Tree Components Programming:
an Application to XML

Pascal Coupey, Christophe Fouqueré, and Jean-VincenbLodd

LIPN — UMR7030
CNRS — Université Paris 13
99 av. J-B Clément, F-93430 Villetaneuse, France
firstnane. | astname@i pn. uni v-parisl3.fr

Abstract. We present a new programming approach based on a contextual com-
ponent specification. The language we propose integrates XML armddoal
aspects in a coherent and homogeneous framework. This enaltefulig have
static typing and to specify formal properties with respect to interactions.

Our language FICX, Functional Interactive and Compositional XMlfings a
new kind of data structure called Xobjects and relies on a statically typed func
tional language (currently OCaml). An Xobject is an abstract structaeenm

two parts: the Xdata part is an XML structure extended by means of tegipe-
icated to interactions, the reaction part gives the code associated togriggeis
evaluated on demand. The modularity is ensured by a parameterizati@beof
jects: compound Xobjects form a tree structure, rendering a complelx X&é
together with appropriate reactions for triggers. A program is a setwftstes,
each structure being a tree of Xobjects.

1 Introduction

Classic object oriented programming languages offer fdabslass relationship with
inheritance mechanism. It is not well suited when applicatineed "part-of” relation-
ship. Of course, this may be encoded using the object parabig no facility is given
to the programmer since she has to build by herself the pamgrbeside the class/-
subclass hierarchy. This is true in the semi-structured figld and in particular XML-
like languages where many recent works extend XML languagarder to describe
documents as a composition of various parts (pure XML, tgrigatabase requests,
web service requests [11, 13, 5]). Our purpose is to propgsegramming language
whose core principle is that basic objects are componengstiedfe and to apply it to
XML language. In fact, tree structures may be obtained bygingrpartial trees (in-
stead of just composing them). Such (partially defined)xstines are first-class citizens
in our programming language. They encapsulate static andrdic contents to allow
for interactivity and expressiveness. Moreover the whalglage is strongly typed to
ensure error-free executions. This programming paradigapplied here to XML. Ex-
amples are given wrt the web as this domain has at least tlwvioy features: use
of semi-structured data, interactivity, needs for modalad safe programming. Our
language FICX, Functional Interactive and CompositionslLX defines a new kind of

data structure calledobjectand relies on a statically typed functional language (cur-
rently OCaml). An Xobject is an abstract structure made af parts: theXdatapart is
an XML structure extended by means of triggers dedicatedtévactions, theeaction
part gives the code associated to triggers and that is eedloa request. Aequesis a
first-citizen expression of the language. Its value is tisailteof a reaction selected by
a trigger. To take advantage of the tree structure of compa{objects, a delegation
mechanism is offered: a request may contain an (abstraitt)tpde followed to find
an adequate reaction. FICX uses in fact extensively theegiraf abstract path An
abstract path is a sequence of labels for addressing Xshjeattree, e.g. the root, the
value at label Y of a parent, ... To summarize, FICX has thenrfaiowing character-
istics:

Modularity : Compound Xobjects form a tree structure, rendering a ceRI$ML tree
together with appropriate reactions for triggers. A progia a set oXstructuresEach
Xstructure is a fully defined tree of Xobjects and plays tHe of an entry point to the
program.

Interaction: Each reaction describes a possible evolution: the refudtquesting a re-
action to some Xobject is a new Xobject (possibly with new tédaew triggers, new
reactions).

Static typing: The type of an Xobject is given by the type of its Xdata pagetiher with
the type of its reactions. An Xobject defines a set of triggesable for interaction) and
a set of reactions (called either by an expression of theulagg or by means of an
interaction). These two sets should coincide in case ofutires: the type of reaction
patterns should cover the type of the XML structure assediad a trigger (sound-
ness), and, a reaction being given, a corresponding trgjgmild have been defined for
interaction (completeness).

These peculiarities offer the user means to develop modulétype checked pro-
grams. In the framework of web applications, triggers mayieeed as web service
names or anchors in web sites. However, contrarily to mobtlagguages, triggers and
reactions should be related in a program in such a way thatatemmay occur. The toy
example given in example 1 on the left defines the variable to be a function with
one parametefsg which returns an Xobjettandnhore whose value is an Xobject with
one parameter. The Xdata part is written in CDuce style [2] and is extendéith &
triggerT. The corresponding XML structure e Xobject declaration is given on the
right. The Xobject i nk has two reactions with trigger tag The first one creates a new
Xobjectiink with the string' Bonj our" if the parameter given with the trigger contains
the string" Hel 1 0", the second reaction has the converse behaviour. The ievoldn-
sists in creating Xobjects that alternat@snj our” and"Hel 10" messagesebsite IS a
(compound) Xobject giving a value to the parametar a copy of Xobjectore. Note
that Xobjecthone is unchanged. Its standard HTML presentation is given orritie
(whereURL_encoding_of() is a built-in function). The interactive request has the
same shape as the expression for definimgrvebsi te. Its operational semantics uses
the delegation mechanism.¥nr("Hel 1 o") @ebsi t e, websi t e iS called theanitial concrete

