
Tree Components Programming:
an Application to XML

Pascal Coupey, Christophe Fouqueré, and Jean-Vincent Loddo

LIPN – UMR7030
CNRS – Université Paris 13

99 av. J-B Clément, F–93430 Villetaneuse, France
firstname.lastname@lipn.univ-paris13.fr

Abstract. We present a new programming approach based on a contextual com-
ponent specification. The language we propose integrates XML and functional
aspects in a coherent and homogeneous framework. This enables usto fully have
static typing and to specify formal properties with respect to interactions.
Our language FICX, Functional Interactive and Compositional XML, defines a
new kind of data structure called Xobjects and relies on a statically typed func-
tional language (currently OCaml). An Xobject is an abstract structure made in
two parts: the Xdata part is an XML structure extended by means of triggers ded-
icated to interactions, the reaction part gives the code associated to triggers that is
evaluated on demand. The modularity is ensured by a parameterization ofXob-
jects: compound Xobjects form a tree structure, rendering a complex XML tree
together with appropriate reactions for triggers. A program is a set of structures,
each structure being a tree of Xobjects.

1 Introduction

Classic object oriented programming languages offer class/subclass relationship with
inheritance mechanism. It is not well suited when applications need "part-of" relation-
ship. Of course, this may be encoded using the object paradigm but no facility is given
to the programmer since she has to build by herself the partonomy beside the class/-
subclass hierarchy. This is true in the semi-structured data field and in particular XML-
like languages where many recent works extend XML language in order to describe
documents as a composition of various parts (pure XML, scripts, database requests,
web service requests [11, 13, 5]). Our purpose is to propose aprogramming language
whose core principle is that basic objects are components ofa tree and to apply it to
XML language. In fact, tree structures may be obtained by merging partial trees (in-
stead of just composing them). Such (partially defined) structures are first-class citizens
in our programming language. They encapsulate static and dynamic contents to allow
for interactivity and expressiveness. Moreover the whole language is strongly typed to
ensure error-free executions. This programming paradigm is applied here to XML. Ex-
amples are given wrt the web as this domain has at least the following features: use
of semi-structured data, interactivity, needs for modularand safe programming. Our
language FICX, Functional Interactive and Compositional XML, defines a new kind of

data structure calledXobjectand relies on a statically typed functional language (cur-
rently OCaml). An Xobject is an abstract structure made of two parts: theXdatapart is
an XML structure extended by means of triggers dedicated to interactions, thereaction
part gives the code associated to triggers and that is evaluated on request. Arequestis a
first-citizen expression of the language. Its value is the result of a reaction selected by
a trigger. To take advantage of the tree structure of compound Xobjects, a delegation
mechanism is offered: a request may contain an (abstract) path to be followed to find
an adequate reaction. FICX uses in fact extensively the concept of abstract path. An
abstract path is a sequence of labels for addressing Xobjects in a tree, e.g. the root, the
value at label Y of a parent, ... To summarize, FICX has the main following character-
istics:
Modularity : Compound Xobjects form a tree structure, rendering a complex XML tree
together with appropriate reactions for triggers. A program is a set ofXstructures. Each
Xstructure is a fully defined tree of Xobjects and plays the role of an entry point to the
program.
Interaction : Each reaction describes a possible evolution: the result of requesting a re-
action to some Xobject is a new Xobject (possibly with new Xdata, new triggers, new
reactions).
Static typing: The type of an Xobject is given by the type of its Xdata part together with
the type of its reactions. An Xobject defines a set of triggers(usable for interaction) and
a set of reactions (called either by an expression of the language or by means of an
interaction). These two sets should coincide in case of Xstructures: the type of reaction
patterns should cover the type of the XML structure associated to a trigger (sound-
ness), and, a reaction being given, a corresponding triggershould have been defined for
interaction (completeness).

These peculiarities offer the user means to develop modularand type checked pro-
grams. In the framework of web applications, triggers may beviewed as web service
names or anchors in web sites. However, contrarily to most web languages, triggers and
reactions should be related in a program in such a way that controls may occur. The toy
example given in example 1 on the left defines the variablelink to be a function with
one parametermsg which returns an Xobject1 andhome whose value is an Xobject with
one parameterY. The Xdata part is written in CDuce style [2] and is extended with a
triggerT. The corresponding XML structure inhome Xobject declaration is given on the
right. The Xobjectlink has two reactions with trigger tagT. The first one creates a new
Xobjectlink with the string"Bonjour" if the parameter given with the trigger contains
the string"Hello", the second reaction has the converse behaviour. The evolution con-
sists in creating Xobjects that alternates"Bonjour" and"Hello" messages.website is a
(compound) Xobject giving a value to the parameterY in a copy of Xobjecthome. Note
that Xobjecthome is unchanged. Its standard HTML presentation is given on theright
(whereURL_encoding_of() is a built-in function). The interactive request has the
same shape as the expression for definingotherwebsite. Its operational semantics uses
the delegation mechanism. InY.T("Hello")@website, website is called theinitial concrete

1 For the sake of simplicity, we consider thatlink = xobject <> (msg:string) ... is syn-
tactic sugar forlink = fun (msg:string)→xobject <> ... then collapsing the name of the
function which returns the Xobject with the name of the Xobject itself.

