
Tree based heuristics for the preemptive
asymmetric stacker crane problem

A. Quilliot 1 M. Lacroix 1 H. Toussaint 1 H. Kerivin 2

1 LIMOS, CNRS UMR 6158, Université Blaise-Pascal,

Clermont-Ferrand II, France

2 Department of Mathematical Sciences, Clemson University,

CLEMSON, O-326 Martin Hall, Clemson, SC 29634 - USA

Abstract

In this paper, we deal with the preemptive asymmetric stacker crane problem in an
heuristic way. We first turn this problem into a specific tree design problem. We
next derive from this new representation simple, efficient greedy and local search
heuristics. We conclude by presenting experimental results which aim at both test-
ing the efficiency of our heuristic and at evaluating the impact of the preemption
hypothesis.

Keywords: preemptive stacker crane problem, reloads, routing, local search,
heuristic design.

1 Introduction

Pickup and delivery problems, which consist in scheduling the transportation
of sets of goods and/or passengers from origin nodes to destination nodes while

1 Email: {quilliot,lacroix,toussain}@isima.fr
2 Email: kerivin@clemson.edu

Electronic Notes in Discrete Mathematics 36 (2010) 41–48

1571-0653/$ – see front matter © 2010 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/endm

doi:10.1016/j.endm.2010.05.006

http://www.elsevier.com/locate/endm


using a given set of vehicles, have been intensively studied for decades. Many
variants have been considered and one can refer to [2],[6] for surveys on these
problems and methods. The Stacker Crane Problem (SCP) is a pickup and
delivery problem which involves only one vehicle, which can deal with only
one demand unit at the same time.

A rough description of the Stacker Crane Problem (SCP) comes as follows:
G being some transit network whose oriented links or arcs are endowed with
lengths or costs and which is provided with some specific Depot node, we
are required to schedule the route of a single vehicle V , which is supposed to
address a Demand set K, each demand k ∈ K being defined by some origin
node ok and by some destination node dk. Namely, addressing the demand k

means transporting some unique load unit from ok to dk, the capacity of V

being such that V cannot contain more than one load unit at a given time.
Thus, scheduling V means designing a route Γ inside the network G, which is
going to start and end into Depot while making possible for V to handle every
demand k ∈ K. Solving the SCP will mean computing this route in such a
way that it is the shortest possible. In the Preemptive Stacker Crane Problem
(PSCP), any load unit related to demand k may be dropped (unloaded) at
any node x of the transit network G, before being later reloaded. This un-
load/reload process may be performed several times before the load unit of
demand k reaches the destination node dk. In case the cost function, which
to any arc (x, y), makes correspond some cost DIST (x, y), is asymmetric, we
talk about Asymmetric SCP.

The SCP was first introduced by Frederickson et al. in [5], under its
non preemptive symmetric form. These authors proved its NP-hardness by
using a reduction from the TSP. They also got a 9/5-approximation scheme
for this problem. Atallah and Kosaraju [1] were the first to consider the
preemptive version of the symmetric SCP. They studied both non-preemptive
and preemptive versions of the symmetric SCP in the case when the underlying
graph is an elementary path or an elementary cycle. They proved that in such
a case, both versions are polynomial-time solvable. Frederickson and Guan
[3,4] studied both preemptive and non-preemptive versions of the symmetric
SCP in the case when the underlying graph is a tree.

The focus of this paper will be on the preemptive asymmetric SCP, which
we shall denote by APSCP. We are first going to set our problem in a formal
way. Next we shall state some structural results which will allow us to turn the
problem into a non constrained tree design problem. This reformulation of the
problem will lead us to design in a natural way local search heuristic scheme
together with a linear integer programming model, which will be implemented

A. Quilliot et al. / Electronic Notes in Discrete Mathematics 36 (2010) 41–4842



and tested in section 5, providing us with satisfactory numerical results.

2 Formal Description and Structural Results

2.1 Notations about sets and lists

For any sequence Γ={x1, . . . , xn} we denote by Rank(Γ, x) the rank i of x = xi

in Γ. The first (last) element of Γ is denoted by First(Γ) (Last(Γ)). We
denote by ⊕ the concatenation operator, which concatenates two sequences
Γ = {x1, . . . , xn} and Γ′ = {y1, . . . , yn} into a unique sequence Γ ⊕ Γ′ =
{x1, . . . , xn, y1, . . . , yn}. A segment of Γ is a subsequence {x, . . . , y} of Γ such
that Rank(Γ, x) ≤ Rank(Γ, y), and a cut of Γ is any decomposition Γ=Γ′⊕Γ′′.