! For the sake of simplicity, we consider thatk = xobj ect <> (msg:string) ... IS Syn-
tactic sugar forink = fun (msg:string) —xobject <> ... then collapsing the name of the
function which returns the Xobject with the name of the Xobject itself.

link = fun (nsg:string) —
xobj ect <> Data extracted fromwebsite in standard
T<hl align="center">[nsg] XML style:
| 4
T(<hl align="center">["Hello0"]) <html>
= (link "Bonjour") <head>
T(<hl align="center">["Bonjour"]) <title>"\Wel cone" </ title>
= (link "Hello") </head>
xend; <body>
) <a href=
hone = xobj ect <Y> URL_encoding_of(
<htm >[Y.T("Hel | 0") @website
<head>[<title>["Wel cone"]])>
<body>[Y] <hl align="center">["Hell0"]
1
» xend; </body>
</html>
website = honme[Y — (link "Hello")];
otherwebsite = Y. T("Hello") @wbsite;

Ex. 1: Xobject definitions and XML data

receiveras it is the Xobject that should at first react. As it has no appate reaction,
the request is delegated wrt the path, herket o be the value ofiink "Hello"), 0
responds byink "Bonjour"). The Xobjectot herwebsi t e may then have been defined
equivalently by the expressionme[Y—(link "Bonjour")]. This is also the result sent
back in case of interactive request.

We present in the next section the syntax and the operats@madntics of the lan-
guage FICX, focussing on its main features: abstract pXibisjects, requests. We de-
fine in particular a specific class of trees and show in whidergxa set of abstract
paths is a representation of such a tree. We give in sectibe 8/pe system . We end
comparing FICX to other works in this domain and present a éstensions under
study.

2 Language FICX: syntax and operational semantics

We use a functional programming language, currently OCamh core language for
functions, definitions, ... that we de not detail here (tradex may find descriptions of
OCaml in [6]). This core is extended by means ofX¥objectdata type that integrates
an extended XML structure calleXdatato publish data and triggers, and a functional
part calledreactionintended to answer requests built from triggers. Moreowalj¥cts
may be parameterized kabstract pathgdefined in the following subsection. Finally,
an Xstructureis a specific top-level definition that is used to declarerattive data
and functionalities. The grammar of the language FICX, 8jggo our aim, is given in
figure 1. We use the following notations throughout the papés an expression and
is a patterng, A, C, z, y are identifiersy is a trigger,Y’, Z are abstract paths, finally
states for a reaction.

The operational semantics follows standard functionamming operational se-
mantics: it is given as an evaluation judgment on prograxm.essions, ... to be com-
puted with respect to a given environment. An environmemtnisvaluation environ-

Program
P n=c empty program
|SP|dP Xstructure or definition followed by a program
Xstructure
S m=Xstruc dbegi nw=e whered is a definition,w an identifier,e an expression
Xobject
e == xobj ect (Y1,...,Y,) Xobject definition with abstract paths parameters
ep sr Xdataw reactions
xend
| e1[Y—eo] parameter assignment
| 7(e2)Qeq request evaluation
| Y Abstract path namé&”
Reactions
sr n=c€ r = 7,(p)=e reaction conditioned by trigger and parameter patterns
| rsr
Triggers
T =Y.C abstract path followed by a tag

Fig. 1: Grammar of FICX

menttogether with dhandler environmentAn evaluation environment is a partial func-
tion from the set of variable names and abstract paths t@sakither ground values or
handlers to such values (supposing a domain of handlersqndllr environment is a

partial function from the set of handlers to values. Hargllae used to denote Xobject
parameter values. The evaluation judgment for expresssarfthe following form:

EHFelv,H

read as: the evaluation of expressioim an evaluation environmeut with a handler
environmentH leads to a value together with a new handler environmét.

2.1 Abstract paths

Abstract paths are defined according to the following gramwmilaerey is an identifier,
par ent,root andsel f are keywords:
Y :=parent |root |self |y |Y.Y

We suppose further that abstract paths (and abstract paérnsaor path types in
the same waj) are always in normal form with respect to the rewriting, » applied to
sel f.Y, whereY is the abstract path to be normalized#£ sel f ,r oot , par ent):

y.parent —pe€ Y.root —4p root Yself —,pself

Thus— 4 p gives rise to two kinds of normal formspot .Y andsel f .Y with sel f
andr oot notinY. The intended meaning is that a set of such abstract pathsdsho
partially define two rooted trees, one with abstract roobt and another 'centered’
onsel f wheresel f .par entpar ent should represent a path 'up’ to some con-
crete root (see example 2 where orientation is given as thieisanot always at top).
Abusively,sel f may be omitted in the following from abstract paths writing& give

2 Grammars for path patterns and path types are similar to the grammarfgiabstract paths,
except a’_' added for patterns.’_’ matches an abstract path.