2

link = fun (msg:string) →

xobject <>
T<h1 align="center">[msg]

◮

T(<h1 align="center">["Hello"])
⇒ (link "Bonjour")

T(<h1 align="center">["Bonjour"])
⇒ (link "Hello")

xend;

home = xobject <Y>
<html>[

<head>[<title>["Welcome"]]
<body>[Y]

]
◮ xend;

website = home[Y 7→ (link "Hello")];
otherwebsite = Y.T("Hello")@website;

Data extracted fromwebsite in standard
XML style:

<html>
<head>

< t i t l e >"Welcome"< / t i t l e >
< / head>
<body>

<a hre f=
URL_encoding_of (

Y. T("Hello") @website
) >

<h1 a l i g n ="center"> ["Hello"]
< / a>

< / body>
< / html>

Ex. 1: Xobject definitions and XML data

receiveras it is the Xobject that should at first react. As it has no appropriate reaction,
the request is delegated wrt the path, hereY. Let o be the value of(link "Hello"), o

responds by(link "Bonjour"). The Xobjectotherwebsite may then have been defined
equivalently by the expressionhome[Y7→(link "Bonjour")]. This is also the result sent
back in case of interactive request.

We present in the next section the syntax and the operationalsemantics of the lan-
guage FICX, focussing on its main features: abstract paths,Xobjects, requests. We de-
fine in particular a specific class of trees and show in which extent a set of abstract
paths is a representation of such a tree. We give in section 3 the type system . We end
comparing FICX to other works in this domain and present a fewextensions under
study.

2 Language FICX: syntax and operational semantics

We use a functional programming language, currently OCaml,as a core language for
functions, definitions, ... that we de not detail here (the reader may find descriptions of
OCaml in [6]). This core is extended by means of anXobjectdata type that integrates
an extended XML structure calledXdatato publish data and triggers, and a functional
part calledreactionintended to answer requests built from triggers. Moreover Xobjects
may be parameterized byabstract pathsdefined in the following subsection. Finally,
an Xstructureis a specific top-level definition that is used to declare interactive data
and functionalities. The grammar of the language FICX, specific to our aim, is given in
figure 1. We use the following notations throughout the paper: e is an expression andp
is a pattern,a, A,C, x, y are identifiers,τ is a trigger,Y ,Z are abstract paths, finallyr
states for a reaction.

The operational semantics follows standard functional programming operational se-
mantics: it is given as an evaluation judgment on programs, expressions, ... to be com-
puted with respect to a given environment. An environment isan evaluation environ-

3

Program
P ::= ǫ empty program

| S P | d P Xstructure or definition followed by a program
Xstructure
S ::= xstruc d begin w = e whered is a definition,w an identifier,e an expression
Xobject
e ::= xobject〈Y1, . . . ,Yn〉 Xobject definition with abstract paths parameters

e ◮ sr Xdata◮ reactions
xend

| e1[Y 7→e2] parameter assignment
| τ(e2)@e1 request evaluation
| Y Abstract path nameY

Reactions
sr ::= ǫ r ::= τp(p)⇒e reaction conditioned by trigger and parameter patterns

| r sr
Triggers
τ ::= Y .C abstract path followed by a tag

Fig. 1: Grammar of FICX

menttogether with ahandler environment. An evaluation environment is a partial func-
tion from the set of variable names and abstract paths to values, either ground values or
handlers to such values (supposing a domain of handlers). A handler environment is a
partial function from the set of handlers to values. Handlers are used to denote Xobject
parameter values. The evaluation judgment for expressionsis of the following form:

E ,H ⊢ e ⇓ v,H′

read as: the evaluation of expressione in an evaluation environmentE with a handler
environmentH leads to a valuev together with a new handler environmentH′.

2.1 Abstract paths

Abstract paths are defined according to the following grammar, wherey is an identifier,
parent, root andself are keywords:

Y ::= parent | root | self | y | Y.Y
We suppose further that abstract paths (and abstract path patterns or path types in

the same way2) are always in normal form with respect to the rewriting→AP applied to
self.Y, whereY is the abstract path to be normalized (y 6= self,root,parent):

y.parent →AP ǫ Y.root →AP root Y.self →AP self
Thus→AP gives rise to two kinds of normal forms:root.Y andself.Y with self
androot not in Y. The intended meaning is that a set of such abstract paths should
partially define two rooted trees, one with abstract rootroot and another ’centered’
onself whereself.parent. . ..parent should represent a path ’up’ to some con-
crete root (see example 2 where orientation is given as the root is not always at top).
Abusively,selfmay be omitted in the following from abstract paths writings. We give

2 Grammars for path patterns and path types are similar to the grammar given for abstract paths,
except a ’_’ added for patterns. ’_’ matches an abstract path.

