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A 3-papers work

o Paper 1: Lange, Jan-Hendrik and Swoboda, Paul, Efficient Message Passing
for 0-1 ILPs with Binary Decision Diagrams, ICML 2021.

o Paper 2: Abbas, Ahmed and Swoboda, Paul, FastDOG: Fast Discrete
Optimization on GPU, CVPR 2022.

o Paper 3: Abbas, Ahmed and Swoboda, Paul, Learning Cut Selection for
DOGE-Train: Discrete Optimization on GPU with End-to-End Training,
AAAI 2024.
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Overview

Objective
Provide efficient and accurate heuristic for 0/1 general MIP

@ Based on Lagrangian decomposition solved by block coordinate ascent and
followed by a heuristic (paper 1)

e GPU Friendly (paper 2)

@ ML used to update Lagrangian multipliers at each iteration (paper 3).
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Lagrangian decomposition

Binary linear problem

minc' (1)
a; x < b Vj € [m] 2)
x; € {0,1} Vi € [n] 3)

@ 7;: Set of variables appearing in constraint number j
@ X;: Set of binary assignment of variables of Z; satisfying constraint number
j, thatis, X; = {z € {0,1}% | Y., aj;x; < b;} (knapsack solutions)

@ J;: Set of constraints (indexes) where variable x; appears

€L,
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Lagrangian decomposition

Idea: consider J; copies of each variable z;.

minc' z!

E ajixg S bj
€L
1
%

z) € {0,1}

J
T =X
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Vj € [m]

Vi € [n],Vj e T\ {1}
Vi € [n],Yj € J;
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Lagrangian decomposition
Dualizing (6) and setting \j = c; —>_ . ;. gives:

LR()\)

min Z Z Ml (8)

JE[mM] i€ZL;
Z ajxl < b Vj € [m] 9)
iEIj
« €{0,1} Vi€ [n],Vj e T (10)

Remark : A must satisfy >, , M = ¢ for all i € [n].

LR()) is decomposable into 1 subproblem per constraint:
LR(\) = > EV)
Jj€[n]

with E(M) = max,ex; Yo,er, M7
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Lagrangian decomposition

LD
max LR(\) (11)
Y M=g Vi € [n] (12)
JeTi
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Block Coordinate Ascent Method

Idea: Update one Lagrangian vector \; € R7 at each time.
Min marginal averaging
Fori e [n] and j € J; and 5 € {0, 1}, let

mf; = BE(M) with z; = 3

mfj is the value of the best solution of subproblem j when z; is equal to 5.

Lagrangian update

: . 1 .
N =X iy = mly) = = - (mly —miy) Vi€

keJ;

New \; satisfies (12) and gives a non worse Lagrangian bound.
Remark: Needs to compute mfj!
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Block Coordinate Ascent Method

Algorithm 1: Min-marginal averaging

1 input objective vector ¢ € R™, constraint sets
X; C{0,1}% for j € [m]

2 Find variable ordering {iy,...,i,} = [n].

3 Initialize dual variables X} = ¢;/|.7;] for all i € [n]
and j € J,.

4 while (stopping criterion not met) do
5 Perform forward pass:
6 fori=11,...,i, do
7 for j € J; do
8 Compute min-marginals for 5 € {0, 1}:
9 mﬁ- = mingecx; T M st ;=8
10 for j € 7, do
1 Update dual variable:
M X — (m) - m?j) +
ﬁ >keg, My, — mg, .
12 Perform backward pass analogously (set
variable order to {7y, ...,71})

Remark: It is a heuristic (may get stuck in suboptimal points)!
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BDD

Start from binary tree

¥ | ¥ > »’2&3 .:5).
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BDD

"Shrink” some parts
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BDD

"Shrink” some parts

T

0 1 0 1

= K= m -

0

Remark: there may exist more than 2 nodes per variable.
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B

BDD to compute m;

minge(o,1} —5%1 + x2 + 4x3 + 3T4

Xy o+ + a3 <2 Xy w23 —wg =0
T2 I3 L3 Tra
0.5 2
7/ /
. 7/
L1 @ 7 L2
/
/

Al =(=5,0.5,2), (v1, T2, 73) € Xy A2 =(0.5,2,3), (z2, T3, 24) € X

Figure 2. Example decomposition of a binary program into two subproblems, one for each constraint. Each subproblem is represented by a
weighted BDD where solid arcs model the cost A of assigning a 1 to the variable and dashed arcs have 0 cost which model assigning a 0. All
7 — T paths in BDDs encode feasible variable assignments of corresponding subproblems (and » — L infeasible). Optimal assignments w.r.t
current (non-optimal) A are highlighted in greeni.e. 2, = 1, 2> = 3 = 0 for X and > = z3 = x4 = 0 for X5. Our dual update scheme
processes multiple variables in parallel which are indicated in same color (e.g. @, 2 in X, X, resp.).

@ Compute shortest paths from r and T

@ Select minimum path leaving node 7 with arc 3.
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Primal heuristic

For i € [n], let M; =3, 7 (mj; —my;). If M; >0, then it is preferable to fix x;
to 0, and to 0 otherwise.

Depth-first search considering variables following decreasing order |M;|
(considering best fixation variable) until a solution is found.
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Experiments

@ Run Block Coordinate Ascent Method and then primal heuristic.
e Compare with Gurobi (TL 1h for both)

Result comments
@ Provide weaker lower bounds than Gurobi (root LP relaxation (cutting?)) but
faster

@ Solutions of the primal heuristic are only slightly worse than those provided
by Gurobi (sometimes better) and faster.