Let¢p = {root .r,sel f .a.c,sel f .a.d,sel f .b.e}
andy = {root .s,sel f .g,sel f .parent .f},
¢ andv represent the following pa(i’rs of trees:
]) parent/'\f
6:($. a2 NPy and vi(§s, $)
i c/ \d Ve is v

The following is an example' of ’m’erge'vvith mask’ operation wrt some path:

& <sert.b Y: (/°\ .6}/8\.\1.)
AR C./ \.d ./ e\.g

Ex. 2: Abstract paths and trees.

below a few simple definitions and properties that charatehe particular trees and
operations we need. We then relate such trees to a spedificatien by abstract paths.
We do not first consider values (say Xdata and reactiong)hathto nodes and we fix
a non-empty set of symbols.

Definition 1.

— Anunambiguous rooted-edge-labelled trees a tree with a root node, edges la-
belled by elements iff, and such that for each node two distinct edges have distinct
labels. Let7, be the set of such trees.

— LetTy,T5 € 7., T1 < Ts if there exists an injective mappingfrom T} to T, such
that if r is the root node of; thenf(r) is the root node of 3, and if (nq, ny) is an
edge off; labelled, then(f(nq), f(n2)) is an edge of; labelled!.

Proposition 1. Let £* be the set of finite sequences of element§ ahd P(L*) be
the powerset of*, (7., <) is faithfully represented b{fP (L*), C), hence(7.,<) is a
lattice.

Let us now consider the s&t- of partially defined unambiguous rooteftedge-
labelled treeswhere a special symbol’_’ plays the role of a variable:

Definition 2. Let _ be a symbol not i, 7 is the set of unambiguous rooté&d) {_}-

edge-labelled trees such that patli$._ cannot appear, wherkec L. LetTy,T5 € T4,

T, < Ty if there exists an injective mappinf from 13 to 15 such that ifr is the
root node ofT; then f(r) is the root node ofls, if (n1,n2) is an edge off, then
(f(n1), f(n2)) is an edge of,, moreover if the label ofny, no) is in £ then it is also
the label of(f(n1), f(n2)).

Proposition 2. (7, <) is a poset(7;, <) embeds if7;, <), (77, <) is not a lattice.

In example 3, a counter-example f@f7, <) to be a lattice is given. However the fol-
lowing proposition serves to control Xobject compositiatidity:

Proposition 3. LetT), T, € 7, (T, T>) has a least upper bound (lub) iff eith@f =

Ty, orTy, Ty € Tp,orif Ty ¢ T, thenTy € 7, and the set of labels of edges from the
root of T5 is included in the set of labels of edges from the rodf'gfor the same last
property interchanging’ andT5.

)

Let o be —./ \.X andg be Tythen /lk.y and y./ \.X are distinct, incomparab
zl U zl zl
and the smallest that are greater tlz»aa.ndﬁ. *

Ex. 3: Trees inTz

The proof follows a structural definition of these trees. Kbg element comes from the
fact that if the two roots have each a daughter labelled _there are always at least
two distinct minima: one merging the two edges labelled e ather putting separately
two branches, one labelled _, the other labelled by someegienf £ (that is a non-
empty set).

Let us now add a value to a node, i.e. a value necessary fop#rational semantics
or the typing system. For simplicity, we keep notatibp and we define a lub of two
valued trees as the lub of the trees obtained forgettingahes. We consider moreover
the following definitions: IfI" € 7; andZ is a path inT" thenZ(T') is the subtree of’
at pathZ, val(T) is the value associated to the root nod&ofel f (T') is defined as the
subtree ending the _ patkel f(T) = T if T € Tz, sel f(T) = self(_(T)) otherwise.
Taking care of previous properties, we define the followiagipl operations off

Definition 3. LetT), T € T,

— 'Merge with mask’ operationa: T = T; < T» has the structure of the lub of
T, and Ty if it exists and, forall patht’, val(Y(T)) = val(Y (T3)) if defined,
val(Y(T)) = val(Y (T})) otherwise.

— 'Merge with mask’ operation wrt some patlt. = 77 <y T is defined in the
following way: letn be the longest path including only _ i (i.e. the depth of
self(Tg) in TQ),

e if |Y| > n, let Z be the prefix ot of length|Y | — n and T} be the tre€l} after
deleting the subtre& (T1), if Z(T1) < T, exists,T is the treeT] appending
Z(T) < T at the leafZ, otherwiseT” is not defined ;

e if Y| < n,letZ be asequence of _ of length- |Y'| andT} be the tredl’;, after
deleting the subtre€ (T3), if Ty < Z(T») exists,T is the treeT;, appending
T, < Z(T») at the leafZ, otherwiseT is not defined.