4

Let φ = {root.r,self.a.c,self.a.d,self.b.e}
andψ = {root.s,self.g,self.parent.f},
φ andψ represent the following pairs of trees:

φ: (
b r

, ba

bc bd
bb

b e
) and ψ: (

b s
,

b
parent

b g
b f)

The following is an example of ’merge with mask’ operation wrt some path:

φ�self.b ψ: (
b

r
b
s, b

a

b
c

b
d

b
b

b
e

b
g

b
f)

Ex. 2: Abstract paths and trees.

below a few simple definitions and properties that characterize the particular trees and
operations we need. We then relate such trees to a specification given by abstract paths.
We do not first consider values (say Xdata and reactions) attached to nodes and we fix
a non-empty set of symbolsL.

Definition 1.

– An unambiguous rootedL-edge-labelled treeis a tree with a root node, edges la-
belled by elements inL, and such that for each node two distinct edges have distinct
labels. LetTL be the set of such trees.

– LetT1, T2 ∈ TL, T1 ≤ T2 if there exists an injective mappingf fromT1 to T2 such
that if r is the root node ofT1 thenf(r) is the root node ofT2, and if(n1, n2) is an
edge ofT1 labelledl, then(f(n1), f(n2)) is an edge ofT2 labelledl.

Proposition 1. Let L∗ be the set of finite sequences of elements ofL andP(L∗) be
the powerset ofL∗, (TL,≤) is faithfully represented by(P(L∗),⊂), hence(TL,≤) is a
lattice.

Let us now consider the setT _
L

of partially defined unambiguous rootedL-edge-
labelled trees, where a special symbol ’_’ plays the role of a variable:

Definition 2. Let _ be a symbol not inL, T _
L

is the set of unambiguous rootedL∪{_}-
edge-labelled trees such that pathsY.l._ cannot appear, wherel ∈ L. LetT1, T2 ∈ T _

L
,

T1 ≤ T2 if there exists an injective mappingf from T1 to T2 such that ifr is the
root node ofT1 then f(r) is the root node ofT2, if (n1, n2) is an edge ofT1, then
(f(n1), f(n2)) is an edge ofT2, moreover if the label of(n1, n2) is in L then it is also
the label of(f(n1), f(n2)).

Proposition 2. (T _
L
,≤) is a poset,(TL,≤) embeds in(T _

L
,≤), (T _

L
,≤) is not a lattice.

In example 3, a counter-example for(T _
L
,≤) to be a lattice is given. However the fol-

lowing proposition serves to control Xobject composition validity:

Proposition 3. LetT1, T2 ∈ T _
L

, (T1, T2) has a least upper bound (lub) iff eitherT1 =
T2, or T1, T2 ∈ TL, or if T1 6∈ TL thenT2 ∈ TL and the set of labels of edges from the
root of T2 is included in the set of labels of edges from the root ofT1, or the same last
property interchangingT1 andT2.

5

Letα be
b

b
_

bz
bx andβ be

b

b y
then

b

b
_

bz
b x b y and

b

by

bz
bx are distinct, incomparable

and the smallest that are greater thanα andβ.

Ex. 3: Trees inT _
L

The proof follows a structural definition of these trees. Thekey element comes from the
fact that if the two roots have each a daughter labelled _ thenthere are always at least
two distinct minima: one merging the two edges labelled _, the other putting separately
two branches, one labelled _, the other labelled by some element ofL (that is a non-
empty set).

Let us now add a value to a node, i.e. a value necessary for the operational semantics
or the typing system. For simplicity, we keep notationT _

L
and we define a lub of two

valued trees as the lub of the trees obtained forgetting the values. We consider moreover
the following definitions: IfT ∈ T _

L
andZ is a path inT thenZ(T) is the subtree ofT

at pathZ, val(T) is the value associated to the root node ofT , self(T) is defined as the
subtree ending the _ path:self(T) = T if T ∈ TL, self(T) = self(_(T)) otherwise.
Taking care of previous properties, we define the following partial operations onT _

L
:

Definition 3. LetT1, T2 ∈ T _
L

,

– ’Merge with mask’ operation�: T = T1 � T2 has the structure of the lub of
T1 and T2 if it exists and, forall pathY , val(Y (T)) = val(Y (T2)) if defined,
val(Y (T)) = val(Y (T1)) otherwise.

– ’Merge with mask’ operation wrt some path.T = T1 �Y T2 is defined in the
following way: letn be the longest path including only _ inT2 (i.e. the depth of
self(T2) in T2),
• if |Y | ≥ n, letZ be the prefix ofY of length|Y |−n andT ′

1
be the treeT1 after

deleting the subtreeZ(T1), if Z(T1) � T2 exists,T is the treeT ′
1

appending
Z(T) � T2 at the leafZ, otherwiseT is not defined ;

• if |Y | < n, letZ be a sequence of _ of lengthn−|Y | andT ′
2

be the treeT2 after
deleting the subtreeZ(T2), if T1 � Z(T2) exists,T is the treeT ′

2
appending

T1 � Z(T2) at the leafZ, otherwiseT is not defined.

Note that, thanks to proposition 3, the safety of previous operations may be statically
checked as soon as labels are known. The following proposition shows that such trees
may be used to design an operational model for our language (and also a typing system
as soon as a typing system is available for Xdata and reactions).