@ There is a parallel version with a speed up to 6 when having 16 threads.
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Parallelizing Block Coordinate Ascent Mehtod

The problem
o Computing mfj can be done in parallel

@ Updating A needs synchronisation since mfj are needed!

The solution

Update A with values mfj (denoted mfj) computed at previous iteration!

X =X+ w(mg; —myy) — 17 Z(m}k —my) Vied
ke,

Remark: w dumping factor between 0 and 1 (fixed 1) following (Werner, Priia,

and Dlask, 2020).
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Parallelizing primal heuristic

Algorithm 2: Perturbation Primal Rounding

Input: Lagrange variables ! € RYi € [n].j € Ji,
Constraint sets X; C {0,1}% ¥j € [m],
Initial perturbation strength € R,
perturbation growth rate o
Output: Feasible labeling z € {0,1}"
1 Compute min-marginal differences M;; ¥i, j (MD) .
2 while3i € [n]andj # ke Jisr.\ o bhile Uniee s

sign(M,;) # sign(My;) do aver wuh }valve
3| fori=1,..., n in parallel do © ‘" SVLTWLL“-*‘
4 Sample 7 uniformly from [—4, d]
5 if M;; > 0Vj € J; then
6 | M+=6 Vied
7 elseif M;; < 0Vj € 7, then
8 | X =3 vYjieu
9 else if M;; = 0j € J; then
10 | M4=rd Vied
1 else
12 Compute total min-marginal difference:

M, = Z}E(f, M

I M 4=sign(M;) - |r| -6 Vje T
14 Increase perturbation: § < &8 - «
15 Reoptimize perturbed A via Algorithm 1
16 Recompute M;; Vi, j w.r.t optimized A
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Experiments

- Gurobi A BDD CPU <o-Gurobi A BDD CPU Gurobi A BDD CPU
- Spec. ® FastDOG = Spec. e —— FastDOG® | |eeeen Spec. ® FastDOG =
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Figure 5. Convergence plots averaged over all instances of a dataset. Lower curves depict increasing lower bounds while markers denote
objectives of rounded primal solutions. The x-axis is plotted logarithmically.

@ one order of magnitude faster than previous algo

@ needs 3 times more iterations for Block Coordinate Ascent Method than
previous algo
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More parameters when updating A

Rule 1: used at each step
Let wi; € [0, ].] and Qi > 0 with ZjGJi QG = 1.

N =N —wi(mi; —m) + Y i (M, —mg,) Vi€ T
kedJ;

Rule 2: used for initialization
Let § € R, .

keJ;

Learn 6, o and w!
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ML pipeline

ILP representation

= |

Dual optimization rounds Dual updates (in detail)

'
l
1 6 c R a,weR®
Param. update «, w'—l ' | |
Jorml = )
T I Non-param. Dual ' Non-param. Gen.
. ; update 0 updates ] update [-)> MMA
(:;/—,;.Jz | (eq. 2) (Alg. 1)
» sz /b TFeatures fr, 7. fr '
'

& <

Figure 1: Our method for optimizing the Lagrangean dual (D). The dual problem is encoded on a bipartite graph containing
features fz, f7 and fe for primal variables, subproblems and dual variables resp. A graph neural network (GNN) predicts ¢, a,
w for dual updates. In one dual update block (right), current set of Lagrange multipliers A are first updated by the non-parametric
update using 6. Afterwards parametric update is done via Alg. 1 using o, w. The updated solver features f and LSTM cell states
sz are sent to the GNN in next optimization round. See Sec. 3.6 for further details.

o Loss = LR(\) (%% is easy, it is z* so can be done on GPU)

@ |t is possible to backpropagate!
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GNN

@ Graph convolution with attention mechanism (transformer based graph
convolution scheme (Shi et al., 2021))

@ LSTM with a state used in subsequent optimization rounds

Algorithm 3: Parameter prediction by GNN

Input: Primal variable features f7 and cell states sz, Subproblem features f 7, Dual variable
(edge) features fg, Set of edges €.

hgs = ReLU (LN (CONV 7 (fz, f7.fe.&))) // Compute subproblems embeddings
hz = ReLU (LN (CONVz ( fz,[f7.h7]. fe.£))) // Compute primal variable embeddings
z7, 87 = LSTMy(hr, 57) // Compute output and cell state

(&,,0) =@ ([fz.hz.27). [f7.h7]. fc. &) // Prediction per edge
vje = Softmax(die), Vi € Z, w = Sigmoid(w) // Ensure non-decreasing obj., Prop. H
return o, w, 0, s

I R A
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Learning pipeline

1 dual optimization round
@ GNN to predict o, w, 6
@ Update A with € (rule 2)
© Apply T iterations of block Coordinate Ascent Method with predicted a, w
(rule 1)

Training
@ Perform at most R dual optimization rounds

@ For each mini-batch

o randomly select r € [R]

e run r — 1 without gradient tracking

e backpropagate through the last round (3 last ones with LSTM) by computing
the loss

o Use two neural networks: one for first rounds (< £), the other for the last

ones.
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Learning pipeline

Inference

@ 2nd neural network when improvement becomes too small (< 1e=%) with the
first one

o For efficiency, use GNN only every T iterations of block Coordinate Ascent
Method
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Results
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Figure 2: Convergence plots for g(¢) the relative dual gap to the optimum (or maximum suboptimal objective among all methods)
of the relaxation (D). X-axis indicates wall clock time and both axes are logarithmic. The value of g(t) is averaged over all test
instances in each dataset.
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Results

@ One order of magnitude more accurate relaxation solutions wrt no learning

@ On some datasets, no improvement by learning
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