Note that, thanks to proposition 3, the safety of previousrations may be statically
checked as soon as labels are known. The following propasithiows that such trees
may be used to design an operational model for our languagkalao a typing system
as soon as a typing system is available for Xdata and reagtion

Proposition 4. A finite set of abstract paths represents two trees: a trég-iwe called
‘with abstract rootr oot ’, and one in7;, we called 'centered osel f .

In the following, we freely use the abstract path notatiandjoerations ory ;.

2.2 Xobjects

An Xobijectis structured in two parts: akdatastructure together witheactions and
is parameterized by means of abstract paths. Paramei@mnizata convenient way to

xstruc
link = xobject <root.Hl> (x:string)
root. HL. T<a>[x]
» xend;
nmessage = xobject <> (nsg:string)
<hl align="center">[nmsg]

» xend;
phandl er = xobject <ML> (k:int)
ML <p>["Visits for this session (cs): " k]

T(<a>[x]) = (let y=(if (x = "Hello") then "Salut" else "Hello") in
(phandl er (k + 1))[Ml—(nessage y)])
xend;
home = xobject <L1, L2, H1>
<htm >[<head>[<title>["Welcome"]] <body>[Hl
 L1
 L2]]
» xend;

mL = (message "Hello");

hl = (phandler 0)[ML — mi];

11 = (link "Increnent cs and reload with Hello");
12 = (link "Increnent cs and reload with Salut");
o = hone[L1l — |1][L2 — |2][HL — hi1];

begin website = o

Ex. 4: Xobjects with components

refer to yet unknown Xobjects while parameter assignmemgeasepartial trees of com-
ponents. Abstract paths that are used in an Xobject bodyealaréd in the header: in
example 4, Xobjectore expects three subcomponenis 2,+1. Note the reference to
root . H1 in the definition ofi i nk: this Xobject is expected to be in a tree whose Xobject
root has at least a subcomponent for lahel

Composing Xobjects is done by assigning values to absteatht parameters: the
expression = e [Yi—es] states thab is a copy of the Xobject value of, where the
abstract path” refers to the value of expressien (that should also be an Xobject).
Such compositions of Xobjects give rise to two partially defi trees of components as
explained before. These partial trees are merged in on@ttbe case of an Xstructure
declaration, that is a top-level expression. An Xstructrecifies a completely defined
Xobject: the tree of components is "closed" and the Xobjgcbinsidered as an inter-
active entry point to the program. A program may have sevé&stalicture declarations.
In example 4yebsit e is declared as an entry point. The tree of components isdadte
o, that has two links1 andi 2 and one phandleir as subcomponentsy having a child
nt. Two triggers are declared, posted irand 2, authorizing interactive requests of the
form H1. T(x) @websi te.

We are now able to precise the operational model. We exteruireit, supposed
given for basic types and that includes handlers, by theviafig kinds of values:

— T called ahandler tree valués a map from abstract paths to handlers. It is a pair
of trees(U, V') € 7T x T, one rooted at abstract patioot and one centered at
sel f with the following partial operations:

e An’identifier’ operation: letll’ = (U,V), if V € 7, andU <V is defined
then]' = (U <« V,U QV).

m fresh, T = {self — m}
E,H Fxobject (Y1,...,Y,)—ew srxend | T, HU {m — zval(E,e » sr)}

EHEFEex Mo, Hoe E,Hater | T, Ha
EHE 91[Y0—>€2] 1 <y Ta, Hy

EREAVgE L, H1 &1, Hi el To, He
E,HFxstrucdbeginw=ce {4 & U{w—]T>}, Hs

Fig. 2: Operational semantics for Xobject and Xstructure dedlamat

e A’merge with mask’ operatiora: let I, = (U, V1) andT, = (Us, Va) be
handler tree valueqI" = T, < T is the handler tree valu@/, V') such that
U=U; <xU;andV =V; < V.

e A’merge with mask’ operation wrt some path: By = (U3, V1) andT;
(Ua, V2) be handler tree valuey; be an abstract path in normal forfi, =
T <1y T is the handler tree valué/, V') such that

x if Y hasformself.Z, U = U; < Uy andV = V; <y V5,
x if Y has formroot.Z, V = Vi andU = Uy <ty W where]T, = (W, W).
— zval(€, e » r) serves to denote Xobject closures, wheis a sequence of values
of the formr,(p) = e, e is an expression anflis an evaluation environment.

A handler tree valu@’ may also be part of an evaluation environment as it is a mayp fro
abstract paths to valuedom (") is then the set of abstract paths®t We consider
available in that case an operati@* —Y" that changes the reference frame of the
domain of " wrt the change fronY to Y.

