zv =
rv(sv + 1) + sv(rv + 1) new vertices v1, v2, . . . , vzv . We then replace in G̃ the
vertex v by the path ((v1, v2), (v2, v3), . . . , (vzv−1, vzv)) in the following way:
the ith arc of δin

G̃
(v) has vi(sv+1)−sv as its head for i = 1, 2, . . . , rv; the i

th arc of

δout
G̃

(v) has vrv(sv+1)+i(rv+1) as its tail for i = 1, 2, . . . , sv. For i = 1, 2, . . . , rv,

we denote by Iiv the sequence of the (sv + 1) consecutive vertices starting
from vi(sv+1)−sv (corresponding to the head of the ith arc entering v in G̃).
Similarly, we define the set Oi

v of vertices by considering the (rv+1) consecutive
vertices finishing by vrv(sv+1)+i(rv+1) for i = 1, 2, . . . , sv. Furthermore if sv 6= 0
and rv 6= 0, we also add the arcs (vi(sv+1)+j+1, vrv(sv+1)+j(rv+1)−rv+i) for
i = 0, 1, . . . , rv − 1 and for j = 1, 2, . . . , sv. If v corresponded to a vertex si
(ti, respectively), then the vertex v1 (vzv , respectively) becomes the vertex si
(ti, respectively). This gadget we use to replace the vertex v6 in Figure 3 is
illustrated on Figure 4.

I
1

t′
1

I
2

t′
1

O
1

t′
1

O
2

t′
1

v5 t
′

1

v4 t
′

2

Fig. 4 Replacement gadget of vertex v6

The digraph we obtain, say Ĝ, contains a Hamiltonian path. We denote
by A∗

H the arcs of this path. At this point, Ĝ may still contain multiple arcs
if G̃ contains multiple arcs that are not incident to Ṽ . However, by definition
of W̃ , given two vertices u and v of Ĝ, there exist at most two multiple arcs

28

from u to v and one of them belongs to A∗
H . We then subdivise the arc (u, v)

that belongs to A∗
H , i.e., we add a new vertex w and we replace (u, v) in A∗

H

by the arcs (u,w) and (w, v). By repeting this operation as long as necessary,
we obtain a simple digraph.

The last gadget we use is to replace every arc a = (u, v) of Ã by a path
((u, sa), (sa, ta), (ta, v)), where sa and ta are two new vertices. Moreover, the
pair (sa, ta) is added to the set S. At the end of this replacement proce-
dure, the set S is then composed of k = k′ + |Ã| pairs of vertices. Let G
be the resulting digraph. It is clear that all the vertices of G fulfill the de-
gree conditions of a quasi-topological digraph. Therefore, since G is simple,
it is quasi-topological. Since no vertex of G belongs to two pairs of S and
degin(si) ≤ 1 and degout(ti) ≤ 1 for all i = 1, . . . , k, the digraph G and the set
S correspond to an instance of the QTDP. As finding a topological order of an
acyclic digraph is a polynomial-time solvable problem, the whole construction
procedure of G and S from G′ and S′ can be clearly performed in polynomial
time.

We now claim that the ADP has a feasible solution if and only if the
QTDP has a feasible one. We first consider a solution to the QTDP, that
is, k arc-disjoint paths L1, L2, . . . , Lk. Without loss of generality, a path Li

for i = 1, 2, . . . , k′ is associated with a pair of S′. Let L′
1, L

′
2, . . . , L

′
k′ be the

restriction of L1, L2, . . . , Lk′ respectively on the digraph G′. Because of the
definition of the pairs (sa, ta) with a ∈ Ã, L′

i corresponds to a path of G′

from s′i to t′i. As the paths L1, L2, . . . , Lk′ are arc-disjoint, so are the paths
L′
1, L

′
2, . . . , L

′
k′ .

To prove the converse, we consider a solution to the ADP given by k′ arc-
disjoint paths L′

1, L
′
2, . . . , L

′
k′ . For i = 1, 2, . . . , k′, every path L′

i can be trivially

extended to a path L̃i of G̃ by concatenating the arc (si, s
′
i), the path L′

i and
the arc (t′i, ti). Clearly, the paths L̃1, L̃2, . . . , L̃k′ are arc-disjoint. Moreover,
since neither (si, s

′
i) nor (t

′
i, ti) belongs to Ã, the path L̃i does not contain any

arc of Ã, for i = 1, 2, . . . , k′. Let v be a vertex of Ṽ and q be the number of paths
of L̃1, L̃2, . . . , L̃k′ traversing v. Without loss of generality, we suppose that
these paths are the first q ones. We remark that 1 ≤ q ≤ min{rv, sv}. Consider
any i of {1, 2, . . . , q}, and denote by ai (bi, respectively) the arc of L̃i entering
(leaving, respectively) v. As G̃ is acyclic, the arcs ai and bi are uniquely defined.
Let Ii