2.2 Modelling the Asymmetric Pre-emptive Stacker Crane Problem (APSCP)

In order to get a formal model of the APSCP problem, we make copies of
the original physical nodes of the network G in such a way that the nodes
Depot, o(k), d(k), k ∈ K, and the eventual reload nodes become all distinct.
That means that we deal with a logical node set X which may be written
according to some partition: X = Depot∪XO ∪XD ∪XR, in such a way that:
XO = {ok, k ∈ K}; XD = {dk, k ∈ K}; XR contains a copy of every element
in Depot∪XO ∪XD, together with a set of other eventual reload nodes. Then
the original cost function which was defined on the arc set of the network G

gives rise, through a shortest path computing process, to a X × X indexed
distance matrix DIST , such that if x ∈ Depot∪XO ∪XD and if x′ is the copy
of x ∈ XR, then DIST (x, x′) = 0. Given an APSCP instance (X, K) defined
this way, we easily deduce a notion of valid tour related to this instance. Thus,
solving the APSCP instance (X, K) means finding such a valid tour Γ with
minimal length Length(Γ).

2.3 A Tree Representation of the APSCP Problem

As a matter of fact, some tours with special properties, can be represented
as some kind of trees, called a bipartite ordered trees. A tree T is a bipartite
ordered tree if: (1) its nodes can be split into two classes A and B in such a
way that nodes in class A have their sons in class B and conversely; (2) for
every node x in T which is not a terminal node (leaf), the son set associated
with x is linearly ordered and is consequently described as a sequence. We say
that a bipartite ordered tree T is consistent with the APSCP instance defined
by the demand set K and by the node set X ((X, K) − consistent) if:

A. Quilliot et al. / Electronic Notes in Discrete Mathematics 36 (2010) 41–48 43



• a node in T can be identified either with a demand k ∈ K (we shall then
talk about demand node) or with a node in Depot∪XR, (and then we talk
about reload node); any demand node k ∈ K appears in T , while only some
nodes of Depot ∪ XR appear in T (they define the active reload node set
Active(T ) of T );

• The root of T is the Depot node and the terminal nodes (leafs) of T are all
demand nodes;

• For any demand node k, its linearly ordered son set Reload(T, k) (which
may be empty) is in Active(T ) and its father Father(T, k) is in Active(T );

• For any reload node x, its linearly ordered son set Demand(T, x) is made
with demand nodes and its father Father(T, x) is in K.

For any such a bipartite ordered tree T , we define a cost value Tree-
Cost(T ) as follows:

• For any demand node k ∈ K, we set:
If k is not a terminal node then
Cost-Demand(T, k) = DIST (ok, F irst(Reload(T, k)))+DIST (Last(Reload(T, k)), dk)

+
∑

x∈Reload(T,k),

x �=Last(Reload(T,k))

DIST (x, Succ(Reload(T, k), x))

else Cost-Demand(T, k) = DIST (ok, dk)

• For any reload node x ∈ Depot ∪ XR, we set:
Cost-Reload(T, x) = DIST (x, oFirst(Demand(T,x))) + DIST (dLast(Demand(T,x)), x) +∑

k∈Demand(T,x),

k �=Last(Demand(T,x))

DIST (dk, oSucc(Demand(T,x), k));

• Tree-Cost(T ) =
∑

k∈K

Cost − Demand(T, k) +
∑

x∈ACTIV E(T )

Cost − Reload(T, x).

We notice that any consistent bipartite tree T can be turned into a valid
tour Tour(T ), as in figure 1, in such a way that Length(Tour(T ))=Tree-
Cost(T ). We denote by Tour-Tree, the set of all valid tours which may
obtained through this process. So our main statement comes as follows:

Theorem 2.1 Given the APSCP instance (X, K), there exists some optimal
solution of (X, K) which is in Tour-Tree. Thus, handling (X, K) can be done
by searching for a consistent bipartite ordered tree T , such that Tree-Cost(T )
is the smallest possible.

Principle of the proof: we start from some optimal tour Γ, and we turn it into
a tour in Tour-Tree while keeping Length(Γ) from increasing.

