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Elementary UDP Sockets Chapter 8
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Figure 8.1 Socket functions for UDP client-server.

recvirom and sendto Functions

These two functions are similar to the standard read and write functions, but three
additional arguments are required.

#include <sys/socket.h>

ssize_t recvirom(int sockfd, wvoid *buff, size_t nbytes, int flags,
struct sockaddr *from, socklen_t *addrlen);

ssize_t sendto(int sockfil, const void *buff, size t nbytes, int flugs,
const struct sockaddr *fo, socklen_t addrlen);

Both return: number of bytes read or written if OK, -1 on error

The first three arguments, sockfd, buff, and nbytes, are identical to the first three argu-
ments for read and write: descriptor, pointer to buffer to read into or write from, and
number of bytes to read or write.
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38 The Transport Layer: TCP and UDP Chapter 2 Section 2.5
starting point Watching the Packets
Figure 2.5 shows the actual packet exchange that takes place for a complete TCP con-
. nection: the connection establishment, data transfer, and connection termination. We
appl: passive open | also show the TCP states through which each endpoint passes.
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J Figure 2.5 Packet exchange for TCP connection.
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The client in this example announces an MSS of 1460 (typical for IPv4 on an Ether-
net) and the server announces an MSS of 1024 (typical for older Berkeley-derived imple-
mentations on an Ethernet). It is OK for the MSS to be different in each direction. (See
also Exercise 2.5.)

Once the connection is established, the client forms a request and sends it to the
server. We assume this request fits into a single TCP segment (i.e., less than 1024 bytes
given the server’s announced MSS). The server processes the request and sends a reply,
and we assume that the reply fits in a single segment (less than 1460 in this example).

active close

———== indicate normal transitions for client

—- indicate normal h'ansitions{ar server

appl: indicate state transitions taken when application issues operation
recv: indicate state transitions taken when segment received

send: indicate what is sent for this transition

Figure 2.4 TCP state transition diagram.