′

v and Oi′′

v be the subsets of vertices associated with ai and bi respectively,
as previously defined in the replacement gadget. We remark that in G, the
vertex vi

′(sv+1)−sv is the head of ai, and the vertex vrv(sv+1)+i′′(rv+1) is the
tail of bi. From the definition of the replacement gadget, it is straightforward
that there exists a unique path Mi from vi

′(sv+1)−sv to vrv(sv+1)+i′′(rv+1) in
the subgraph of G induced by Ii

′

v ∪ Oi′′

v . We then construct the path L̄i by
inserting Mi in between the arcs ai and bi in L̃i. We remark that two distinct
paths L̃j and L̃j′ with 1 ≤ j, j′ ≤ q clearly provide two arc-disjoint paths

Mj and Mj′ . Since the paths L̃1, L̃2, . . . , L̃q are arc-disjoint, so are the paths
L̄1, L̄2, . . . , L̄q. By reiterating this local insertion procedure to every vertex of

Ṽ , we obtain k′ paths L1, L2, . . . , Lk′ of G which are obviously arc-disjoint.

29

To complete the proof, we consider the path composed of the arc (sa, ta) for
every pair of S associated with an arc a of Ã. In that way, we have obtained
k = k′ + |Ã| arc-disjoint paths of G. ⊓⊔

Using a reduction from the QTDP, we now prove that the demand-paths
checking problem is NP-complete. Consider an instance of the QTDP speci-
fied by a quasi-topological digraph G = (VG, AG) and a set S = {(si, ti) : i =
1, 2, . . . , k} of pairs of distinct vertices of G so that every vertex of G belongs to
at most one pair, degin(si) ≤ 1 and degout(ti) ≤ 1 for i = 1, 2, . . . , k. To obtain
the digraph D′ of the instance of the DPCP, we first contract every jump arc of
G. (Remember that the jump arcs are those which do not belong to the Hamil-
tonian path ((v1, v2), (v2, v3), . . . , (vn−1, vn)) of G.) We then add a new vertex
v0 together with two new arcs (v0, v1) and (vn, v0). Since G is quasi-topological
and contracting the jump arcs creates closed walks, the digraph D′ thus ob-
tained is clearly Eulerian. The Eulerian closed walk C of D′ is constructed
as follows. We consider the sequence ((v0, v1), (v1, v2), . . . , (vn−1, vn), (vn, v0))
where ((v1, v2), (v2, v3), . . . , (vn−1, vn)) corresponds to the Hamiltonian path
of G. For every arc (vi, vj) of AJ , we identify in C the vertices vi and vj .
It is easy to see that C is an Eulerian closed walk of D′. The set P of de-
mands is derived from S by associating a demand pi with every pair (si, ti) for
i = 1, 2, . . . , k, so that opi (dpi , respectively) is the vertex of D′ corresponding
to si (ti, respectively) and qpi = 1. Moreover, we set the vehicle capacity Q
to one. It is obvious that this construction of the instance of the DPCP is
polynomial.

We now claim that the QTDP has a feasible solution if and only if the
DPCP has a feasible one. Consider a feasible solution to the QTDP defined
by k arc-disjoint paths L1, L2, . . . , Lk of G. We construct a solution to the
DPCP as follows. For i = 1, 2, . . . , k, the path Ki of D′ associated with the
demand pi is obtained from Li by removing all the jump arcs. Since the paths
L1, L2, . . . , Lk are arc-disjoint, no arc of D′ is overloaded. Moreover, the arcs
of Ki are traversed in the same order as in C, for i = 1, 2, . . . , k, because G is
quasi-topological and C is built upon the Hamiltonian path of G. Therefore,
K1,K2, . . . ,Kk is a feasible solution to the DPCP.

To prove the converse, we start with a feasible solution K1,K2, . . . ,Kk of
the DPCP. Since Q = 1, the paths Ki, i = 1, 2, . . . , k of D′ are arc-disjoint.
Let i ∈ {1, 2, . . . , k}. Consider the restriction L′

i of Ki on G. Clearly, all the
arcs of the L′

i belong to AH . To transform L′
i into a siti-path, we add jump

arcs of AJ to connect the different subpaths of L′
i. (Jump arcs may be needed

to connect si to the first vertex of L′
i and to connect the last vertex to ti.) We

remark that any added jump arc corresponds to a reload of pi with respect to
C. Indeed, all the arcs of the Hamiltonian path between the two extremities of
any added jump arc corresponds to a closed walk in C. Moreover, the demand
pi is carried before and after this closed walk but not on any arc of this walk,
which implies that it is reloaded on the vertex of D′ corresponding to the
extremities of the jump arc. Since L′

1, L
′
2, . . . , L

′
k are arc-disjoint, a jump arc

30

can be added at most once. The resulting siti-paths for i = 1, 2, . . . , k then
form a feasible solution to the QTDP. ⊓⊔