Proposition 4. A finite set of abstract paths represents two trees: a tree inTL we called
’with abstract rootroot’, and one inT _

L
, we called ’centered onself’.

In the following, we freely use the abstract path notation for operations onT _
L

.

2.2 Xobjects

An Xobjectis structured in two parts: anXdatastructure together withreactions, and
is parameterized by means of abstract paths. Parameterization is a convenient way to

6

xstruc
link = xobject <root.H1> (x:string)

root.H1.T<a>[x]
◮ xend;

message = xobject <> (msg:string)
<h1 align="center">[msg]

◮ xend;
phandler = xobject <M1> (k:int)

M1 <p>["Visits for this session (cs): " k]
◮

T(<a>[x]) ⇒ (let y=(if (x = "Hello") then "Salut" else "Hello") in
(phandler (k + 1))[M1 7→(message y)])

xend;
home = xobject <L1, L2, H1>

<html>[<head>[<title>["Welcome"]] <body>[H1
 L1
 L2]]
◮ xend;

m1 = (message "Hello");
h1 = (phandler 0)[M1 7→ m1];
l1 = (link "Increment cs and reload with Hello");
l2 = (link "Increment cs and reload with Salut");
o = home[L1 7→ l1][L2 7→ l2][H1 7→ h1];

begin website = o

Ex. 4: Xobjects with components

refer to yet unknown Xobjects while parameter assignment merges partial trees of com-
ponents. Abstract paths that are used in an Xobject body are declared in the header: in
example 4, Xobjecthome expects three subcomponentsL1,L2,H1. Note the reference to
root.H1 in the definition oflink: this Xobject is expected to be in a tree whose Xobject
root has at least a subcomponent for labelH1.

Composing Xobjects is done by assigning values to abstract path parameters: the
expressiono = e1[Y 7→e2] states thato is a copy of the Xobject value ofe1 where the
abstract pathY refers to the value of expressione2 (that should also be an Xobject).
Such compositions of Xobjects give rise to two partially defined trees of components as
explained before. These partial trees are merged in one treein the case of an Xstructure
declaration, that is a top-level expression. An Xstructurespecifies a completely defined
Xobject: the tree of components is "closed" and the Xobject is considered as an inter-
active entry point to the program. A program may have severalXstructure declarations.
In example 4,website is declared as an entry point. The tree of components is rooted at
o, that has two linksl1 andl2 and one phandlerh1 as subcomponents,h1 having a child
m1. Two triggers are declared, posted inl1 andl2, authorizing interactive requests of the
form H1.T(x)@website.

We are now able to precise the operational model. We extend a domain, supposed
given for basic types and that includes handlers, by the following kinds of values:

– TT called ahandler tree valueis a map from abstract paths to handlers. It is a pair
of trees(U, V) ∈ TL × T _

L
, one rooted at abstract pathroot and one centered at

self with the following partial operations:

• An ’identifier’ operation: letTT = (U, V), if V ∈ TL andU � V is defined
thenlTT = (U � V,U � V).

7

m fresh, TT = {self 7→ m}

E ,H ⊢ xobject〈Y1, . . . ,Yn〉→e ◮ sr xend ⇓ TT,H ∪ {m 7→ xval(E , e ◮ sr)}

E ,H ⊢ e2 ⇓ TT2,H2 E ,H2 ⊢ e1 ⇓ TT1,H1

E ,H ⊢ e1[Y 7→e2] ⇓ TT1 �Y TT2,H1

E ,H ⊢ d ⇓d E1,H1 E1,H1 ⊢ e ⇓ TT2,H2

E ,H ⊢ xstruc d begin w = e ⇓d E2 ∪ {w 7→lTT2},H2

Fig. 2: Operational semantics for Xobject and Xstructure declarations

• A ’merge with mask’ operation�: let TT1 = (U1, V1) andTT2 = (U2, V2) be
handler tree values,TT = TT1 � TT2 is the handler tree value(U, V) such that
U = U1 � U2 andV = V1 � V2.

• A ’merge with mask’ operation wrt some path: letTT1 = (U1, V1) andTT2 =
(U2, V2) be handler tree values,Y be an abstract path in normal form,TT =
TT1 �Y TT2 is the handler tree value(U, V) such that
∗ if Y has formself.Z, U = U1 � U2 andV = V1 �Y V2,
∗ if Y has formroot.Z, V = V1 andU = U1 �Y W wherelTT2 = (W,W).

– xval(E , e ◮ r) serves to denote Xobject closures, wherer is a sequence of values
of the formτp(p) ⇒ e, e is an expression andE is an evaluation environment.

A handler tree valueTT may also be part of an evaluation environment as it is a map from
abstract paths to values.dom(TT) is then the set of abstract paths ofTT . We consider
available in that case an operationTTY →Y ′

that changes the reference frame of the
domain ofTT wrt the change fromY to Y ′.