The operational semantics of Xobjects is given in figure 22 $amantics corre-
sponding to an Xobject declaration is straightforwardlyasare (as for functions) and
assignment of abstract path parameters is similar to tinelate treatment of handlers
in functional programming: the rule is nothing else but a vaue given for the ref-
erence (the typing system should ensure thas an Xobject value). The semantics of
an Xstructure declaration follows the semantics of a (topl)edefinition (}, evaluates
definitions).

2.3 Xdata and reactions

The language for the Xdata part extends XML. XML is basicahkpressed by means
of tree structures where nodes are of the farm /. >[s] whereq is the markup of the
node,/. is a list of attribute-value pairs (the value may be the tesfithe evaluation of

an expression), andis a sequence of XML constituents. XML syntax is extendetén t
following way: an abstract path may be used in place of an XMdenand each node in
an XML structure may be labelled by a triggerA trigger r has the general fori.C'
where(C' is aninteraction tag(tag for short) and the abstract pathis the path to the
abstract last possible receiveBetting down a trigger means that a functionality should
be available, as aeTin HTML or the description of a service. In case of Xstructures, a
built-in functionget _Xdat a is available that extracts the Xdatum to build a (standard)

EHEexJva, Ho EHober T, Hi Ha(self(T)) = zval(Er,e » sr)

match(T, v, sr) = (€0, &o)
81\(dom(€o) U dom(’ﬂ”l)) J& U Tl,Hl Feg »U« ﬂno,Ho

S,H [T(P,Q)@P,l ll To,Ho

EHE eV va, Ho EHaober T, Hi Ha(self(T)) = zval(Er,e » sr)

match(y.Z.C vz, sr) = undef
EUTY™* Y Hy b Z.Ces)@sel f | Ty, Ho
EHFEy.Z.C(e2)Qey || T <1y Mo, Ho

where the functiomnatch(_, _,) checks if a trigger fires a reaction and in this case sends|back
the expression to be evaluated together with the capture variables givarstapdard pattenn
matching functionmatch Patt (not given here):
match(Y.C,v,€) = undef,
match(Y.C,v, Z.D=c sr) = match(Y.C,v,sr)

if Y#Z or C#D or matchPatt(v,p) = undef
match(Y.C,v,Y.C(p)=e sr) = (e,I') i f matchPatt(v,p) =T

Fig. 3: Operational semantics of requests

XML structure that can be sent interactively. When encoumgean abstract path in
place of an XML node, the function is recursively called oa thalue at the abstract
path. In case of a trigger, a request is prepared that insltideaddress of the value of
r oot (called theinitial concrete receivel), the abstract path from it to the last possible
receiver, the interaction tag and an XML structure (the patar of the request). Note
that the abstract path to the last possible receiver is nsangromr oot , then may
be different from the abstract path set up in the Xdata. Sucimt@ractive request is
at first received (and executed) by the initial concreteiveceln fact a request is a
first-class citizen that has the general forfn,)@Qe; : ¢, is the concrete receiver of the
requesty (e2) gives the trigger and the parameter value for the requestopkrational
semantics is given in figure 3. Due to lack of space, the secoledconsiders only
an identifier beginning the abstract path but similar ruley tne given with keywords
par ent ,r oot andsel f . The semantics may be rephrased in the following way: if the
concrete receiver has an adequate reaction (the reactimh@sarigger and parameter
of the request), the reaction is evaluated ; otherwise theest is delegated following
the path to the last possible receiver until some Xobjectdrmaadequate reaction. It
is the type system that is responsible for checking thatthannot be run-time errors.
Note that an Xobject value is rebuilt when a delegation aeduarthis paper, we suppose
that capture variables are available in standard and XMtepa. However, this may
be extended to tag and abstract paths patterns.

Going back to example 4, a tags set down in the Xdata part ofnk: r oot . H1. T<a>[x]
states that the tagis an anchor. Requests available in this case may be for dgamp
T("Hel 1 0") @1 OF HL. T("Hel | 0") @wbsi t e. This last request is the only one that can be used
interactively. Aswebsi t e has no appropriate reaction, the request is delegatadvalue
of H1 as it is given inwbsi te. The reaction part of this phandler contains a reactionshat

8 This is generalized in section 4 where the initial receiver may be différemtr oot .

Xdata
t* u=[1]<a 1;>[r] Xdata tree
| vV abstract path type name
Xobjects
t° =1 | Y abstract tree and path name types
vn s=tep type of a Tnode value
p n=€ sequence of Xobject types
| Tp1 — o1 [t9]; .. iTen — By, [— t5)] fOr @ pattern type for trigger type

Fig. 4: Type language of FICX (except XML and functional type lange)

fired with result the Xobjectphandi er 1)[M.—(message "salut")]. The final value sent
back to the requestertisne[L1—I 1] [L2 2] [HL—(phandl er 1) [ML—(message "Sal ut")]].