A. Quilliot et al. / Electronic Notes in Discrete Mathematics 36 (2010) 41–4844



(a) (b)

Fig. 1. (a) A tour , (b) The bipartite tree which derives from the tour (a)

3 Tree Based Heuristics for the APSCP Problem

The algorithms which we are going to describe and test here, derive in a
straightforward way from this tree representation of the APSC Problem. These
algorithms are simple greedy insertion algorithms and descent algorithms,
based upon the use of 2 classes of operators:

Insertion Operators: they act on some bipartite ordered tree T , consistent
with the node set X and with a subset K ′ of the demand set K, and insert
some demand k ∈ K − K ′ into T . We use two operators:

• INSERT-SIMPLE: its parameters are some active reload node x in Depot∪
XR, and some cut (l1, l2) of the sequence Demand(T, x) = l1 ⊕ l2. It acts
by inserting the segment {k} into this cut: Demand(T, x) ← l1 ⊕ k ⊕ l2.

• INSERT-with-RELOAD: its parameters are some demand node k′ in K ′, a
cut c = (l1, l2) of the sequence Reload(T, k′), and a non active reload node
x. It acts by: (1) inserting the segment {x} into the cut c:
Reload(T, x) ← l1 ⊕ {x} ⊕ l2; (2) making x be active and setting:
Demand(T, x) ← {k}; Reload(T, k) ← Nil.

Local Transformation Operators: they act through side effect on some
bipartite ordered tree T consistent with X and K, and they modify T. We use
6 operators (We note x ← v when the variable x is provided with the value
v):

• MOVE-RELOAD: its parameters are some active reload node x and some
non active reload node y. It replaces x by y in T .

• MOVE-RELOADS: its parameters are two different demand nodes k and
k′, a segment l of Reload(T, k) and a cut c = (l1, l2) of Reload(T, k′). It
removes l from Reload(T, k) and it inserts it into the cut c. Its precondition
is that k does not dominate k′ in the tree T , i.e, that k cannot be obtained
from k′ through a succession of applications of the FATHER operator.

• MOVE-RELOADSl: its parameters are some demand node k, some segment

A. Quilliot et al. / Electronic Notes in Discrete Mathematics 36 (2010) 41–48 45



l of Reload(T, k) which induces a decomposition Reload(T, k) = l3 ⊕ l ⊕ l4,
and a cut c = (l1, l2) of l3⊕ l4. It first removes l from Reload(T, k) and next
insert it into the cut c: Reload(T, k) ← l1 ⊕ l ⊕ l2.

• MOVE-DEMANDS: its parameters are two different active reload nodes x

and y, a segment l of Demand(T, x), and a cut c = (l1, l2) of Demand(T, y).
It removes l from Demand(T, x) and it inserts it into the cut c. In case
Demand(T, x) = l, it removes the reload node x from T , which becomes
non active. Its precondition is that x does not dominate y in the tree T .

• MOVE-DEMANDl: its parameters are a reload node x, a segment l of
Demand(T, x) which induces a decomposition Demand(T, x) = l3 ⊕ l ⊕ l4,
and a cut c = (l1, l2) of l3 ⊕ l4. It first removes l and next inserts it into the
cut c: Demand(T, x) ← l1 ⊕ l ⊕ l2 .

• MOVE-DEMANDS-RELOAD: it takes an active reload node x, a non active
reload node y, a demand node k, a segment l of Demand(T, x) and a cut c

= (l1, l2) of Reload(T, k). It first turns y into an active reload node, next
removes l from Demand(T, x), inserts it into Demand(T, y), and inserts the
segment {y} into c. In case l = Demand(T, x), it turns x into a non active
reload node. Node k must be dominated by no demand node k′ in l.

We propose a first insertion greedy algorithm for dealing with APSCP
called APSCP-insert: we first randomly define a linear ordering � on the
elements of K and initialize T to the root node Depot. Then, for each k ∈ K,
(K being scanned according to the linear order �) we choose the insertion
operator I (among INSERT-SIMPLE and INSERT-with-RELOAD) and its
related parameter u such that the insertion of k through I(u) induces the
smallest possible increase of Tree-Cost(T ). We filter the search for the good
value of the parameter u by using, for any node x, y in XR, small sets N(x),
N(y) of neighbours of x and y, together with a middle z = MID(x, y) of x

and y, and by imposing conditions related to those objects when dealing with
the various components of u.

Of course, the algorithm APSCP-insert may be embedded into a Monte-
Carlo Scheme: given a parameter Δ we run the APSCP-insert procedure Δ
times and keep the best result.

We also propose a descent algorithm APSCP-desc: given a tree T initialized
with APSCP-insert, we search in a filtered way parameter values u for some
operator I in the above mentioned local transformation operators, in such a
way that applying I to T and u improves Tree-Cost(T ). We use the same
kind of filtering device as for the case of the insertion operators.