The operational semantics of Xobjects is given in figure 2. The semantics corre-
sponding to an Xobject declaration is straightforwardly a closure (as for functions) and
assignment of abstract path parameters is similar to the standard treatment of handlers
in functional programming: the rule is nothing else but a newvalue given for the ref-
erence (the typing system should ensure thatv2 is an Xobject value). The semantics of
an Xstructure declaration follows the semantics of a (top level) definition (⇓d evaluates
definitions).

2.3 Xdata and reactions

The language for the Xdata part extends XML. XML is basicallyexpressed by means
of tree structures where nodes are of the form<a le>[s] wherea is the markup of the
node,le is a list of attribute-value pairs (the value may be the result of the evaluation of
an expression), ands is a sequence of XML constituents. XML syntax is extended in the
following way: an abstract path may be used in place of an XML node and each node in
an XML structure may be labelled by a triggerτ . A triggerτ has the general formY .C

whereC is an interaction tag(tag for short) and the abstract pathY is the path to the
abstract last possible receiver. Setting down a trigger means that a functionality should
be available, as aGET in HTML or the description of a service. In case of Xstructures, a
built-in functionget_Xdata is available that extracts the Xdatum to build a (standard)

8

E ,H ⊢ e2 ⇓ v2,H2 E ,H2 ⊢ e1 ⇓ TT1,H1 H1(self(TT1)) = xval(E1, e ◮ sr)
match(τ , v2, sr) = (e0, E0)

E1\(dom(E0) ∪ dom(TT1)) ∪ E0 ∪ TT1,H1 ⊢ e0 ⇓ TT0,H0

E ,H ⊢ τ(e2)@e1 ⇓ TT0,H0

E ,H ⊢ e2 ⇓ v2,H2 E ,H2 ⊢ e1 ⇓ TT1,H1 H1(self(TT1)) = xval(E1, e ◮ sr)
match(y.Z.C, v2, sr) = undef

E1 ∪ TT
y→self
1

,H1 ⊢ Z.C(e2)@self ⇓ TT0,H0

E ,H ⊢ y.Z.C(e2)@e1 ⇓ TT1 �y TT0,H0

where the functionmatch(_, _, _) checks if a trigger fires a reaction and in this case sends back
the expression to be evaluated together with the capture variables given bya standard pattern
matching functionmatchPatt (not given here):
match(Y.C, v, ǫ) = undef,

match(Y.C, v, Z.D⇒e sr) = match(Y.C, v, sr)
if Y 6= Z or C 6= D or matchPatt(v, p) = undef

match(Y.C, v, Y.C(p)⇒e sr) = (e, Γ) if matchPatt(v, p) = Γ

Fig. 3: Operational semantics of requests

XML structure that can be sent interactively. When encountering an abstract path in
place of an XML node, the function is recursively called on the value at the abstract
path. In case of a trigger, a request is prepared that includes the address of the value of
root (called theinitial concrete receiver3), the abstract path from it to the last possible
receiver, the interaction tag and an XML structure (the parameter of the request). Note
that the abstract path to the last possible receiver is now given fromroot, then may
be different from the abstract path set up in the Xdata. Such an interactive request is
at first received (and executed) by the initial concrete receiver. In fact a request is a
first-class citizen that has the general formτ(e2)@e1: e1 is the concrete receiver of the
request,τ(e2) gives the trigger and the parameter value for the request. The operational
semantics is given in figure 3. Due to lack of space, the secondrule considers only
an identifier beginning the abstract path but similar rules may be given with keywords
parent,root andself. The semantics may be rephrased in the following way: if the
concrete receiver has an adequate reaction (the reaction matches trigger and parameter
of the request), the reaction is evaluated ; otherwise the request is delegated following
the path to the last possible receiver until some Xobject hasan adequate reaction. It
is the type system that is responsible for checking that there cannot be run-time errors.
Note that an Xobject value is rebuilt when a delegation occurs. In this paper, we suppose
that capture variables are available in standard and XML patterns. However, this may
be extended to tag and abstract paths patterns.

Going back to example 4, a tagT is set down in the Xdata part oflink: root.H1.T<a>[x]
states that the tagT is an anchor. Requests available in this case may be for example
T("Hello")@h1 or H1.T("Hello")@website. This last request is the only one that can be used
interactively. Aswebsite has no appropriate reaction, the request is delegated toh1, value
of H1 as it is given inwebsite. The reaction part of this phandler contains a reaction thatis

3 This is generalized in section 4 where the initial receiver may be differentfrom root.

9

Xdata
ts ::= [τ]<a lt>[rt] Xdata tree

| Y abstract path type name
Xobjects
to ::= TT | Y abstract tree and path name types
vn ::= ts ◮ ρ type of a TTnode value
ρ ::= ǫ sequence of Xobject types

| τp1 → tsp1 [→ to1]; . . . ;τpn → tspn [→ ton] for a pattern type for trigger type

Fig. 4: Type language of FICX (except XML and functional type language)

fired with result the Xobject(phandler 1)[M1 7→(message "Salut")]. The final value sent
back to the requester ishome[L17→l1][L2 7→l2][H1 7→(phandler 1)[M17→(message "Salut")]].