3 Language FICX: the type system

FICX is strongly typed: the static typing offers the prograar a way to check its pro-
gram before execution. Beside the usual benefits, it allongheck the completeness
and soundness of the program with respect to interactiogévas by request expres-
sions. Obviously, requests included in the program arekateat compile time and
interactive requests are checked only on the fly. Howeves,may control interactive
requests by studying available triggers and reactions:céaks in a browser generate
requests and are allowed by triggers set up on some Xdatsseveices should answer
to declared services. We refer in the later to completenagsaudness with respect to
the cover of triggers and reactions in an Xstructure, i.ellg efined tree of Xobjects.

The type language is in two parts (see figured)stands for standard or Xdata
expressions,® for Xobjects. The type system for functional expressiorstandard, it
is extended for Xdata expressions by mimicking the strectAbstract path variables
are also defined as types (these are sequences of constér@sype of an Xobject
is an abstraction of a handler tree value as defined in theatipeal semantics: it is
a pair of trees ir/; x 77 with abstract paths as labels and nodes valued by the type
of its Xdata together with types for the reactions (patterd eesult), these values are
notedwvn in the figure.p defines the types for possible reactions (supposed if gisen a
triggers, explicit if given as reactions): this is a sequeepossibly empty associating to
a trigger pattern and to a pattern type the type of the rekiilis defined (summing
over the sets of patterns types, and of result types). Takitogaccount reactions in
the type is possible because a program may only include & finimber of Xobject
types. However, as reactions and triggers may not be defindgeisame Xobject, the
type system should propagate pieces of information and ygbesible merge them to
satisfy coherence properties when an Xobject is used asaanpser value for another
Xobject.

Due to lack of space, we limit the description of type judgisen Xobjects. The
remainder is quite easy to define as it takes up techniquesfastunctional program-
ming, XML, ... Note that in the following we suppose that adnlies newly typed were
not typed before (type clash with respect to the environrisestipposed implicit). Let

10

A be a type environment, i.e. a partial functienfrom the set of variable names (in-
cluding abstract path variables) to types, judgments foexgression and a sequence
of reactions are given as follows:

At e:t whereeis an expression andts type

A+, sr: p wheresr is a sequence of reactions with type

3.1 Expression judgment rules: Xobjects

The type of an Xobject is of typ& (YJoi n builds the pair of trees) whose=| f node
value summarizes types of reactions and of triggers set thgiXdata part. These two
data are merged in a single typeconsidering that triggers not covered by reactions
give 'partially defined’ typesTr i g computes the set of triggers set up in its argument.
RI T (Reaction Intersection Type) retracts triggers (in itsoggcargument) for which
reactions are given in its first argument (a reaction typajafeter assignment is typed
by means of a merge and mask operation wrt an abstract path.

—_— —_—
AY,—Yibe:t AY, =Y, F.sr:p
R T(p, Trig(t))=/p
f('l):Y-JOin(yl,..wY,l,,SElf’—ﬂL/V,()/) Abe T Abey: Ty
Al xobj ect <Yi,....Y,>—ep srxend:tf AF e[Yimes] : Ty <y T

Auxiliary functions for type computation:

Trig(<a L;>[r])=Trig(r)

Trig(r<a l;>[r]) ={r— <a L;>[r]}UTrig(r)

Trig(re ree) =Trig(re) UTri g(ree)

Trig(t)=0 otherwise

R T(p,0) =p

RIT(p, {r — t°}UT) =RIT(RI T1(p, 7 — t*),T)

R Tl(e,7 —t°) =7 — t°

R T1(11 — ¢ [— t3);p, 7 — t°) =71 — 1 [— I;R Tl (p, 7 — t° \ 71 — 1)

3.2 Expression judgment rules: requests

A requestr(e2)@e; has a type given by the result of the fired reaction. This react
should be on the path (given in the trigggrbeginning from the receiver (value of).

If the type ofe; includes a compatible reaction (functieestreac), then the request
has the type of the result:

Abe T Abey:ty testreac(r,ts, p(sel f (1)) =T
AlF 7(e)Qey : T <1, I

otherwise the request is delegated to the first part of tiggeri The following rule
concerns the case where this first part is some chil@he fact that the type of an
Xobject is a global environment (not limited to local congtints) allows for similar
rules when the first element of the pattpir ent , orr oot .

11

Abe M Abes:ts testreac(y.Y.C,to, p(sel f (71))) = undef
val(y(T)) defined A\ dom (1) U T V=se T - Y.C(ey)@sel f : T
AFyY.Clex)Qey : Ty <1, T

where
testreac(t,t,e) = undef
testreac(t,t, 7,—t1—t3 ;p) =15 if 7 <:; 7, andt <: ty
testreac(t,t, 7,—t1—1t9 ;p) = testreac(t,t, p) otherwise

Itis not too difficult to prove a safety theorem stating thativtyped expressions are
evaluable, i.e. there cannot be evaluation errors (pravidethe functional language
part an operational semantics safe with respect to a clagsim):

Theorem 1. Let e be an expression of the languagef-ife : ¢ is provable, then there
existv, H' such that- ¢ |} v, H' is provable.

