Learning Cut Selection for DOGE-Train: Discrete Optimization on GPU with End-to-End Training

 Published in AAAI 2024Abbas, Ahmed and Swoboda, Paul

Lecture of Mathieu Lacroix

2024

Outline

(1) Context
(2) GPU Friendly algorithm
(3) Learning how to update λ

Outline

(1) Context

(2) GPU Friendly algorithm
(3) Learning how to update λ

A 3-papers work

- Paper 1: Lange, Jan-Hendrik and Swoboda, Paul, Efficient Message Passing for 0-1 ILPs with Binary Decision Diagrams, ICML 2021.
- Paper 2: Abbas, Ahmed and Swoboda, Paul, FastDOG: Fast Discrete Optimization on GPU, CVPR 2022.
- Paper 3: Abbas, Ahmed and Swoboda, Paul, Learning Cut Selection for DOGE-Train: Discrete Optimization on GPU with End-to-End Training, AAAI 2024.

Overview

Objective

Provide efficient and accurate heuristic for $0 / 1$ general MIP

- Based on Lagrangian decomposition solved by block coordinate ascent and followed by a heuristic (paper 1)
- GPU Friendly (paper 2)
- ML used to update Lagrangian multipliers at each iteration (paper 3).

Lagrangian decomposition

Binary linear problem

$$
\begin{array}{ll}
\min c^{\top} x & \\
a_{j}^{\top} x \leq b_{j} & \forall j \in[m] \\
x_{i} \in\{0,1\} & \forall i \in[n] \tag{3}
\end{array}
$$

- \mathcal{I}_{j} : Set of variables appearing in constraint number j
- \mathcal{X}_{j} : Set of binary assignment of variables of \mathcal{I}_{j} satisfying constraint number j, that is, $\mathcal{X}_{j}=\left\{x \in\{0,1\}^{\mathcal{I}_{j}} \mid \sum_{i \in \mathcal{I}_{j}} a_{j i} x_{i} \leq b_{j}\right\}$ (knapsack solutions)
- \mathcal{J}_{i} : Set of constraints (indexes) where variable x_{i} appears

Lagrangian decomposition

Idea: consider \mathcal{J}_{i} copies of each variable x_{i}.

$$
\begin{array}{ll}
\min c^{\top} x^{1} & \\
\sum_{i \in \mathcal{I}_{j}} a_{j i} x_{i}^{j} \leq b_{j} & \forall j \in[m] \\
x_{i}^{j}=x_{i}^{1} & \forall i \in[n], \forall j \in \mathcal{J}_{i} \backslash\{1\} \\
x_{i}^{j} \in\{0,1\} & \forall i \in[n], \forall j \in \mathcal{J}_{i} \tag{7}
\end{array}
$$

Lagrangian decomposition

Dualizing (6) and setting $\lambda_{i}^{1}=c_{i}-\sum_{j \in \mathcal{J}_{i}}$ gives:
$L R(\lambda)$

$$
\begin{array}{ll}
\min \sum_{j \in[m]} \sum_{i \in \mathcal{I}_{j}} \lambda_{i}^{j} x_{i}^{j} & \\
\sum_{i \in \mathcal{I}_{j}} a_{j i} x_{i}^{j} \leq b_{j} & \forall j \in[m] \\
x_{i}^{j} \in\{0,1\} & \forall i \in[n], \forall j \in \mathcal{J}_{i} \tag{10}
\end{array}
$$

Remark : λ must satisfy $\sum_{j \in \mathcal{J}_{i}} \lambda_{i}^{j}=c_{i}$ for all $i \in[n]$.
$L R(\lambda)$ is decomposable into 1 subproblem per constraint:

$$
L R(\lambda)=\sum_{j \in[n]} E\left(\lambda^{j}\right)
$$

with $E\left(\lambda^{j}\right)=\max _{x \in \mathcal{X}_{j}} \sum_{i \in \mathcal{I}_{j}} \lambda_{i}^{j} x_{i}^{j}$

Lagrangian decomposition

$L D$

$$
\begin{align*}
& \max L R(\lambda) \tag{11}\\
& \sum_{j \in \mathcal{J}_{i}} \lambda_{i}^{j}=c_{i} \quad \forall i \in[n] \tag{12}
\end{align*}
$$

Block Coordinate Ascent Method

Idea: Update one Lagrangian vector $\lambda_{i} \in \mathbb{R}^{\mathcal{J}_{i}}$ at each time.