3 Language FICX: the type system

FICX is strongly typed: the static typing offers the programmer a way to check its pro-
gram before execution. Beside the usual benefits, it allows to check the completeness
and soundness of the program with respect to interactions asgiven by request expres-
sions. Obviously, requests included in the program are checked at compile time and
interactive requests are checked only on the fly. However, one may control interactive
requests by studying available triggers and reactions: e.g. clicks in a browser generate
requests and are allowed by triggers set up on some Xdata, webservices should answer
to declared services. We refer in the later to completeness and soudness with respect to
the cover of triggers and reactions in an Xstructure, i.e. a fully defined tree of Xobjects.

The type language is in two parts (see figure 4):ts stands for standard or Xdata
expressions,to for Xobjects. The type system for functional expressions isstandard, it
is extended for Xdata expressions by mimicking the structure. Abstract path variables
are also defined as types (these are sequences of constants).The type of an Xobject
is an abstraction of a handler tree value as defined in the operational semantics: it is
a pair of trees inTL × T _

L
with abstract paths as labels and nodes valued by the type

of its Xdata together with types for the reactions (pattern and result), these values are
notedvn in the figure.ρ defines the types for possible reactions (supposed if given as
triggers, explicit if given as reactions): this is a sequence possibly empty associating to
a trigger pattern and to a pattern type the type of the result if it is defined (summing
over the sets of patterns types, and of result types). Takinginto account reactions in
the type is possible because a program may only include a finite number of Xobject
types. However, as reactions and triggers may not be defined in the same Xobject, the
type system should propagate pieces of information and whenpossible merge them to
satisfy coherence properties when an Xobject is used as a parameter value for another
Xobject.

Due to lack of space, we limit the description of type judgments to Xobjects. The
remainder is quite easy to define as it takes up techniques used for functional program-
ming, XML, ... Note that in the following we suppose that variables newly typed were
not typed before (type clash with respect to the environmentis supposed implicit). Let

10

∆ be a type environment, i.e. a partial function7→ from the set of variable names (in-
cluding abstract path variables) to types, judgments for anexpression and a sequence
of reactions are given as follows:

∆ ⊢ e : t wheree is an expression andt its type
∆ ⊢r sr : ρ wheresr is a sequence of reactions with typeρ

3.1 Expression judgment rules: Xobjects

The type of an Xobject is of typeTT (YJoin builds the pair of trees) whoseself node
value summarizes types of reactions and of triggers set up inthe Xdata part. These two
data are merged in a single typeρ′ considering that triggers not covered by reactions
give ’partially defined’ types.Trig computes the set of triggers set up in its argument.
RIT (Reaction Intersection Type) retracts triggers (in its second argument) for which
reactions are given in its first argument (a reaction type). Parameter assignment is typed
by means of a merge and mask operation wrt an abstract path.

∆,
−−−−−→
Yi 7→ Yi ⊢ e : t ∆,

−−−−−→
Yi 7→ Yi ⊢r sr : ρ

RIT(ρ,Trig(t)) = ρ′

to
1

= YJoin(Y1, . . . , Yn,self 7→t◮ρ′)

∆ ⊢ xobject <Y1, . . . ,Yn>→e ◮ sr xend : to
1

∆ ⊢ e1 : TT1 ∆ ⊢ e2 : TT2

∆ ⊢ e1[Y 7→e2] : TT1 �Y TT2

Auxiliary functions for type computation:
Trig(<a lt>[rt]) = Trig(rt)
Trig(τ<a lt>[rt]) = {τ→ <a lt>[rt]} ∪ Trig(rt)
Trig(rt1 rt2) = Trig(rt1) ∪ Trig(rt2)
Trig(t) = ∅ otherwise

RIT(ρ, ∅) = ρ

RIT(ρ, {τ → ts} ∪ T) = RIT(RIT1(ρ, τ → ts), T)
RIT1(ǫ, τ → ts) = τ → ts

RIT1(τ1 → ts1 [→ to1];ρ, τ → ts) = τ1 → ts1 [→ to1];RIT1(ρ, τ → ts \ τ1 → ts1)

3.2 Expression judgment rules: requests

A requestτ(e2)@e1 has a type given by the result of the fired reaction. This reaction
should be on the path (given in the triggerτ) beginning from the receiver (value ofe1).
If the type ofe1 includes a compatible reaction (functiontestreac), then the request
has the type of the result:

∆ ⊢ e1 : TT1 ∆ ⊢ e2 : t2 testreac(τ , t2, ρ(self(TT1))) = TT2

∆ ⊢ τ(e2)@e1 : TT1 �y TT2

otherwise the request is delegated to the first part of the trigger. The following rule
concerns the case where this first part is some childy. The fact that the type of an
Xobject is a global environment (not limited to local constituents) allows for similar
rules when the first element of the path isparent, orroot.