The proof results from a careful study of the various rulegteNthat the typing rules
ensure that the Xobject parameters of a request have ajgieopractions, and that the
operational semantics rules are in correspondence wittyfieg ones.

3.3 Xobject evolution and completeness

Interactive requests may be controlled by means of a statdy sof Xstructures: in-
teractive requests that correspond to declared trigger&atnjects may be executed
without errors. This is particularly the case with web sitdeen requests are built by
the browser after a user click, it is also the case with webiges if clients conform a
WSDL or BPEL declaration. However, a dynamic type checkingtbde added as one
cannot be sure that requests are well-formed with respexdrt® declaration. Besides
this soundness property, the completeness stands forioletiat reactions given in
Xobjects are correctly declared. The typing rule for therXsture expression is given
infigure 5 A -4 d : I'is a type judgment for definitiond; is a type environment; ¢

is used for top-level type judgments). The complexity of thie comes from the fact
that the pair of trees have now to be merged. This is done bfgtiation FDX that also
ensures that soundness and completeness propertiesisfiedat

— 1stline does an 'identifier’ operation,

— 2nd line ensures that reactions cover triggerss(fully defined), and recursively
through reactions,

— 3rd line ensures that Xobjects in the environment are known.

3.4 Subtyping

A subtyping system is supposed to be given for the XML parthef language. It is
extended for XML and trigger patterns. The subtyping sysfemXobjects has the
following characteristics: let) andt9 be two Xobject types.? <: 5 (1] extends9) if

— For each abstract path, possibly with type'y- in ¢, Y is present in?, if required
with a typet!, <:ty.

12

Xstructure

Abgd:T The:t® FDX(1%) =1"
Abgxstrucdbeginw=c:w—t"°
where
FDX(T" <:t°) =1 <0 iff T =]
andp(sel f (")) = FDX,(p(sel f (7))
andFDXr () is true
FDX, (€) =€
FDX, (1, — t, — t%;p) = 7, — t;, — FDX(t?):FDX,(p)
FDXr (1) is true iff forall noden of 7', n has a value

Fig. 5: Soundness and completeness of Xstructures (entry points)

— XML subtyping should be satisfied as well as subtyping witbpeet to triggers
(triggers intg should appear ir).
— Each reaction defined ity has its counterpart itf.

Typing constraints may then be added to the language as usual

4 Extensions

In the current setting, requests should initially be seté&(concrete) root of a tree of
components, and, if necessary, delegated to some adequizjeckwrt an abstract path
to a final receiver. However, this constraint is neither fallgnnecessary nor practically
wishful. In fact, this delegation mechanism is safe as sa@othe concrete receiver is
known and the nodes in the abstract path have each a valueoMar sending a request
directly to some node in a tree of components allows for arxAij@e mechanism.
Ajax [3] is a web development technique for creating intévaoweb applications and
is intended to increase the web page’s interactivity, spaediusability. A response may
be given as a part of an HTML document and it is the client respbility to replace
the old value by the new one at the right place (a DOM-basecharésm generally),
avoiding the page to be completely reloaded. This mechanisty be modelled in
our framework as a request to some specific Xobject mayberdiit from a root, this
Xobject being specified when setting up a trigger. To take o#this generalization, the
syntax of a request does not change and a trigger should bp ast”:Y.C<a [.>]s]
where the initial receiver is such tht is the path fromsel f to it.

Let us replace the definition of nk in example 4 by:

link = xobject <root.Hl, sel f.parent.HlL. ML> (x:string)
root. Hl: sel f. parent. Hl. ML.. T<a>[x]
» xend;

The triggerr oot . Hi: sel f. parent. HL. M. T<a>[x] N I'i nk States that the initial (resp. final)
receiver for the tag should be the value abot . H1 (resp.sel f. parent . H1. M.). A request
corresponding to such a tag couldMaer(" rel 1 o") @1. Operational and typing rules are
slightly more complex as one should manage delegation rgtvar direct subcom-
ponents (daughters in the component tree) but also to [gaoé@t node. Using such a

13

mechanism interactively requires more theoretical andtjpa investigations. When a
request is received at first by the root of a tree of componartsw tree of components
is created for the response, hence the tree structureysifefiined. This is no more the
case when a request is initially sent to a node different frloeroot: either the tree is
rebuilt but efficiency is lost, or a replacement is done bumpteteness and soundness
wrt reactions may not be guaranteed.