Min marginal averaging

For $i \in[n]$ and $j \in \mathcal{J}_{i}$ and $\beta \in\{0,1\}$, let

$$
m_{i j}^{\beta}=E\left(\lambda^{j}\right) \text { with } x_{i}=\beta
$$

$m_{i j}^{\beta}$ is the value of the best solution of subproblem j when x_{i} is equal to β.

Lagrangian update

$$
\lambda_{i}^{j}=\lambda_{i}^{j}+\left(m_{i j}^{1}-m_{i j}^{0}\right)-\frac{1}{\mathcal{J}_{i}} \sum_{k \in J_{i}}\left(m_{i j}^{1}-m_{i j}^{0}\right) \quad \forall j \in \mathcal{J}_{i}
$$

New λ_{i} satisfies (12) and gives a non worse Lagrangian bound.
Remark: Needs to compute $m_{i j}^{\beta}$!

Block Coordinate Ascent Method

```
Algorithm 1: Min-marginal averaging
1 input objective vector \(c \in \mathbb{R}^{n}\), constraint sets
    \(\mathcal{X}_{j} \subset\{0,1\}^{\mathcal{I}_{j}}\) for \(j \in[m]\)
    2 Find variable ordering \(\left\{i_{1}, \ldots, i_{n}\right\}=[n]\).
    3 Initialize dual variables \(\lambda_{i}^{j}=c_{i} /\left|\mathcal{J}_{i}\right|\) for all \(i \in[n]\)
    and \(j \in \mathcal{J}_{i}\).
    4 while (stopping criterion not met) do
    5 Perform forward pass:
    \(6 \quad\) for \(i=i_{1}, \ldots, i_{n}\) do
            for \(j \in \mathcal{J}_{i}\) do
                            Compute min-marginals for \(\beta \in\{0,1\}\) :
                    \(m_{i j}^{\beta}=\min _{x \in \mathcal{X}_{j}} x^{\top} \lambda^{j}\) s.t. \(x_{i}=\beta\)
            for \(j \in \mathcal{J}_{i}\) do
                            Update dual variable:
                    \(\lambda_{i}^{j} \leftarrow \lambda_{i}^{j}-\left(m_{i j}^{1}-m_{i j}^{0}\right)+\)
                    \(\frac{1}{\left|\mathcal{J}_{i}\right|} \sum_{k \in \mathcal{J}_{i}} m_{i k}^{1}-m_{i k}^{0}\).
12
Perform backward pass analogously (set variable order to \(\left\{i_{n}, \ldots, i_{1}\right\}\) )
```

Remark: It is a heuristic (may get stuck in suboptimal points)!

BDD

Start from binary tree

BDD

"Shrink" some parts

BDD

"Shrink" some parts

Remark: there may exist more than 2 nodes per variable.

BDD to compute $m_{i j}^{\beta}$

Figure 2. Example decomposition of a binary program into two subproblems, one for each constraint. Each subproblem is represented by a weighted BDD where solid arcs model the cost λ of assigning a 1 to the variable and dashed arcs have 0 cost which model assigning a 0 . All $r-\top$ paths in BDDs encode feasible variable assignments of corresponding subproblems (and $r-\perp$ infeasible). Optimal assignments w.r.t current (non-optimal) λ are highlighted in green i.e. $x_{1}=1, x_{2}=x_{3}=0$ for \mathcal{X}_{1} and $x_{2}=x_{3}=x_{4}=0$ for \mathcal{X}_{2}. Our dual update scheme processes multiple variables in parallel which are indicated in same color (e.g. x_{1}, x_{2} in $\mathcal{X}_{1}, \mathcal{X}_{2}$ resp.).

- Compute shortest paths from r and T
- Select minimum path leaving node i with arc β.

Primal heuristic

For $i \in[n]$, let $M_{i}=\sum_{j \in \mathcal{J}_{i}}\left(m_{i j}^{1}-m_{i j}^{0}\right)$. If $M_{i}>0$, then it is preferable to fix x_{i} to 0 , and to 0 otherwise.
Depth-first search considering variables following decreasing order $\left|M_{i}\right|$ (considering best fixation variable) until a solution is found.

Experiments

- Run Block Coordinate Ascent Method and then primal heuristic.
- Compare with Gurobi (TL 1h for both)

Result comments

- Provide weaker lower bounds than Gurobi (root LP relaxation (cutting?)) but faster
- Solutions of the primal heuristic are only slightly worse than those provided by Gurobi (sometimes better) and faster.
- There is a parallel version with a speed up to 6 when having 16 threads.