11

∆ ⊢ e1 : TT1 ∆ ⊢ e2 : t2 testreac(y.Y .C, t2, ρ(self(TT1))) = undef
val(y(TT1)) defined ∆ \ dom(TT1) ∪ TT1

y→self ⊢ Y .C(e2)@self : TT2

∆ ⊢ y.Y .C(e2)@e1 : TT1 �y TT2

where
testreac(τ , t, ǫ) = undef
testreac(τ , t, τp→t1→to

2
;ρ) = to

2
if τ <:τ τp andt <: t1

testreac(τ , t, τp→t1→to
2

;ρ) = testreac(τ , t, ρ) otherwise
It is not too difficult to prove a safety theorem stating that well-typed expressions are

evaluable, i.e. there cannot be evaluation errors (provided for the functional language
part an operational semantics safe with respect to a classictyping):

Theorem 1. Let e be an expression of the language, if⊢ e : t is provable, then there
existv,H′ such that⊢ e ⇓ v,H′ is provable.

The proof results from a careful study of the various rules. Note that the typing rules
ensure that the Xobject parameters of a request have appropriate reactions, and that the
operational semantics rules are in correspondence with thetyping ones.

3.3 Xobject evolution and completeness

Interactive requests may be controlled by means of a static study of Xstructures: in-
teractive requests that correspond to declared triggers onXobjects may be executed
without errors. This is particularly the case with web siteswhen requests are built by
the browser after a user click, it is also the case with web services if clients conform a
WSDL or BPEL declaration. However, a dynamic type checking has to be added as one
cannot be sure that requests are well-formed with respect tosome declaration. Besides
this soundness property, the completeness stands for checking that reactions given in
Xobjects are correctly declared. The typing rule for the Xstructure expression is given
in figure 5 (∆ ⊢d d : Γ is a type judgment for definitions,Γ is a type environment,⊢S

is used for top-level type judgments). The complexity of therule comes from the fact
that the pair of trees have now to be merged. This is done by thefunctionFDX that also
ensures that soundness and completeness properties are satisfied:

– 1st line does an ’identifier’ operation,
– 2nd line ensures that reactions cover triggers (ρ is fully defined), and recursively

through reactions,
– 3rd line ensures that Xobjects in the environment are known.

3.4 Subtyping

A subtyping system is supposed to be given for the XML part of the language. It is
extended for XML and trigger patterns. The subtyping systemfor Xobjects has the
following characteristics: letto

1
andto

2
be two Xobject types,to

1
<: to

2
(to

1
extendsto

2
) if

– For each abstract pathY , possibly with typetY in to
2
, Y is present into

1
, if required

with a typet′Y <: tY .

12

Xstructure

∆ ⊢d d : Γ Γ ⊢ e : to FDX(to) = t′o

∆ ⊢S xstruc d begin w = e : w 7→ t′o

where
FDX(TT <:to) = TT ′ <:to iff TT ′ =lTT

andρ(self(TT ′)) = FDXρ(ρ(self(TT)))
andFDXT (TT ′) is true

FDXρ(ǫ) = ǫ

FDXρ(τp → tsp → to;ρ) = τp → tsp → FDX(to);FDXρ(ρ)
FDXT (TT) is true iff forall noden of TT , n has a value

Fig. 5: Soundness and completeness of Xstructures (entry points)

– XML subtyping should be satisfied as well as subtyping with respect to triggers
(triggers into

2
should appear into

1
).

– Each reaction defined into
2

has its counterpart into
1
.

Typing constraints may then be added to the language as usual.

4 Extensions

In the current setting, requests should initially be sent tothe (concrete) root of a tree of
components, and, if necessary, delegated to some adequate Xobject wrt an abstract path
to a final receiver. However, this constraint is neither formally necessary nor practically
wishful. In fact, this delegation mechanism is safe as soon as the concrete receiver is
known and the nodes in the abstract path have each a value. Moreover, sending a request
directly to some node in a tree of components allows for an Ajax-like mechanism.
Ajax [3] is a web development technique for creating interactive web applications and
is intended to increase the web page’s interactivity, speed, and usability. A response may
be given as a part of an HTML document and it is the client responsability to replace
the old value by the new one at the right place (a DOM-based mechanism generally),
avoiding the page to be completely reloaded. This mechanismmay be modelled in
our framework as a request to some specific Xobject maybe different from a root, this
Xobject being specified when setting up a trigger. To take care of this generalization, the
syntax of a request does not change and a trigger should be setup asY ′:Y .C<a le>[s]
where the initial receiver is such thatY ′ is the path fromself to it.

Let us replace the definition oflink in example 4 by:

link = xobject <root.H1,self.parent.H1.M1> (x:string)
root.H1:self.parent.H1.M1.T<a>[x]

◮ xend;

The triggerroot.H1:self.parent.H1.M1.T<a>[x] in link states that the initial (resp. final)
receiver for the tagT should be the value atroot.H1 (resp.self.parent.H1.M1). A request
corresponding to such a tag could beM1.T("Hello")@h1. Operational and typing rules are
slightly more complex as one should manage delegation not only wrt direct subcom-
ponents (daughters in the component tree) but also to parents of a node. Using such a

13

mechanism interactively requires more theoretical and practical investigations. When a
request is received at first by the root of a tree of components, a new tree of components
is created for the response, hence the tree structure is fully defined. This is no more the
case when a request is initially sent to a node different fromthe root: either the tree is
rebuilt but efficiency is lost, or a replacement is done but completeness and soundness
wrt reactions may not be guaranteed.