More generally, we currently study carefuly the theorétivaaning of interaction,
i.e. setting up triggers as a dual to requesting reactionsogerational semantics of
interaction may be given in terms of processus calculusenkegleping the semantics
of the delegation process described in this paper. This neafyditful for extending
expressivity of interaction. For instance, associatingtipie receivers to the same tag
could be useful in pratice when one wants to fire reactionsfferdnt components.
However, the operational semantics is not obvious if orlexecution matters. This is
not the case when replies concern disjoint parts of the edpatree of components.

5 Related works

Our work concerns two different communities: object and Xplogramming as the
real novelties of FICX are program modularity through Xabjeomponent trees and
static typing for structures that mix XML and functional fsatHowever our approach
is uneasily comparable to the standard object-orienteddigm in that modularity is
got by partonomy rather than inheritance. Moreover Xokjace in fact immutable as
parameter instantiation and requests create each time objects. It is easier to relate
our work to different areas in semi-structured data fielddeduded calls, type checking,
web services).

Embedded calls in XML documents Concepts of triggers and reactions in FICX are
close to the (not new) idea of embedded calls in XML structuR¥evious works from
this area can be classified in two categories: data oriemddcade oriented. In the
data-oriented approach, the XML structure is enriched ittnsional data. In Macro-
media [10], Appache Jelly [14], AXML [1, 5], database or wedndce queries help
to dynamically complete XML documents and a declarationenfises may be avail-
able. Including expressions and triggers in Xdata has theesabjectives even if we
do not focus on the problems of distributed stream data. Tiferehce mainly relies
on the fact that our language is strongly type-checked atfhavorks just cited extend
loosely XML types or schemas. For example, type checkingXMA is based on an
extension of XML schemas in order to describe data typesetkigdan exchange. The
code-oriented approach, as popularized by PHP [13], JSPABP [11], tries to in-
troduce code in XML structures in order to allow parametdion and dynamicity of
websites. However, no static checking is proposed so there guarantee the resulting
XML structure is correct before run-time.

Typed XML processing languagesMany works (see [9] for a general survey) exist
that propose strongly typed languages for manipulating Xdidta: Xact [7] (an ex-
tension of JAVA), CDUCE [2] (a ML-like language), XSTATIC J4an extension of
C#). These programming languages allow to manipulate,daterand to check XML
documents thanks to a powerful parser and a type inferersteray They extend a pro-

14

gramming language by means of a typed language for XML dootimanipulation.
However they do not support code integration in XML data. ndther hand XM [8]

is closer to our concerns. It uses a Haskell-like syntax agats XML documents as
native values. It allows to include typed expressions antegfded functions calls in
XML documents while proposing a powerful type-checkingl these systems lack a
general framework able to design software in a modular amtgeneous way.

6 Conclusion

FICX is a programming language that focuses on designimg écomponents, close
to part-of relationship. FICX is well suited to XML-like lginages by integrating static
and dynamic aspects in an homogeneous framework. A povwasfegation process for
interactions is defined thanks to the tree structure. Thaystfi FICX (type checking,
operational semantics) is facilitated by the fact that XMidtaland Xobject evolutions
are encoded in the same language. Such a tree componentarpnoigg paradigm
increases expressivity with respect to other works wheré X&ues may be computed
only by means of direct calls.

References

1. Serge Abiteboul, Omar Benjelloun, and Tova Milo. Positive active xmACM SIGMOD-
/PODS 2004 Conferencéune 2004.

2. Véronique Benzaken, Giuseppe Castagna, and Alain Frisch. CAlmcenl-centric general
purpose language. IRroc. 8th ACM SIGPLAN International Conference on Functional
Programming (ICFP 2003)Uppsala, Sweden, August 2003.

3. Dave Crane, Eric Pascarello, and Darren Jadj@s.in Action Manning Publications, 2005.

4. Vladimir Gapeyev, Michael Y. Levin, Benjamin C. Pierce, and AlanrSith XML goes
native: Run-time representations for Xtatic. 14th International Conference on Compiler
Construction April 2005.

5. Active XML homepage. http://activexml.net.

6. Objective CAML homepage. http://caml.inria.fr/ocaml/index.en.html.

7. Christian Kirkegaard and Anders Mgller. Type checking with XML Sohén Xact. Tech-
nical Report RS-05-31, BRICS, September 2005.

8. Erik Meijer and Mark Shields. XM: A functional language for constructing and manipu-
lating XML documents. (Draft), 1999.

9. Anders Mgller and Michael I. Schwartzbach. The design spacepefdiieckers for XML
transformation languages. Rroc. 10th International Conference on Database Theory,
ICDT '05, volume 3363 o£.NCS pages 17-36. Springer-Verlag, January 2005.

10. Macromedia Coldfusion MX. http://www.macromedia.com/softwatdfasion.
11. Active Server pages. http://www.asp.net/.

12. Sun’s JAVA Server Pages. http://java.sun.com/products/jsp.

13. The PHP Hypertext Preprocessor. http://www.php.net.

14. Jelly: Executable XML. http://jakarta.apache.org/commons/jelly.

15