Outline

(2) GPU Friendly algorithm

Parallelizing Block Coordinate Ascent Mehtod

The problem

- Computing $m_{i j}^{\beta}$ can be done in parallel
- Updating λ needs synchronisation since $m_{i j}^{\beta}$ are needed!

The solution

Update λ with values $m_{i j}^{\beta}$ (denoted $\bar{m}_{i j}^{\beta}$) computed at previous iteration!

$$
\lambda_{i}^{j}=\lambda_{i}^{j}+\omega\left(m_{i j}^{1}-m_{i j}^{0}\right)-\frac{\omega}{\left|\mathcal{J}_{i}\right|} \sum_{k \in J_{i}}\left(\bar{m}_{i k}^{1}-\bar{m}_{i k}^{0}\right) \quad \forall j \in \mathcal{J}_{i}
$$

Remark: ω dumping factor between 0 and 1 (fixed $\frac{1}{2}$) following (Werner, Průša, and Dlask, 2020).

Parallelizing primal heuristic

```
Algorithm 2: Perturbation Primal Rounding
    Input: Lagrange variables \(\lambda_{i}^{j} \in \mathbb{R} \forall i \in[n], j \in \mathcal{J}_{i}\),
        Constraint sets \(\mathcal{X}_{j} \subset\{0,1\}^{\mathcal{I}_{j}} \forall j \in[m]\),
        Initial perturbation strength \(\delta \in \mathbb{R}_{+}\),
        perturbation growth rate \(\alpha\)
    Output: Feasible labeling \(x \in\{0,1\}^{n}\)
    Compute min-marginal differences \(M_{i j} \forall i, j\) (MD)
    while \(\exists i \in[n]\) and \(j \neq k \in \mathcal{J}_{i}\) s.t. \()\) while there exists
    \(\operatorname{sign}\left(M_{i j}\right) \neq \operatorname{sign}\left(M_{i k}\right)\) do a var with \(\neq\) valves
    for \(i=1, \ldots, n\) in parallel do in sulprobloms
            Sample \(r\) uniformly from \([-\delta, \delta]\)
            if \(M_{i j}>0 \forall j \in \mathcal{J}_{i}\) then
                \(\lambda_{i}^{j}+=\delta \quad \forall j \in \mathcal{J}_{i}\)
            else if \(M_{i j}<0 \forall j \in \mathcal{J}_{i}\) then
                    \(\lambda_{i}^{j}-=\delta \quad \forall j \in \mathcal{J}_{i}\)
            else if \(M_{i j}=0 \forall j \in \mathcal{J}_{i}\) then
                    \(\lambda_{i}^{j}+=r \cdot \delta \quad \forall j \in \mathcal{J}_{i}\)
            else
                    Compute total min-marginal difference:
                    \(M_{i}=\sum_{j \in \mathcal{J}_{i}} M_{i j}\)
            \(\lambda_{i}^{j}+=\operatorname{sign}\left(M_{i}\right) \cdot|r| \cdot \delta \quad \forall j \in \mathcal{J}_{i}\)
        Increase perturbation: \(\delta \leftarrow \delta \cdot \alpha\)
        Reoptimize perturbed \(\lambda\) via Algorithm 1
        Recompute \(M_{i j} \forall i, j\) w.r.t optimized \(\lambda\)
```


Experiments

Figure 5. Convergence plots averaged over all instances of a dataset. Lower curves depict increasing lower bounds while markers denote objectives of rounded primal solutions. The x -axis is plotted logarithmically.

- one order of magnitude faster than previous algo
- needs 3 times more iterations for Block Coordinate Ascent Method than previous algo

Outline

(1) Context

(2) GPU Friendly algorithm
(3) Learning how to update λ

More parameters when updating λ

Rule 1: used at each step
Let $\omega_{i j} \in[0,1]$ and $\alpha_{i j} \geq 0$ with $\sum_{j \in \mathcal{J}_{i}} \alpha_{i j}=1$.

$$
\lambda_{i}^{j}=\lambda_{i}^{j}-\omega_{i j}\left(m_{i j}^{1}-m_{i j}^{0}\right)+\sum_{k \in J_{i}} \alpha_{i j}\left(\bar{m}_{i k}^{1}-\bar{m}_{i k}^{0}\right) \quad \forall j \in \mathcal{J}_{i}
$$