More generally, we currently study carefuly the theoretical meaning of interaction,
i.e. setting up triggers as a dual to requesting reactions. An operational semantics of
interaction may be given in terms of processus calculus while keeping the semantics
of the delegation process described in this paper. This may be fruitful for extending
expressivity of interaction. For instance, associating multiple receivers to the same tag
could be useful in pratice when one wants to fire reactions in different components.
However, the operational semantics is not obvious if order of execution matters. This is
not the case when replies concern disjoint parts of the concrete tree of components.

5 Related works

Our work concerns two different communities: object and XMLprogramming as the
real novelties of FICX are program modularity through Xobject component trees and
static typing for structures that mix XML and functional parts. However our approach
is uneasily comparable to the standard object-oriented paradigm in that modularity is
got by partonomy rather than inheritance. Moreover Xobjects are in fact immutable as
parameter instantiation and requests create each time new Xobjects. It is easier to relate
our work to different areas in semi-structured data field (embedded calls, type checking,
web services).
Embedded calls in XML documents: Concepts of triggers and reactions in FICX are
close to the (not new) idea of embedded calls in XML structures. Previous works from
this area can be classified in two categories: data oriented and code oriented. In the
data-oriented approach, the XML structure is enriched withintensional data. In Macro-
media [10], Appache Jelly [14], AXML [1, 5], database or web service queries help
to dynamically complete XML documents and a declaration of services may be avail-
able. Including expressions and triggers in Xdata has the same objectives even if we
do not focus on the problems of distributed stream data. The difference mainly relies
on the fact that our language is strongly type-checked although works just cited extend
loosely XML types or schemas. For example, type checking in AXML is based on an
extension of XML schemas in order to describe data types needed in an exchange. The
code-oriented approach, as popularized by PHP [13], JSP [12], ASP [11], tries to in-
troduce code in XML structures in order to allow parameterization and dynamicity of
websites. However, no static checking is proposed so there is no guarantee the resulting
XML structure is correct before run-time.
Typed XML processing languages: Many works (see [9] for a general survey) exist
that propose strongly typed languages for manipulating XMLdata: Xact [7] (an ex-
tension of JAVA), CDUCE [2] (a ML-like language), XSTATIC [4] (an extension of
C#). These programming languages allow to manipulate, to create and to check XML
documents thanks to a powerful parser and a type inference system. They extend a pro-

14

gramming language by means of a typed language for XML document manipulation.
However they do not support code integration in XML data. On the other hand XMλ [8]
is closer to our concerns. It uses a Haskell-like syntax and treats XML documents as
native values. It allows to include typed expressions and embedded functions calls in
XML documents while proposing a powerful type-checking. All these systems lack a
general framework able to design software in a modular and homogeneous way.

6 Conclusion

FICX is a programming language that focuses on designing trees of components, close
to part-of relationship. FICX is well suited to XML-like languages by integrating static
and dynamic aspects in an homogeneous framework. A powerfuldelegation process for
interactions is defined thanks to the tree structure. The study of FICX (type checking,
operational semantics) is facilitated by the fact that XML data and Xobject evolutions
are encoded in the same language. Such a tree components programming paradigm
increases expressivity with respect to other works where XML values may be computed
only by means of direct calls.

References

1. Serge Abiteboul, Omar Benjelloun, and Tova Milo. Positive active xml. In ACM SIGMOD-
/PODS 2004 Conference, June 2004.

2. Véronique Benzaken, Giuseppe Castagna, and Alain Frisch. Cduce: An xml-centric general
purpose language. InProc. 8th ACM SIGPLAN International Conference on Functional
Programming (ICFP 2003), Uppsala, Sweden, August 2003.

3. Dave Crane, Eric Pascarello, and Darren James.Ajax in Action. Manning Publications, 2005.
4. Vladimir Gapeyev, Michael Y. Levin, Benjamin C. Pierce, and Alan Schmitt. XML goes

native: Run-time representations for Xtatic. In14th International Conference on Compiler
Construction, April 2005.

5. Active XML homepage. http://activexml.net.
6. Objective CAML homepage. http://caml.inria.fr/ocaml/index.en.html.
7. Christian Kirkegaard and Anders Møller. Type checking with XML Schema in Xact. Tech-

nical Report RS-05-31, BRICS, September 2005.
8. Erik Meijer and Mark Shields. XMλ: A functional language for constructing and manipu-

lating XML documents. (Draft), 1999.
9. Anders Møller and Michael I. Schwartzbach. The design space of type checkers for XML

transformation languages. InProc. 10th International Conference on Database Theory,
ICDT ’05, volume 3363 ofLNCS, pages 17–36. Springer-Verlag, January 2005.

10. Macromedia Coldfusion MX. http://www.macromedia.com/software/coldfusion.
11. Active Server pages. http://www.asp.net/.
12. Sun’s JAVA Server Pages. http://java.sun.com/products/jsp.
13. The PHP Hypertext Preprocessor. http://www.php.net.
14. Jelly: Executable XML. http://jakarta.apache.org/commons/jelly.

15