A. Quilliot et al. / Electronic Notes in Discrete Mathematics 36 (2010) 41–4846



4 Experiments

We performed two experiments, on PC IntelXeonwith 1.86 GHz, 3.25 Go Ram,
while using a Visual Studio C++ compiler. We focused on the accuracy and
speed of our algorithms and on the characteristics of the resulting solutions:
number of reload nodes involved in the solution, impact of pre-emption. In
order to do this, we performed several tests, while using node sets X and
distance matrices DIST proposed by the TSPLIB libraries, and by selecting
origin/destination pairs in a random way inside the set X. We dealt with
instances which involve from 20 to 300 nodes and from 10 to 100 origin desti-
nation pairs, and, in case of small instances, got exact results through the use
of a LIP formulation, augmented with cutting plane techniques ([7]).

The first experiment consisted in running the APSCP-insert Monte-Carlo
scheme with Δ = 100, while keeping memory, for every instance, the following
quantities: (1) dem.: number of demands, (2) nod.: number of nodes, (3)
gap1: gap (in %) between exact theorical value and the best value produced
by the APSCP-insert Monte Carlo scheme, (4) rel1: Mean number of active
reload nodes involved in a solution produced by APSCP-insert; (5) cpu1:
CPU Mean Time (in seconds) for any iteration of APSCP-insert.

The second experiment consisted in running APSCP-desc from a solution
provided by only 1 application of APSCP-insert, while keeping memory, for
every instance, the quantities: (1) gapI: gap (in %) between exact theorical
value and the initial value produced by APSCP-insert, (2) gapF: gap (in %)
between exact theorical value and the final value produced by APSCP-desc,
(3) rel2: number of reloads involved in the solution produced by APSCP-desc,
(4) cpu2: CPU Running Time (in seconds) for APSCP-desc.

The results we got are summarized in table 1.

dem. nod. gap1 rel1 cpu1 gapI gapF rel2 cpu2
11 46 1.5 0.06 15.10−3 10.3 0 1 0.1
11 46 0.14 0.43 15.10−3 5.0 2.4 1 0.05
23 94 1.9 0.95 15.10−3 5.7 1.2 2 2.0
23 94 2.47 0.53 15.10−3 5.1 0.4 5 0.7
59 238 6.02 0.36 78.10−3 9.5 0.25 4 103

Table 1
Tests performed on 5 instances

A. Quilliot et al. / Electronic Notes in Discrete Mathematics 36 (2010) 41–48 47



5 Conclusion

We have been dealing here with a pre-emptive demand routing problem with
capacity constraints, and we showed how it was possible to turn it into a non
constrained tree construction problem in such a way that we could solve it
in an efficient way through simple greedy and descent processes. It would
be interesting to extend the approach which we presented here in a specific
context, and try to deduce efficient approaches for the handling of pre-emption
in more general routing and scheduling problems.

References

[1] M.J. Atallah and S.R. Kosaraju. Efficient Solutions to Some Transportation
Problems with Applications to Minimizing Robot Arm Travel. SIAM Journal

on Computing, 17: 849, 1988.

[2] G.Berbeglia, J.F.Cordeau, I.Gribkovskaia, and G.Laporte. Static pickup and
delivery problems: a classification scheme and survey. TOP: An Official Journal

of the Spanish Soc. of Stat. and Operations Res., 15(1): 1–31, July 2007.

[3] G.N. Frederickson and DJ Guan. Preemptive Ensemble Motion Planning on a
Tree. SIAM Journal on Computing, 21: 1130, 1992.

[4] G.N. Frederickson and D.J.Guan. Nonpreemptive ensemble motion planning on
a tree. Journal of Algorithms, 15(1): 29–60, 1993.

[5] G.N. Frederickson, M.S. Hecht, and C.E. Kim. Approximation Algorithms for
Some Routing Problems. SIAM Journal on Computing, 7: 178, 1978.

[6] S.N. Parragh, K.F. Doerner, and R.F. Hartl. A survey on pickup and delivery
problems: Part II: Transportation between pickups and delivery locations.
Journal für Betriebswirtschaft, 58(1):21–51, 2008.

[7] M. Lacroix, le problème de ramassage et livraison préemptif : complexité,
modèles et polyèdres, Phd thesis, Université Blaise Pascal, Clermont-Ferrand,
France, 2009.

A. Quilliot et al. / Electronic Notes in Discrete Mathematics 36 (2010) 41–4848


	Introduction
	Formal Description and Structural Results
	Notations about sets and lists
	Modelling the Asymmetric Pre-emptive Stacker Crane Problem (APSCP)
	A Tree Representation of the APSCP Problem

	Tree Based Heuristics for the APSCP Problem
	Experiments
	Conclusion
	References