Rule 2: used for initialization
Let $\theta \in \mathbb{R}^{\lambda}$.

$$
\lambda_{i}^{j}=\lambda_{i}^{j}+\theta_{i j}-\frac{1}{\left|\mathcal{J}_{i}\right|} \sum_{k \in J_{i}} \theta_{i k}
$$

Learn θ, α and $\omega!$

ML pipeline

ILP representation

Dual updates (in detail)

Figure 1: Our method for optimizing the Lagrangean dual (D). The dual problem is encoded on a bipartite graph containing features $f_{\mathcal{I}}, f_{\mathcal{J}}$ and $f_{\mathcal{E}}$ for primal variables, subproblems and dual variables resp. A graph neural network (GNN) predicts θ, α, ω for dual updates. In one dual update block (right), current set of Lagrange multipliers λ are first updated by the non-parametric update using θ. Afterwards parametric update is done via Alg. 1 using α, ω. The updated solver features f and LSTM cell states $s_{\mathcal{I}}$ are sent to the GNN in next optimization round. See Sec. 3.6 for further details.

- Loss $=L R(\lambda)\left(\frac{\partial L}{\partial \lambda}\right.$ is easy, it is x^{*} so can be done on GPU)
- It is possible to backpropagate!

GNN

- Graph convolution with attention mechanism (transformer based graph convolution scheme (Shi et al., 2021))
- LSTM with a state used in subsequent optimization rounds

```
Algorithm 3: Parameter prediction by GNN
Input: Primal variable features }\mp@subsup{f}{\mathcal{I}}{}\mathrm{ and cell states }\mp@subsup{s}{\mathcal{I}}{}\mathrm{ , Subproblem features }\mp@subsup{f}{\mathcal{J}}{}\mathrm{ , Dual variable
        (edge) features }\mp@subsup{f}{\mathcal{E}}{}\mathrm{ , Set of edges }\mathcal{E}\mathrm{ .
```



```
2 hi\mathcal{I}}=\operatorname{ReLU}(\operatorname{LN}(\mp@subsup{\operatorname{CONV}}{\mathcal{I}}{(}(\mp@subsup{f}{\mathcal{I}}{},[\mp@subsup{f}{\mathcal{J}}{\prime},\mp@subsup{h}{\mathcal{J}}{}],\mp@subsup{f}{\mathcal{E}}{\prime},\mathcal{E}))) // Compute primal variable embeddings
3 z
4(\hat{\alpha},\hat{\omega},0)=\Phi([\mp@subsup{f}{\mathcal{I}}{},\mp@subsup{h}{\mathcal{I}}{\prime},\mp@subsup{z}{\mathcal{I}}{}],[\mp@subsup{f}{\mathcal{J}}{},\mp@subsup{h}{\mathcal{J}}{}],\mp@subsup{f}{\mathcal{E}}{},\mathcal{E})\quad// Prediction per edge
5 \alpha < | = Softmax ( }\mp@subsup{\hat{\alpha}}{\bullet\bullet}{}),\foralli\in\mathcal{I},\omega=\operatorname{Sigmoid}(\hat{\omega})// Ensure non-decreasing obj., Prop. Z
6 return }\alpha,\omega,0,\mp@subsup{s}{\mathcal{I}}{
```


Learning pipeline

1 dual optimization round

(1) GNN to predict α, ω, θ
(2) Update λ with θ (rule 2)
(3) Apply T iterations of block Coordinate Ascent Method with predicted α, ω (rule 1)

Training

- Perform at most R dual optimization rounds
- For each mini-batch
- randomly select $r \in[R]$
- run $r-1$ without gradient tracking
- backpropagate through the last round (3 last ones with LSTM) by computing the loss
- Use two neural networks: one for first rounds $\left(<\frac{R}{2}\right)$, the other for the last ones.

Learning pipeline

Inference

- 2nd neural network when improvement becomes too small ($<1 e^{-6}$) with the first one
- For efficiency, use GNN only every T iterations of block Coordinate Ascent Method

Results

Figure 2: Convergence plots for $g(t)$ the relative dual gap to the optimum (or maximum suboptimal objective among all methods) of the relaxation (D). X-axis indicates wall clock time and both axes are logarithmic. The value of $g(t)$ is averaged over all test instances in each dataset.

Results

- One order of magnitude more accurate relaxation solutions wrt no learning
- On some datasets, no improvement by learning

