212

8.2

Elementary UDP Sockets Chapter 8

UDP Server

socket ()

well-known
port

UDP Client

blocks until datagram
received from a client

socket ()

sendto () data (request)

PI'OCQSS l’(‘qUGSf

sendto ()

data (reply)

recvfrom()

Figure 8.1 Socket functions for UDP client-server.

recvirom and sendto Functions

These two functions are similar to the standard read and write functions, but three
additional arguments are required.

#include <sys/socket.h>

ssize_t recvirom(int sockfd, wvoid *buff, size_t nbytes, int flags,
struct sockaddr *from, socklen_t *addrlen);

ssize_t sendto(int sockfil, const void *buff, size t nbytes, int flugs,
const struct sockaddr *fo, socklen_t addrlen);

Both return: number of bytes read or written if OK, -1 on error

The first three arguments, sockfd, buff, and nbytes, are identical to the first three argu-
ments for read and write: descriptor, pointer to buffer to read into or write from, and
number of bytes to read or write.

TCP and UDP

T Qures from -

UNIX NETwulK
PO GR AN G

W. B. STevens
Vol. 4 tec. ed.

TCP Connection Establishment and Termination 39

38 The Transport Layer: TCP and UDP Chapter 2 Section 2.5
starting point Watching the Packets
Figure 2.5 shows the actual packet exchange that takes place for a complete TCP con-
. nection: the connection establishment, data transfer, and connection termination. We
appl: passive open | also show the TCP states through which each endpoint passes.
send: <nothing> :
\ client server
socket,bind, listen
sopkar LISTEN (passive open)
connect (blocks) SYNJ, mss 1460 accept (blocks)
(active open) SYN_SENT SYN RCVD
~ 1024 -
SN K, ack J+1, mss =102
ESTABLISHED
connect returns W
) o ESTABLISHED
recv: SYN appl: close <client forms requiest> agcepbrSiums

SYN_SENT

send: SYN, ACK
simultaneous open

or timeout

write data (requ,
read (blocks) w-

read (blocks)

read returns

2 (@Pp.
v:)g *\YQ% <server processes reqiiest>
K ; .
61%“:\ [o i o e g, - data (reply) write
) FIN | ! read returns ok of request read (blocks)
- -Sgg-'- it #(CLOSE_WAIT)| ack of repyy
i]
I
1
appl:jclose

send: :FIN
]

LABTACK Jhn BTUEE o
send: <nothing>

1

"///ack’f\ﬁl,/// read returns 0
FIN_WAIT_2 -
FIN N close
TIME_WAIT // LAST_ACK
W
CLOSED

J Figure 2.5 Packet exchange for TCP connection.

I

I

|

| close FIN M

) (active close) FIN_WAIT_1 \s CLOSE_WAIT (passive close)
|

|

I

|

I

!
|
|
I
I
|
|
I
I
I
I

passive close

ACK

send: | <nothing> send: | <nothing>

recv: FIN
send: ACK

TIME_WAIT
2MSL timeout

FIN_WAIT_2

|
|
1
I
I
I
I
|
I
I
|
I
|
[
|

The client in this example announces an MSS of 1460 (typical for IPv4 on an Ether-
net) and the server announces an MSS of 1024 (typical for older Berkeley-derived imple-
mentations on an Ethernet). It is OK for the MSS to be different in each direction. (See
also Exercise 2.5.)

Once the connection is established, the client forms a request and sends it to the
server. We assume this request fits into a single TCP segment (i.e., less than 1024 bytes
given the server’s announced MSS). The server processes the request and sends a reply,
and we assume that the reply fits in a single segment (less than 1460 in this example).

active close

———== indicate normal transitions for client

—- indicate normal h'ansitions{ar server

appl: indicate state transitions taken when application issues operation
recv: indicate state transitions taken when segment received

send: indicate what is sent for this transition

Figure 2.4 TCP state transition diagram.

