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A 3-papers work

Paper 1: Lange, Jan-Hendrik and Swoboda, Paul, Efficient Message Passing
for 0–1 ILPs with Binary Decision Diagrams, ICML 2021.

Paper 2: Abbas, Ahmed and Swoboda, Paul, FastDOG: Fast Discrete
Optimization on GPU, CVPR 2022.

Paper 3: Abbas, Ahmed and Swoboda, Paul, Learning Cut Selection for
DOGE-Train: Discrete Optimization on GPU with End-to-End Training,
AAAI 2024.
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Overview

Objective

Provide efficient and accurate heuristic for 0/1 general MIP

Based on Lagrangian decomposition solved by block coordinate ascent and
followed by a heuristic (paper 1)

GPU Friendly (paper 2)

ML used to update Lagrangian multipliers at each iteration (paper 3).
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Lagrangian decomposition

Binary linear problem

min c>x (1)

a>j x ≤ bj ∀j ∈ [m] (2)

xi ∈ {0, 1} ∀i ∈ [n] (3)

Ij : Set of variables appearing in constraint number j

Xj : Set of binary assignment of variables of Ij satisfying constraint number
j, that is, Xj = {x ∈ {0, 1}Ij |

∑
i∈Ij ajixi ≤ bj} (knapsack solutions)

Ji: Set of constraints (indexes) where variable xi appears
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Lagrangian decomposition

Idea: consider Ji copies of each variable xi.

min c>x1 (4)∑
i∈Ij

ajix
j
i ≤ bj ∀j ∈ [m] (5)

xji = x1i ∀i ∈ [n],∀j ∈ Ji \ {1} (6)

xji ∈ {0, 1} ∀i ∈ [n],∀j ∈ Ji (7)
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Lagrangian decomposition

Dualizing (6) and setting λ1i = ci −
∑
j∈Ji

gives:

LR(λ)

min
∑
j∈[m]

∑
i∈Ij

λjix
j
i (8)

∑
i∈Ij

ajix
j
i ≤ bj ∀j ∈ [m] (9)

xji ∈ {0, 1} ∀i ∈ [n],∀j ∈ Ji (10)

Remark : λ must satisfy
∑
j∈Ji

λji = ci for all i ∈ [n].

LR(λ) is decomposable into 1 subproblem per constraint:

LR(λ) =
∑
j∈[n]

E(λj)

with E(λj) = maxx∈Xj

∑
i∈Ij λ

j
ix
j
i
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Lagrangian decomposition

LD

maxLR(λ) (11)∑
j∈Ji

λji = ci ∀i ∈ [n] (12)
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Block Coordinate Ascent Method

Idea: Update one Lagrangian vector λi ∈ RJi at each time.

Min marginal averaging

For i ∈ [n] and j ∈ Ji and β ∈ {0, 1}, let

mβ
ij = E(λj) with xi = β

mβ
ij is the value of the best solution of subproblem j when xi is equal to β.

Lagrangian update

λji = λji + (m1
ij −m0

ij)−
1

Ji

∑
k∈Ji

(m1
ij −m0

ij) ∀j ∈ Ji

New λi satisfies (12) and gives a non worse Lagrangian bound.

Remark: Needs to compute mβ
ij!
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Block Coordinate Ascent Method

Remark: It is a heuristic (may get stuck in suboptimal points)!

Abbas, Ahmed and Swoboda, Paul DOGE-Train 2024 11 / 29



BDD

Start from binary tree
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BDD

”Shrink” some parts
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BDD

”Shrink” some parts

Remark: there may exist more than 2 nodes per variable.
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BDD to compute mβ
ij

Compute shortest paths from r and >
Select minimum path leaving node i with arc β.
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Primal heuristic

For i ∈ [n], let Mi =
∑
j∈Ji

(m1
ij −m0

ij). If Mi > 0, then it is preferable to fix xi
to 0, and to 0 otherwise.
Depth-first search considering variables following decreasing order |Mi|
(considering best fixation variable) until a solution is found.
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Experiments

Run Block Coordinate Ascent Method and then primal heuristic.

Compare with Gurobi (TL 1h for both)

Result comments

Provide weaker lower bounds than Gurobi (root LP relaxation (cutting?)) but
faster

Solutions of the primal heuristic are only slightly worse than those provided
by Gurobi (sometimes better) and faster.

There is a parallel version with a speed up to 6 when having 16 threads.
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Parallelizing Block Coordinate Ascent Mehtod

The problem

Computing mβ
ij can be done in parallel

Updating λ needs synchronisation since mβ
ij are needed!

The solution

Update λ with values mβ
ij (denoted mβ

ij) computed at previous iteration!

λji = λji + ω(m1
ij −m0

ij)−
ω

|Ji|
∑
k∈Ji

(m1
ik −m0

ik) ∀j ∈ Ji

Remark: ω dumping factor between 0 and 1 (fixed 1
2 ) following (Werner, Pr̊uša,

and Dlask, 2020).
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Parallelizing primal heuristic
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Experiments

one order of magnitude faster than previous algo

needs 3 times more iterations for Block Coordinate Ascent Method than
previous algo
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More parameters when updating λ

Rule 1: used at each step

Let ωij ∈ [0, 1] and αij ≥ 0 with
∑
j∈Ji

αij = 1.

λji = λji − ωij(m
1
ij −m0

ij) +
∑
k∈Ji

αij(m
1
ik −m0

ik) ∀j ∈ Ji

Rule 2: used for initialization

Let θ ∈ Rλ.

λji = λji + θij −
1

|Ji|
∑
k∈Ji

θik

Learn θ, α and ω!
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ML pipeline

Loss = LR(λ) (∂L∂λ is easy, it is x∗ so can be done on GPU)

It is possible to backpropagate!
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GNN

Graph convolution with attention mechanism (transformer based graph
convolution scheme (Shi et al., 2021))

LSTM with a state used in subsequent optimization rounds
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Learning pipeline

1 dual optimization round
1 GNN to predict α, ω, θ

2 Update λ with θ (rule 2)

3 Apply T iterations of block Coordinate Ascent Method with predicted α, ω
(rule 1)

Training

Perform at most R dual optimization rounds

For each mini-batch

randomly select r ∈ [R]
run r − 1 without gradient tracking
backpropagate through the last round (3 last ones with LSTM) by computing
the loss
Use two neural networks: one for first rounds (< R

2
), the other for the last

ones.
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Learning pipeline

Inference

2nd neural network when improvement becomes too small (< 1e−6) with the
first one

For efficiency, use GNN only every T iterations of block Coordinate Ascent
Method
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Results
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Results

One order of magnitude more accurate relaxation solutions wrt no learning

On some datasets, no improvement by learning

Abbas, Ahmed and Swoboda, Paul DOGE-Train 2024 29 / 29


	Context
	GPU Friendly algorithm
	Learning how to update 

